Official Software
Get notified when we add a new ChevroletTrailblazer Manual

We cover 60 Chevrolet vehicles, were you looking for one of these?

Chevrolet Aveo 2007-2010 Factory Repair Manual PDF
Chevrolet Suburban 2000-2006 FACTORY Service Repair Manual PDF
Chevrolet Cruze Workshop Manual (L4-1.4L Turbo (2011))
Malibu L4-2.4L (2010)
Silverado 1500 4WD V8-4.8L VIN V (2004)
Chevrolet Impala Workshop Manual (V6-3.5L (2008))
Chevrolet Blazer 4wd Workshop Manual (V6-4.3L VIN X (2005))
Chevrolet Silverado 2500 4wd Workshop Manual (V8-6.0L VIN U (2004))
Silverado 1500 4WD V8-5.3L VIN T (2004)
Chevrolet Silverado, GMC Full Size Trucks Chilton Repair Manual
Chevrolet Traverse Awd Workshop Manual (V6-3.6L (2011))
Chevrolet Equinox Awd Workshop Manual (V6-3.4L VIN F (2006))
Chevrolet - S-10 - Workshop Manual - (2001)
Chevrolet - Epica - Workshop Manual - 2008 - 2008
Chevrolet - Spark - Workshop Manual - 2011 - 2011
Chevrolet Malibu Workshop Manual (V6-3.5L VIN 8 (2004))
Chevrolet Impala Workshop Manual (V6-3.8L VIN K (2004))
Chevrolet - Malibu - Workshop Manual - 2007 - 2009
Chevrolet Astro Van 2wd Workshop Manual (V6-4.3L VIN X (2002))
Chevrolet - Tahoe - Workshop Manual - 2001 - 2002
Chevrolet Cavalier Workshop Manual (Cavalier-Z24 L4-134 2.2L (1991))
Chevrolet Express 4500 Workshop Manual (V8-6.0L (2010))
Chevrolet Avalanche 1500 4wd Workshop Manual (V8-5.3L VIN T (2003))
Chevrolet Camaro Workshop Manual (V8-350 5.7L (1989))
Chevrolet Astro Van Awd Workshop Manual (V6-4.3L VIN X (2003))
Chevrolet Caprice Workshop Manual (V8-305 5.0L VIN E TBI (1991))
Chevrolet Silverado 2500 4wd Workshop Manual (V8-6.6L DSL Turbo VIN 2 (2004))
Chevrolet Silverado 1500 4wd Workshop Manual (V8-5.3L VIN Z Flex Fuel (2005))
Chevrolet Chevette Workshop Manual (L4-98 1.6L (1982))
Chevrolet Equinox Awd Workshop Manual (V6-3.4L (2008))
Chevrolet Colorado 2wd Workshop Manual (L4-2.8L VIN 8 (2004))
Uplander FWD V6-3.5L VIN L (2006)
Chevrolet - Monte Carlo - Workshop Manual - (2004)
Chevrolet - Cruze - Workshop Manual - 2011 - 2015
Chevrolet Equinox Fwd Workshop Manual (V6-3.4L VIN F (2005))
Chevrolet Silverado 1500 2wd Workshop Manual (V8-4.8L VIN V (2006))
Chevrolet S10 Workshop Manual (S10-T10 Blazer 4WD V6-262 4.3L VIN Z (1994))
Chevrolet Camaro Workshop Manual (V8-6.2L (2010))
2010 Chevrolet Cruze Body Repair Manual
Tahoe 4WD V8-5.3L VIN T (2004)
Chevrolet K Tahoe 4wd Workshop Manual (V8-5.7L VIN R (1996))
Chevrolet Silverado 1500 4wd Workshop Manual (V8-5.3L VIN T (2004))
Chevrolet Chevelle Workshop Manual (Chevelle-Malibu V8-305 5.0L (1983))
Chevrolet G 30 Van Workshop Manual (V8-379 6.2L DSL (1987))
Chevrolet Cavalier Workshop Manual (L4-2.2L VIN F (2004))
2001-2005--Chevrolet--Impala--6 Cylinders K 3.8L FI OHV--32849802
Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007))
Chevrolet - Express - Wiring Diagram - 2019 - 2019
Chevrolet Equinox Fwd Workshop Manual (V6-3.0L (2010))
Chevrolet K 1500 Suburban 4wd Workshop Manual (V8-454 7.4L VIN N TBI (1995))
Chevrolet Express 1500 Awd Workshop Manual (V8-5.3L (2008))
Chevrolet Caprice Classic Workshop Manual (V8-305 5.0L VIN E TBI (1991))
Chevrolet Malibu Workshop Manual (V6-191 3.1L VIN M SFI (1997))
Silverado 1500 2WD V6-4.3L (2007)
Chevrolet Hhr Workshop Manual (L4-2.2L (2007))
Chevrolet S10 Workshop Manual (S10-T10 Blazer 4WD V6-262 4.3L VIN W CPI (1992))
Malibu L4-2.2L VIN F (2005)
Lumina V6-204 3.4L DOHC VIN X SFI (1996)
Chevrolet Silverado 1500 2wd Workshop Manual (V6-4.3L VIN X (2004))
Chevrolet Tahoe 4wd Workshop Manual (V8-5.3L (2007))
Summary of Content
Page 10998 ^ (1) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from the jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 4. Touch the battery terminals of the 9-volt battery to the battery terminals of the jumper harness. This will rotate the encoder motor shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 5. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the two reference lines as shown in the picture. This orientates the encoder motor (actuator) to NEUTRAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 6. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. NVG 226 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (4) J-356165 Terminal Test Adapter (Test Probe) ^ (2) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from one of the jumper harnesses to the Battery Positive Voltage terminal (pin F - wire color orange) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Lock Solenoid Control terminal (pin G - wire color tan) of the transfer case encoder motor (actuator) wiring harness connector. 4. Attach a 9-volt battery to this harness. You will hear the encoder motor (actuator) unlock. Page 849 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 6490 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 432 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9982 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8020 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4367 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7732 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 7981 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 7227 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10699 The updated PCM calibrations were released to dealerships that use the TIS2web application on August 23, 2006. The TIS satellite data update version 9.0 will be broadcast to the field on September 3, 2006. For dealerships that use DVDs, the update will be included with version 9.0 that will be mailed on September 13, 2006. As always make sure your Tech 2(R) is updated with the latest software version. Refer to the Engine and Powertrain Control Module Programming and Setup procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 8228 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9449 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 4337 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3380 Page 5276 Page 722 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5603 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9487 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 2332 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 4498 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7998 View of the connector when released from the component. View of another type of Micro 64 connector. Page 658 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 4074 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4962 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7489 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1101 Traction Control Switch: Diagrams Antilock Brake System Connector End Views Traction Control Switch Traction Control Switch Page 8718 Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Training (Canada) To access the training video on AFIT, take the following path at the GMPro LMS Training Website: 1. After logging into the website, choose the link on the left side of the page titled "Catalog." 2. Then choose "Catalog Search." 3. Next, within the search box, Select Course Number - Contains - "T" then select search. 4. This will bring up a list of TECHassist courses. Scroll through to choose "Active Fuel Injector Tester" and select "View." 5. At this point, a new window will open and the program can be Launched. Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Techlink Additional information can be found on AFIT (June 2006 Edition) and GM Upper Engine and Fuel Injector Cleaner (November 2006 Edition) in Techlink. To access the articles, take the following path: 1. Go to GM DealerWorld (U.S.) or the GM GlobalConnect (Canada). 2. Click on the Service Tab in DealerWorld (in Canada, click Technican Resources in the Service Library of GM GlobalConnect). 3. Click on the GM Techlink Hyperlink. 4. Click on the Archives Hyperlink at GM Techlink. - Click on 06-2006 in the Archives Section and Click on the Active Fuel Injector Tester Link in the June 2006 Techlink Article. - Click on 11-2006 in the Archives Section and Click on the GM Top Engine Cleaner Replaced Link in the November 2006 Techlink Article. Injector Cleaning Procedure Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent recommended. DO NOT USE OTHER CLEANING AGENTS AS THEY MAY CONTAIN METHANOL, WHICH CAN DAMAGE FUEL SYSTEM COMPONENTS. Under NO circumstances should the GM Upper Engine and Fuel Injector Cleaner be added to the vehicle fuel tank. Do not exceed the recommended cleaning solution concentration. Testing has demonstrated that exceeding the recommended cleaning solution concentration does not improve the effectiveness of this procedure. Important Vehicles with less than 160 km (100 mi) on the odometer should not have the injectors cleaned. These vehicles should have any out of specification injectors replaced. 1. For 4, 5 and 6 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A - Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) mixed with 420 ml (14 oz) of regular unleaded gasoline. 2. For 8 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) of Upper Engine and Fuel Injector Cleaner mixed with 420 ml (14 oz) of regular unleaded gasoline. This procedure will need to be repeated for a second time for an 8 cylinder engine (8 cylinder engines receive 960 ml total fluid 120 ml (4 oz) of Upper Engine and Fuel Injector Cleaner and 840 ml (28 oz) of gasoline. 3. Be sure to follow all additional instructions provided with the tool. 4. Electrically disable the vehicle fuel pump by either removing the fuel pump fuse or the fuel pump relay and disconnecting the oil pressure switch connector, if equipped. Page 847 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1960 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5493 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4292 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Specifications Shift Solenoid: Specifications Shift Solenoid Valve State and Gear Ratio Shift Solenoid Valve State and Gear Ratio Page 7239 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4496 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9636 Page 5622 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2768 Propshaft Speed Sensor - Rear Page 11205 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2317 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 4128 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 223 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 1334 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 8303 Locations Central Control Module: Locations Entertainment/Communication Component Views Vehicle Communication Interface Module (VCIM) 1 - Connectors 2 - Body Harness 3 - Rear Floor Panel 4 - Vehicle Communication Interface Module (VCIM) Page 487 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 2434 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6520 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 1980 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 10678 Speed Sensor: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Front Output Shaft Speed Sensor Replacement Transfer Case Front Output Shaft Speed Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case front speed sensor electrical connector. 3. Remove the transfer case front speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case front speed sensor. Tighten the sensor to 17 N.m (13 lb ft). Page 3381 Fuse Block: Connector Views Rear Fuse Block Fuse Block - Rear, Top View Page 4117 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2675 Tire Pressure Sensor: Technical Service Bulletins Tires - Minimizing Damage to TPM Sensors INFORMATION Bulletin No.: 08-03-10-007 Date: May 16, 2008 Subject: Minimizing Damage to Tire Pressure Monitor (TPM) Sensors During Tire Mounting/Dismounting Models: 2009 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Wheel Mounted Tire Pressure Sensors Minimizing Damage To TPM Sensors All GM vehicles now in production and sold in the U.S., as well as many vehicles sold in Canada, feature Tire Pressure Monitoring Systems that have valve stem mounted Tire Pressure Sensors. When dismounting and mounting tires, care must be taken when breaking the bead loose from the wheel. If the tire machines bead breaking fixture is positioned too close to the tire pressure sensor, as the tire bead breaks away from the wheel it may be forced into, or catch on the edge of the tire pressure sensor. This can damage the sensor and require the sensor to be replaced. Care must also be taken when transferring the tire bead to the other side of the wheel rim. As the tire machine rotates and the tire bead is stretched around the wheel rim, the bead can come in contact with the sensor if it is not correctly positioned in relation to the mounting/dismounting head prior to tire mounting/dismounting. This can also cause sensor damage requiring replacement. Procedure Notice: Use a tire changing machine in order to dismount tires. Do not use hand tools or tire irons alone in order to remove the tire from the wheel. Damage to the tire beads or the wheel rim could result. Notice: Do not scratch or damage the clear coating on aluminum wheels with the tire changing equipment. Scratching the clear coating could cause the aluminum wheel to corrode and the clear coating to peel from the wheel. 1. Remove the valve core from the valve stem. 2. Deflate the tire completely. Important: Rim-clamp European-type tire changers are recommended. 3. Use the tire changer in order to remove the tire from the wheel. Follow steps 4-7 to remove the tire from the wheel. 4. When separating the tire bead from the wheel position the bead breaking fixture 90, 180 and 270 degrees from the valve stem. Page 10845 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 515 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5335 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 9927 View of the connector when released from the component. View of another type of Micro 64 connector. Page 1130 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 10638 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 7099 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5960 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 9273 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 10205 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 6484 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 1946 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Specifications Engine Oil Pressure: Specifications Oil Pressure - Minimum .......................................................................................................................................................... 85 kPa (12 psi) @ 1200 RPM Page 3821 Idler Pulley: Service and Repair Drive Belt Idler Pulley Replacement Removal Procedure 1. Remove the drive belt. Refer to Drive Belt Replacement. 2. Remove the left front wheel. Refer to Tire and Wheel Removal and Installation. 3. Remove the drive belt idler pulley bracket bolts from inside the left wheel house opening. 4. Lower the vehicle. 5. Remove forward bolt of the drive belt idler pulley bracket from inside the engine compartment. 6. Remove the drive belt pulley from the vehicle. Installation Procedure 1. Install the drive belt pulley bracket and the forward bolt of the idler pulley bracket from inside the engine compartment. 2. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. Notice: Refer to Fastener Notice. 3. Install the drive belt idler pulley bracket bolts from inside the left wheelhouse opening. Tighten the drive belt idler pulley bracket bolts to 50 N.m (37 lb ft). 4. Install the left front wheel. Refer to Tire and Wheel Removal and Installation. 5. Lower the vehicle. 6. Install the drive belt. Refer to Drive Belt Replacement. Page 4083 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10079 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 1337 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 107 Method 3 The Gen 6.1 version of OnStar(R) does not require the use of the Service Programming System (SPS) to change the voice recognition system. However, there are three ways to change the language. Disclaimer Page 5954 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 6336 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2160 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 211 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 2523 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10476 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 9281 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2224 US English/Metric Conversion US English/Metric Conversion Page 4897 Engine Control Module: Description and Operation Powertrain Control Module Description Powertrain The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: * The engine fueling * The ignition control (IC) * The knock sensor (KS) system * The evaporative emissions (EVAP) system * The secondary air injection (AIR) system (if equipped) * The exhaust gas recirculation (EGR) system * The automatic transmission functions * The generator * The A/C clutch control * The cooling fan control Powertrain Control Module Function The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. Malfunction Indicator Lamp (MIL) Operation The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: Page 10212 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 11152 Fuel Level Sensor Replacement Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement Fuel Level Sensor Replacement Removal Procedure 1. Remove the fuel sender assembly. 2. Disconnect the fuel pump electrical connector. 3. Remove the retaining clip from the fuel level sensor connector. 4. Disconnect the electrical connector from under the fuel sender cover. 5. Remove the sensor retaining clip. 6. Squeeze the locking tangs and remove the fuel level sensor (3). Installation Procedure 1. Install the fuel level sensor (3). 2. Install the sensor retaining clip. 3. Connect the electrical connector to the fuel level sensor. 4. Install the retaining clip to the fuel level sensor electrical connector. 5. Connect the fuel pump electrical connector. 6. Install the fuel sender assembly. Page 1870 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 403 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 6437 Compression Check: Testing and Inspection Engine Compression Test Tools Required J 38722 Compression Tester A compression pressure test of the engine cylinders determines the condition of the rings, the valves, and the head gasket. Important: The battery must be at or near full charge. Do not block the throttle open. 1. Remove the air duct from the throttle control module. 2. Remove the ignition control modules. 3. Disable the fuel system. 4. Remove the spark plugs. 5. Measure the engine compression, using the following procedure: 1. Firmly install J 38722 to the spark plug hole. 2. Have an assistant crank the engine through at least four compression strokes in the testing cylinder. 3. Check and record the readings on J 38722 at each stroke. 4. Disconnect J 38722. 5. Repeat the compression test for each cylinder. 6. Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. 7. The following are examples of the possible measurements: ^ When the compression measurement is normal, the compression builds up quickly and evenly to the specified compression on each cylinder. ^ When the compression is low on the first stroke and tends to build up on the following strokes, but does not reach the normal compression, or if the compression improves considerably with the addition of three squirts of oil, the piston rings may be the cause. ^ When the compression is low on the first stroke and does not build up in the following strokes, or the addition of oil does not affect the compression, the valves may be the cause. ^ When the compression is low on two adjacent cylinders, or coolant is present in the crankcase, the head gasket may be the cause. 8. Install the air duct to the throttle body. 9. Install the spark plugs. 10. Enable the fuel system. 11. Install the ignition control modules. Page 7509 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9139 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 5883 Page 2817 Figure 1: Full Tread View - "NORMAL" Tire "Feathering" Wear on the Shoulder/Adjacent/Center Ribs Figure 2: Tire Shoulder View Example 1 - "NORMAL" Tire "Feathering" Wear on the Shoulder Figure 3: Tire Shoulder View Example 2 - "NORMAL" Tire "Feathering" Wear Figure 4: Detail Side View of Tire Shoulder Area - "NORMAL" Tire "Feathering" Wear Important When a wheel alignment is deemed necessary for tire wear, be sure to document on the repair order, in as much detail as possible, the severity and type of tire wear (e.g., severe center wear or severe inside or outside shoulder wear) and the position of the tire on the vehicle (RF, LF, LR, RR). Please note the customer's concern with the wear such as, noise, appearance, wear life, etc. A field product report with pictures of the tire wear condition is recommended. Refer to Corporate Bulletin Number 02-00-89-002J and #07-00-89-036C. 4. Other repairs that affect wheel alignment; e.g., certain component replacement such as suspension control arm replacement, engine cradle adjustment/replace, steering gear replacement, steering tie rod replace, suspension strut/shock, steering knuckle, etc. may require a wheel alignment. Important If other components or repairs are identified as affecting the wheel alignment, policy calls for the wheel alignment labor time to be charged to the replaced/repaired component's labor operation time rather than the wheel alignment labor operations. Important Vibration type customer concerns are generally NOT due to wheel alignment except in the rare cases; e.g., extreme diagonal wear across the tread. In general, wheel alignments are NOT to be performed as an investigation/correction for vibration concerns. "Normal Operation" Conditions Vehicle Lead/Pull Due to Road Crown or Slope: As part of "Normal Operation," vehicles will follow side-to-side or left to right road crown or slope. Be sure to verify from the customer the types of roads they are driving as they may not recognize the influence of road crown on vehicle lead/pull and steering wheel angle. If a vehicle requires significant steering effort to prevent it from "climbing" the road crown there may be an issue to be looked into further. Important Specifications Power Steering Fluid: Specifications POWER STEERING SYSTEM GM Power Steering Fluid GM P/N 89021184 (Canadian P/N 89021186) or equivalent. Page 2582 US English/Metric Conversion US English/Metric Conversion Page 3492 5. Position the wheel and tire so the valve stem is situated at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the outer tire bead up and over the mounting/dismounting head. 6. Position the wheel and tire so that the valve stem is situated again at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the inner tire bead up and over the mounting/dismounting head. 7. Remove all residual liquid sealant from the inside of the tire and wheel surfaces. If any tire sealant is noted upon tire dismounting on vehicles equipped with TPM replace the tire pressure sensor. 8. Use a wire brush or coarse steel wool in order to remove any rubber, light rust or corrosion from the wheel bead seats. Important: If bead seat corrosion has been identified as an air loss concern on the wheel being worked on, refer to GM Service Bulletin # 08-03-10-006 for additional information on correcting the leak. 9. Apply GM P/N 12345884 (in Canada, P/N 5728223) or equivalent to the tire bead and the wheel rim. Page 10610 4. Position the tool J 41364-A onto the park/neutral position switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. Notice: Refer to Fastener Notice. 5. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts securing the switch to 25 N.m (18 lb ft). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Connect the electrical connectors to the switch. 8. Install the transmission control lever to the manual shaft with the nut. Tighten the control lever nut to 25 N.m (18 lb ft). 9. Lower the vehicle. 10. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. If proper operation of the switch can not be obtained, replace the switch. Page 8416 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7455 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Parts Center (WPC) Request Form IMPORTANT NOTE WHEN PRINTING THIS FORM: If the form prints out on two pages, make certain you fax BOTH pages so that the WPC receives all the needed information. Missing information will delay or prevent the part from being shipped. Page 9525 Utility/Van Zoning UTILITY/VAN ZONING Page 6593 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 2408 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7039 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 1931 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 3159 Page 851 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4796 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 5655 Page 5328 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 4596 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7636 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 5096 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2153 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5353 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7052 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7831 Utility/Van Zoning UTILITY/VAN ZONING Page 5982 US English/Metric Conversion US English/Metric Conversion Specifications Timing Cover: Specifications Engine Front Cover Install the engine front cover. Install the engine front cover bolts. Tighten the engine front cover bolts to ................................................................................................................................................. 10 N.m (89 lb in). Tighten the small center bolt (1) last to ................................................................................................................................................ 10 N.m (89 lb in). Engine Front Cover Spacer Bolt .......................................................................................................... ....................................................... 10 N.m (89 lb in) Engine Front Lift Bracket Bolt .......................... .......................................................................................................................................... 50 N.m (37 lb ft) Page 5426 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 6940 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7934 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Testing and Inspection/Diagnostic Trouble Code Descriptions See: Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. A/T - Shift Lock Control Actuator Available Shift Interlock Solenoid: Technical Service Bulletins A/T - Shift Lock Control Actuator Available Bulletin No.: 05-07-129-001B Date: February 16, 2007 INFORMATION Subject: Automatic Transmission Shift Lock Control Actuator Available for Service Use Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2006 Chevrolet TrailBlazer EXT 2003-2006 Chevrolet SSR 2002-2007 GMC Envoy 2002-2006 GMC Envoy XL 2004-2005 GMC Envoy XUV 2002-2004 Oldsmobile Bravada 2003-2007 HUMMER H2 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to update the model years and add the SSR. Please discard Corporate Bulletin Number 05-07-129-001A (Section 07 - Transmission/Transaxle). The automatic transmission shift lock control actuator is now available for service as a separate part. The actuator was formerly available only as part of the entire shifter assembly. DO NOT replace the shifter assembly if the shift lock control actuator requires replacement. Please refer to the Automatic Transmission Shift Lock Control Actuator Replacement procedure in the Automatic Transmission sub-section of the Service Information. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Page 6319 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 717 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9348 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 875 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 11150 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7837 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6133 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8768 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10171 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 9329 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10454 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2030 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6200 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Metal Collar Quick Connect Fitting Service Fuel Line Coupler: Service and Repair Metal Collar Quick Connect Fitting Service Metal Collar Quick Connect Fitting Service Tool Required J37088-A Fuel Line Disconnect Tool Set Removal Procedure 1. Relieve the fuel system pressure before servicing any fuel system connection. Refer to the Fuel Pressure Relief. 2. Remove the retainer from the quick-connect fitting. Caution: Wear safety glasses when using compressed air, as flying dirt particles may cause eye injury. 3. Blow dirt out of the fitting using compressed air. 4. Choose the correct tool from the J37088-A for the size of the fitting. Insert the tool into the female connector, then push inward in order to release the locking tabs. 5. Pull the connection apart. Notice: If necessary, remove rust or burrs from the fuel pipes with an emery cloth. Use a radial motion with the fuel pipe end in order to prevent damage to the O-ring sealing surface. Use a clean shop towel in order to wipe off the male tube ends. Inspect all the connections for dirt and burrs. Clean or replace the components and assemblies as required. Page 7884 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Service and Repair Clutch Control Solenoid Valve: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. Important: Do not remove the valve body for the following procedures. Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. 2. Remove the 1-2 accumulator if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ Torque converter clutch (TCC) pulse width modulation (PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer. 5. Remove the pressure control solenoid. 6. Remove the 1-2 and 2-3 shift solenoid retainers. 7. Remove the 1-2 and 2-3 shift solenoids. Page 532 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2851 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 9105 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2407 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 8914 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 725 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5230 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 4864 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 5784 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4286 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Description and Operation Variable Valve Timing Actuator: Description and Operation Camshaft Actuator System Description Camshaft Position (CMP) Actuator System The camshaft position actuator (CMP) system is used for a variety of engine performance enhancements. These enhancements include lower emission output through exhaust gas recirculation control, a wider engine torque range, improved gas millage, and improved engine idle stability. The CMP actuator system accomplishes this by controlling the amount of intake and exhaust valve overlap. CMP Actuator System Operation The camshaft position CMP actuator system is controlled by the powertrain control module (PCM). The PCM sends a pulse width modulated 12 volt signal to a (CMP) actuator solenoid in order to control the amount of engine oil flow to a cam phaser passage. There are 2 different passages for oil to flow through, a passage for cam advance and a passage for cam retard. The cam phaser is attached to a camshaft and is hydraulically operated in order to change the angle of the camshaft relative to crankshaft position. Engine oil pressure, viscosity, temperature and engine oil level can have an adverse affect on cam phaser performance. The PCM calculates the optimum cam position through the following inputs: * Engine speed * Manifold absolute pressure (MAP) * Throttle position (TP) indicated angle * Crankshaft position (CKP) * Camshaft position (CMP) * Engine load * Barometric (BARO) pressure The cam phaser default position is 0 degrees. The PCM uses the following inputs before assuming control of the cam phaser: * Engine coolant temperature (ECT) * Closed loop fuel control * Engine oil temperature * Engine oil pressure * Engine oil level * CMP actuator solenoid circuit state * Ignition 1 signal voltage * Barometric (BARO) pressure CMP Actuator Solenoid Circuit Diagnostics The powertrain control module (PCM) monitors the control circuits of the camshaft position (CMP) actuator solenoid for electrical faults. The PCM has the ability to determine if a control circuit is open, shorted high, and shorted low. If the PCM detects a fault with a CMP actuator solenoid circuit a diagnostic trouble code (DTC) will set. CMP Actuator System Performance Diagnostics The powertrain control module (PCM) monitors the performance of the CMP actuator system by monitoring the actual and desired positions of a cam phaser. If the difference between the actual and desired position is more than a calibrated angle for more than a calibrated amount of time, a DTC will set. Page 8890 Page 5432 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2026 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 1370 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7615 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 11062 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: Customer Interest Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 10858 Page 382 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 8692 - Shell - Shell-Canada - Entec Stations located in the greater Montgomery, Alabama area. - MFA Oil Company located throughout Missouri. - Kwik Trip, Inc. in Minnesota and Wisconsin and Kwik Star convenience stores in Iowa. The Somerset Refinery, Inc. at Somerset Oil stations in Kentucky. Aloha Petroleum - Tri-Par Oil Company - Turkey Hill Minit Markets - Texaco - Petro-Canada - Sunoco-Canada - Road Ranger located in Illinois, Indiana, Iowa, Kentucky, Missouri, Ohio and Wisconsin What is TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline is a new class of gasoline with enhanced detergency. It meets new, voluntary deposit control standards developed by six automotive companies that exceed the detergent requirements imposed by the EPA. Where Can TOP TIER Detergent Gasoline Be Purchased? The TOP TIER program began on May 3, 2004 and many fuel marketers have joined the program and have introduced TOP TIER Detergent Gasoline. This is a voluntary program and not all fuel marketers will offer this product. Once fuel marketers make public announcements, they will appear on a list of brands that meet the TOP TIER standards. Where Can I find the Latest Information on TOP TIER Fuel and Retailers? On the web, please visit www.toptiergas.com for additional information and updated retailer lists. Who developed TOP TIER Detergent Gasoline standards? TOP TIER Detergent Gasoline standards were developed by six automotive companies: Audi, BMW, General Motors, Honda, Toyota and Volkswagen. Why was TOP TIER Detergent Gasoline developed? TOP TIER Detergent Gasoline was developed to increase the level of detergent additive in gasoline. The EPA requires that all gasoline sold in the U.S. contain a detergent additive. However, the requirement is minimal and in many cases, is not sufficient to keep engines clean. In order to meet TOP TIER Detergent Gasoline standards, a higher level of detergent is needed than what is required by the EPA. Also, TOP TIER was developed to give fuel marketers the opportunity to differentiate their product. Why did the six automotive companies join together to develop TOP TIER? All six corporations recognized the benefits to both the vehicle and the consumer. Also, joining together emphasized that low detergency is an issue of concern to several automotive companies. What are the benefits of TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline will help keep engines cleaner than gasoline containing the "Lowest Additive Concentration" set by the EPA. Clean engines help provide optimal fuel economy and performance and reduced emissions. Also, use of TOP TIER Detergent Gasoline will help reduce deposit related concerns. Disclaimer Page 1616 Page 1948 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8334 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 1318 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Locations Transmission Speed Sensor: Locations Vehicle Speed Sensor (VSS) Vehicle Speed Sensor (VSS) 1 - VSS Sensor 2 - Transfer Case Electronic Components Page 5049 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9554 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 32 THIS PROGRAM IS IN EFFECT UNTIL APRIL 30, 2011. Condition Certain 2002-2009 model year vehicles equipped with OnStar(R) may have a condition in which the vehicle's OnStar(R) system repeatedly makes incomplete calls to OnStar(R) without the vehicle's occupant(s) input or knowledge. Customer initiated Blue Button call, Emergency calls, and Automatic Crash Notification calls will also fail to establish a data connection with the OnStar(R) Call Center. Eventually, the customer's call will connect as a voice only line and the customer will be able to talk with an OnStar(R) advisor; however, the advisor will not get crucial customer data such as vehicle identification and location. Correction Dealers/retailers are to replace the OnStar(R) module (VCIM). Vehicles Involved Involved are certain 2002-2009 model year vehicles equipped with OnStar(R), and built within these VIN breakpoints: Note: Some model years/models have only one vehicle involved. Important Dealers/retailers are to confirm vehicle eligibility prior to beginning repairs by using GMVIS (dealers/retailers using WINS) or the Investigate Vehicle History link (dealers/retailers using GWM). Not all vehicles within the above breakpoints may be involved. For dealers/retailers with involved vehicles, a listing with involved vehicles containing the complete vehicle identification number, customer name, and address information has been prepared and will be provided to dealers/retailers through the GM GlobalConnect Recall Reports. Dealers/retailers will not have a report available if they have no involved vehicles currently assigned. The listing may contain customer names and addresses obtained from Motor Vehicle Registration Records. The use of such motor vehicle registration data for any purpose other than follow-up necessary to complete this program is a violation of law in several states/provinces/countries. Accordingly, you are urged to limit the use of this report to the follow-up necessary to complete this program. Parts Information US: OnStar(R) modules required for this program are to be obtained by contacting Autocraft Electronics via the web at www.autocraft.com, and selecting the catalog item that contains bulletin number 10037 (or PIC 4893B), or by calling 1-800-336-3998. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. Canada: OnStar(R) modules required for this program are to be obtained by contacting MASS Electronics at 1-877-410-6277. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. DO NOT ORDER ONSTAR(R) MODULES FROM GENERAL MOTORS CUSTOMER CARE AND AFTERSALES (GMCC&A;), SATURN SERVICE PARTS OPERATION (SSPO), OR THE TECHNICAL ASSISTANCE CENTER (TAC). Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers/retailers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Claim Information 1. Submit a claim using the table below. 2. Courtesy Transportation - For dealers/retailers using WINS, submit using normal labor code; for dealers/retailers using GWM - submit as Net Item under the repair labor code. Page 2736 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 8053 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 216 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2281 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Service and Repair Air Bag(s) Arming and Disarming: Service and Repair SIR Disabling and Enabling SIR component location affects how a vehicle should be serviced. There are parts of the SIR system installed in various locations around a vehicle. To find the location of the SIR components refer to SIR Identification Views. There are several reasons for disabling the SIR system, such as repairs to the SIR system or servicing a component near or attached to an SIR component. There are several ways to disable the SIR system depending on what type of service is being performed. The following information covers the proper procedures for disabling/enabling the SIR system. SIR Service Precautions Caution: When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Failure to observe the correct procedure could cause deployment of the SIR components. Serious injury can occur. Failure to observe the correct procedure could also result in unnecessary SIR system repairs. The inflatable restraint sensing and diagnostic module (SDM) maintains a reserved energy supply. The reserved energy supply provides deployment power for the air bags if the SDM loses battery power during a collision. Deployment power is available for as much as 1 minute after disconnecting the vehicle power. Waiting 1 minute before working on the system after disabling the SIR system prevents deployment of the air bags from the reserved energy supply. General Service Instructions The following are general service instructions which must be followed in order to properly repair the vehicle and return it to its original integrity: * Do not expose inflator modules to temperatures above 65°C (150°F). * Verify the correct replacement part number. Do not substitute a component from a different vehicle. * Use only original GM replacement parts available from your authorized GM dealer. Do not use salvaged parts for repairs to the SIR system. Discard any of the following components if it has been dropped from a height of 91 cm (3 feet) or greater: * Inflatable restraint sensing and diagnostic module (SDM) * Any Inflatable restraint air bag module * Inflatable restraint steering wheel module coil * Any Inflatable restraint sensor * Inflatable restraint seat belt pretensioners * Inflatable restraint Passenger Presence System (PPS) module or sensor Disabling Procedure - Air Bag Fuse 1. Turn the steering wheel so that the vehicles wheels are pointing straight ahead. 2. Place the ignition in the OFF position. Important: The SDM may have more than one fused power input. To ensure there is no unwanted SIR deployment, personal injury, or unnecessary SIR system repairs, remove all fuses supplying power to the SDM. With all SDM fuses removed and the ignition switch in the ON position, the AIR BAG warning indicator illuminates. This is normal operation, and does not indicate a SIR system malfunction. 3. Locate and remove the fuse(s) supplying power to the SDM. Refer to SIR Schematics or Electrical Center Identification Views. 4. Wait 1 minute before working on the system. Enabling Procedure - Air Bag Fuse Page 10447 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5718 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9337 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 5657 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 6849 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 2270 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10487 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7288 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 407 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4881 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Engine - Oil Leak from Rear of Crankshaft Crankshaft: All Technical Service Bulletins Engine - Oil Leak from Rear of Crankshaft Bulletin No.: 05-06-01-022B Date: June 11, 2007 INFORMATION Subject: Diagnostic Information on LL8 Engine Oil Leak from Rear of Crankshaft Due to Porosity (Follow Special Crankshaft Porosity Service Repair Procedure) Models: 2005-2007 Buick Rainier 2005-2007 Chevrolet TrailBlazer Models 2005-2007 GMC Envoy Models 2005-2007 Saab 9-7X with 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the 2006 and 2007 model years. Please discard Corporate Bulletin Number 05-06-01 -022A (Section 06 - Engine/Propulsion System). Special Crankshaft Porosity Service Repair Procedure This bulletin is being published to aid technicians in the diagnosis and repair of oil leak from the rear of the engine. Some engines may have slight crankshaft casting porosity that results in a leak in the crankshaft flange bore. This leak may be misdiagnosed as a rear main oil seal leak. Do not assume that an oil leak at the rear of the engine is from a leak at the rear of the crankshaft. Refer to above illustration for the area of the oil leak (1). Verify the leak by looking in the end of the crankshaft. If oil is present in the bore (where the torque converter nose engages the crankshaft), the special service procedure needs to be performed. If the bore is dry, or oil appears to be from the seal area, perform normal oil leak analysis. Refer to Oil Leak Diagnosis in SI. A service cup plug was recently developed to repair this leak and is available through the Warranty Parts Center (WPC). Refer to the information in this bulletin to order a service cup plug. Page 4339 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 444 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 9276 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 11066 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 6493 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Memory Seat Module - Driver C1 Memory Seat Module - Driver C1 (w/Memory) Page 2785 Window Switch - RR Locations Lock Cylinder Switch: Locations Immobilizer Component Views Steering Wheel and Column Steering Wheel and Column 1 - Steering Wheel Control Switch Assembly - Upper Left (STW) 2 - Passlock Sensor Connector (w/o BAE) 3 - Ignition Key Alarm Switch 4 - Ignition Lock Cylinder Control Actuator 5 - Ignition Lock Cylinder Control Actuator Connector 6 - Ignition Switch 7 - Ignition Key Cylinder 8 - Steering Wheel Control Switch Assembly - Upper Right (STW) 9 - Horn Switch 10 - Steering Wheel Control Switch Assembly - Lower Right (STW) 11 - C277 12 - Steering Wheel Control Switch Assembly - Lower Left (STW) 13 - Turn Signal/Multifunction Switch Page 10876 Utility/Van Zoning UTILITY/VAN ZONING Page 1231 Headlamp Switch C2 Page 6318 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5545 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10824 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6813 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Testing and Inspection/Diagnostic Trouble Code Descriptions See: Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 5112 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 3243 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 4616 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 10960 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 10333 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 7736 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4672 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 8750 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 7873 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10902 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8043 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7874 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 688 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9359 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4132 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 3100 Fluid - Transfer Case: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Fluid Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fill plug. 3. Remove the drain plug. Important: Ensure that an approved drain pan is used when draining the transfer case. 4. Allow the transfer case to drain completely. Installation Procedure 1. Apply pipe sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent to the drain plug threads. Notice: Refer to Fastener Notice. 2. Install the drain plug. Tighten the drain plug to 27 N.m (20 lb ft). Page 5769 Page 885 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 10402 Shift Solenoid: Connector Views 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side Page 5348 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 5773 Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 2351 Utility/Van Zoning UTILITY/VAN ZONING Page 2574 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7022 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Locations Headlamp Switch Page 5708 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 1900 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 2771 Speed Sensor: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Front Output Shaft Speed Sensor Replacement Transfer Case Front Output Shaft Speed Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case front speed sensor electrical connector. 3. Remove the transfer case front speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case front speed sensor. Tighten the sensor to 17 N.m (13 lb ft). Page 8391 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 4363 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 4105 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7611 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10803 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1159 Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Lower Left Side Air Temperature Sensor Replacement - Lower Left Side Removal Procedure 1. Remove the I/P assembly. 2. Disconnect the electrical connector from the air temperature sensor-lower left (2). 3. Remove the air temperature sensor-lower left. Installation Procedure 1. Install the air temperature sensor-lower left (2). 2. Connect the electrical connector to the air temperature sensor-lower left. 3. Install the I/P assembly. Page 6372 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 9765 Ignition Coil: Service and Repair Ignition Coil Replacement Removal Procedure 1. Remove the air cleaner outlet resonator. 2. Disconnect the ignition coil connectors (1) from the ignition coils. 3. Remove the retaining bolts (2) from the ignition coils. 4. Remove the ignition coils (1) from the engine. Installation Procedure Important: Make sure that the ignition coil seals are properly seated to the valve cover. 1. Install the ignition coil (1). Page 10497 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair Air Cleaner Outlet Resonator Replacement Removal Procedure 1. Loosen the air cleaner outlet duct and air cleaner outlet resonator clamps (2). 2. Disconnect the air cleaner outlet duct from the air cleaner outlet resonator (3). 3. Remove the 2 air cleaner outlet resonator to engine bolts (4). 4. Disconnect the crankcase ventilation hose (1) from the valve cover port (2). 5. Disconnect the electrical connector to the intake air temperature (IAT) sensor. 6. Remove the air cleaner outlet resonator assembly (5) from the engine. Installation Procedure 1. Connect the electrical connector to the IAT sensor. 2. Install the air cleaner outlet resonator assembly (5) to the engine making sure of the following: * The crankcase ventilation hose (1) is connected to the valve cover port (2). * The air cleaner outlet resonator (5) is properly fit to the throttle body assembly. Notice: Refer to Fastener Notice. 3. Install the 2 air cleaner outlet resonator to engine bolts (4). Page 9066 Page 2070 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8022 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7933 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 4235 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 4814 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6027 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10227 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 9828 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 760 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4493 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5681 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10279 Pressure Regulating Solenoid: Diagrams Pressure Control (PC) Solenoid Valve, Wiring Harness Side Pressure Control (PC) Solenoid Valve, Wiring Harness Side Page 2826 Alignment: Specifications Wheel Alignment Specifications Wheel Alignment Specifications Wheel Alignment Specifications Page 9044 1. Install the fuel tank shield to the frame. Notice: Refer to Fastener Notice. 2. Install the fuel tank shield to the frame retaining bolts and nut. Tighten the fuel tank shield to the frame retaining bolts and nut to 32 N.m (24 lb ft). 3. Install the frame brace. 4. Install the frame brace mounting bolts. Tighten the frame brace mounting bolts to 50 N.m (37 lb ft). 5. Lower the vehicle. Page 7988 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 11167 Page 4241 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 2266 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Diagram Information and Instructions Door Module: Diagram Information and Instructions Electrical Symbols Page 799 Page 9034 4. Compare the fuel tank serial number printed on the fuel tank label (1) to the fuel tank serial number (sequencing) range shown. ^ If the serial number of the tank is not within the ranges above, lower the vehicle. No further action is required. ^ If the serial number of the tank is within the ranges above, remove and replace the fuel sender assembly. Proceed to Step 5 in this bulletin. 5. Remove the fuel tank from the vehicle. Remove the fuel sender assembly from the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. Notice: Ensure that the fuel level sensor pigtail wires are routed through the anti-chafing conduit of the fuel sender assembly to avoid damaging the fuel level sensor pigtail wires. Route the fuel level sensor pigtail wires through the anti-chafing conduit the same way the wires were routed in the old fuel sender assembly. 6. Remove the fuel level sensor from the old fuel sender assembly and install it to the new fuel sender assembly. Refer to Fuel Level Sensor Replacement in SI. 7. Install the fuel sender assembly into the fuel tank and install the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. 8. Lower the vehicle. Claim Information - GM and Saab Canada Only For vehicles repaired under this service update, use the table. Claim Information - US Saab Only Page 4984 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 1720 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5656 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 4214 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7967 Page 776 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Page 10569 6. Release the bracket TCM retainer (1). 7. Tilt the TCM (2) away from the ECM/TCM bracket. 8. Remove the TCM (1) from the TCM bracket (2). 9. Only when replacement of the ECM/TCM bracket (2) is necessary, remove the ECM (3). Refer to Engine Control Module Replacement for the 5.3L engine. Page 414 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 5173 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 7137 Step 25 - Step 29 The numbers below refer to the step numbers on the diagnostic table. 2. A partial malfunction in the class 2 serial data circuit uses a different procedure from a total malfunction of the class 2 serial data circuit. The following modules communicate on class 2 serial data bus: The body control module (BCM) - The communication interface module (OnStar(R)), w/UE1 - The digital radio receiver (DRR), w/U2K - The driver door module (DDM) - The driver seat module (DSM), w/AAB - The DVD player - The electronic brake control module (EBCM) - The HVAC control module - The HVAC control module - rear auxiliary - The inflatable restraint sensing and diagnostic module (SDM) - The instrument panel cluster (IPC) - The liftgate control module (LGM) - The passenger door module (PDM) - The powertrain control module (PCM) - The radio - The transfer case shift control module (TCSCM), w/4WD 3. The following DTCs may be retrieved with a history status, but are not the cause of the present condition. - U1300 - U1301 - U1305 6. A state of health (SOH) DTC with a history status may be present along with a U1000 code having a current status. This indicates that the malfunction occurred when the ignition was ON. 7. Data link connector terminals 2 and 5 provide the connection to the class 2 serial data circuit and the signal ground circuit respectively. 10. A poor connection at DLC terminal of the splice pack SP205 would cause this condition but will not set a DTC. 11. An open in the class 2 serial data circuit between the DLC and splice pack SP205 will prevent the scan tool from communicating with any module. This condition will not set a DTC. 12. The class 2 serial data circuit is shorted to voltage or ground. The condition may be due to the wiring or due to a malfunction in one of the modules. When testing the wire for a short, make sure there is not a module connected to the wire being tested. This test isolates the BCM and the PCM class 2 serial data circuits. 13. This test isolates the BCM class 2 serial data circuits. 16. The BCM detects that the ignition is ON and sends the appropriate power mode message to the other modules. Therefore, the BCM must remain connected to the DLC for any other module to communicate with the scan tool. This test isolates the splice pack SP306 serial data circuits. Page 9677 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 3795 Step 6 - Step 13 Page 4093 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10844 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Service Precautions Idle Speed/Throttle Actuator - Electronic: Service Precautions Handling Idle Air Control Valve Notice Notice: If the IAC valve has been in service: DO NOT push or pull on the IAC valve pintle. The force required to move the pintle may damage the threads on the worm drive. Also, DO NOT soak the IAC valve in any liquid cleaner or solvent, as damage may result. Page 3285 Page 2539 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1056 Power Seat Motor Position Sensor: Diagrams Seat Position Sensor Seat Position Sensor - Front (w/Memory) Page 5193 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 4252 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11076 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 7315 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 10942 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 7196 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 10008 Page 842 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 9134 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7024 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9622 Page 9878 Page 3586 Some customers may use penetrating oils, grease or other lubricants on wheel studs to aid in removal or installation. Always use a suitable cleaner/solvent to remove these lubricants prior to installing the wheel and tire assemblies. Lubricants left on the wheel studs may cause improper readings of wheel nut torque. Always install wheels to clean, dry wheel studs ONLY. Notice Lubricants left on the wheel studs or vertical mounting surfaces between the wheel and the rotor or drum may cause the wheel to work itself loose after the vehicle is driven. Always install wheels to clean, dry wheel studs and surfaces ONLY. Beginning with 2011 model year vehicles, put a light coating of grease, GM P/N 1051344 (in Canada, P/N 9930370), on the inner surface of the wheel pilot hole to prevent wheel seizure to the axle or bearing hub. Wheel Stud and Lug Nut Damage Always inspect the wheel studs and lug nuts for signs of damage from crossthreading or abuse. You should never have to force wheel nuts down the stud. Lug nuts that are damaged may not retain properly, yet give the impression of fully tightening. Always inspect and replace any component suspected of damage. Tip Always start wheel nuts by hand! Be certain that all wheel nut threads have been engaged BEFORE tightening the nut. Important If the vehicle has directional tread tires, verify the directional arrow on the outboard side of the tire is pointing in the direction of forward rotation. Wheel Nut Tightening and Torque Improper wheel nut tightening can lead to brake pulsation and rotor damage. In order to avoid additional brake repairs, evenly tighten the wheel nuts to the proper torque specification as shown for each vehicle in SI. Always observe the proper wheel nut tightening sequence as shown below in order to avoid trapping the wheel on the wheel stud threads or clamping the wheel slightly off center resulting in vibration. The Most Important Service You Provide While the above information is well known, and wheel removal so common, technicians run the risk of becoming complacent on this very important Page 8966 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 4341 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5287 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10204 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 11145 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4710 Heat Shield: Service and Repair Exhaust Manifold Heat Shield Replacement - Right Side Exhaust Manifold Heat Shield Replacement - Right Side Removal Procedure 1. Remove the spark plugs. Refer to Spark Plug Replacement for the 5.3L engine or Spark Plug Replacement for the 6.0L engine. 2. Remove the heat shield bolts and the shield from the exhaust manifold. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the heat shield and the bolts to the exhaust manifold. Tighten the bolts to 9 N.m (80 lb in). 2. Install the spark plugs. Refer to Spark Plug Replacement for the 5.3L engine or Spark Plug Replacement for the 6.0L engine. Page 4939 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 514 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10808 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 9925 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5999 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 11038 For vehicles repaired under warranty, use the table. Disclaimer Page 5032 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 5971 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 721 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 11228 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5237 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2075 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 9270 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 7906 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8639 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Locations Compressor Clutch Relay: Locations Fuse Block - Underhood (4.2L), Label Page 2023 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4153 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1972 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 3387 Fuse Block - Rear C2 (Pin A1 To E3) Page 5451 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 2302 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 8930 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 719 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7808 US English/Metric Conversion US English/Metric Conversion Page 8085 Page 9861 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5110 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9561 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 4294 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9313 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 11210 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6780 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5272 Page 5893 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2839 Alignment: Service and Repair Measuring Wheel Alignment Measuring Wheel Alignment Steering and vibration complaints are not always the result of improper alignment. One possible cause is wheel and tire imbalance. Another possibility is tire lead due to worn or improperly manufactured tires. Lead/pull is defined as follows: At a constant highway speed on a typical straight road, lead/pull is the amount of effort required at the steering wheel to maintain the vehicle's straight path. Lead is the vehicle deviation from a straight path on a level road without pressure on the steering wheel. Refer to Radial Tire Lead/Pull Correction in order to determine if the vehicle has a tire lead problem. Before performing any adjustment affecting wheel alignment, perform the following inspections and adjustments in order to ensure correct alignment readings: ^ Inspect the tires for the proper inflation and irregular tire wear. Refer to Vehicle Certification, Tire Place Card, Anti-Theft, and Service Parts ID Label and Tire Diagnosis - Irregular or Premature Wear. ^ Inspect the runout of the wheels and the tires. Refer to Tire and Wheel Runout Specifications. ^ Inspect the wheel bearings for backlash and excessive play. Refer to Wheel Bearings Diagnosis. ^ Inspect the ball joints and tie rod ends for looseness or wear. ^ Inspect the control arms and stabilizer shaft for looseness or wear. ^ Inspect the steering gear for looseness at the frame. Refer to Fastener Tightening Specifications. ^ Inspect the struts/shock absorbers for wear, leaks, and any noticeable noises. Refer to Suspension Strut and Shock Absorber Testing - On Vehicle. ^ Inspect the vehicle trim height. Refer to Trim Height Inspection. ^ Inspect the steering wheel for excessive drag or poor return due to stiff or rusted linkage or suspension components. ^ Inspect the fuel level. The fuel tank should be full or the vehicle should have a compensating load added. Give consideration to excess loads, such as tool boxes, sample cases, etc. If normally carried in the vehicle, these items should remain in the vehicle during alignment adjustments. Give consideration also to the condition of the equipment being used for the alignment. Follow the equipment manufacturer's instructions. Satisfactory vehicle operation may occur over a wide range of alignment settings. However, if the setting exceeds the service allowable specifications, correct the alignment to the service preferred specifications. Refer to Wheel Alignment Specifications. Perform the following steps in order to measure the front and rear alignment angles: 1. Install the alignment equipment according to the manufacturer's instructions. 2. Jounce the front and the rear bumpers 3 times prior to checking the wheel alignment. 3. Measure the alignment angles and record the readings. Important: When performing adjustments to vehicles requiring a 4-wheel alignment, set the rear wheel alignment angles first in order to obtain proper front alignment angles. 4. Adjust alignment angles to vehicle specification, if necessary. Refer to Wheel Alignment Specifications. Page 1556 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 2222 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 11085 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 7130 Step 1 - Step 11 Page 1802 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8032 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 2269 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9244 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1849 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7161 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 769 Powertrain Control Module (PCM) C1 (Pin 1 To 24) Page 8637 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 11240 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 2016 Utility/Van Zoning UTILITY/VAN ZONING Page 9821 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8799 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 10829 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 1341 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 741 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3830 4. Install the A/C line bracket to oil level indicator tube and secure with the nut. Tighten the A/C line bracket nut to 7 N.m (6 lb in). 5. Connect the O2 sensor electrical connector. 6. Install the oil level indicator into the tube. Page 10441 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 2531 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 9917 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 11000 Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Disclaimer Page 6660 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Locations Underhood Lamp Switch: Locations Liftgate Page 3461 10. Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. 11. Position the rim so that the valve stem (1) is situated at the 3 o'clock position relative to the head (2). This will protect the sensor when the bottom bead seats. 12. After the bottom bead is on the wheel, reposition the wheel and tire so that the valve stem is situated at the 9 o'clock position relative to the head. This will protect the sensor while mounting the tire bead to the outside of the wheel. Page 2391 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Locations Accelerator And Brake Pedals Page 7734 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 1808 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 2311 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 4217 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7030 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10299 Page 7061 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Capacity Specifications Refrigerant: Capacity Specifications Refrigerant System Capacities Page 9602 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5174 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9128 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7507 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9333 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4922 Page 6915 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5314 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10540 ^ (1) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from the jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 4. Touch the battery terminals of the 9-volt battery to the battery terminals of the jumper harness. This will rotate the encoder motor shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 5. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the two reference lines as shown in the picture. This orientates the encoder motor (actuator) to NEUTRAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 6. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. NVG 226 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (4) J-356165 Terminal Test Adapter (Test Probe) ^ (2) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from one of the jumper harnesses to the Battery Positive Voltage terminal (pin F - wire color orange) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Lock Solenoid Control terminal (pin G - wire color tan) of the transfer case encoder motor (actuator) wiring harness connector. 4. Attach a 9-volt battery to this harness. You will hear the encoder motor (actuator) unlock. Page 8082 Page 1925 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10275 Ensure that the electrical tabs are facing outboard. Notice: Refer to Fastener Notice. 6. Install the pressure control solenoid retainer and retaining bolt. Tighten the pressure control solenoid retaining bolt to 11 N.m (97 lb in). 7. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 8. Install the 1-2 accumulator. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 9. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 10. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 11. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 11204 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9534 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2216 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7987 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 867 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 10819 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 6496 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4851 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 5054 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2138 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7818 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Page 4618 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9599 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 1991 Page 7601 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8746 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 8210 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9701 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4175 Utility/Van Zoning UTILITY/VAN ZONING Page 9921 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 11224 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1399 Page 672 Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 7851 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2259 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9894 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8740 Page 4937 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 8765 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6153 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 1855 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5788 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10153 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3563 Acceptably Prepared (Cleaned-Up) Wheel Surface 6. Once the corrosion has been eliminated, you should coat the repaired area with a commercially available tire sealant such as Patch Brand Bead Sealant or equivalent. Commercially available bead sealants are black rubber-like coatings that will permanently fill and seal the resurfaced bead seat. At 21°C (70°F) ambient temperature, this sealant will set-up sufficiently for tire mounting in about 10 minutes.Coated and Sealed Bead Seat 7. Remount the tire and install the repaired wheel and tire assembly. Refer to Tire and Wheel Removal and Installation in SI. Parts Information Patch Brand Bead Sealer is available from Myers Tires at 1-800-998-9897 or on the web at www.myerstiresupply.com. The one-quart size can of sealer will repair about 20 wheels. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Page 6048 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 7231 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 7068 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8779 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 2395 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 3708 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Parts Center (WPC) Request Form IMPORTANT NOTE WHEN PRINTING THIS FORM: If the form prints out on two pages, make certain you fax BOTH pages so that the WPC receives all the needed information. Missing information will delay or prevent the part from being shipped. Page 172 Utility/Van Zoning UTILITY/VAN ZONING Page 8594 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 667 Page 9671 View of the connector when released from the component. View of another type of Micro 64 connector. Page 4777 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 2600 Page 10419 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10504 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4924 Page 5119 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 11041 3. Shift assembly to the LOW position. 4. Loosen and remove the screw at the rear of the shiftier assembly. 5. Shift the assembly to the NEUTRAL position. 6. Loosen and remove the top screw of the shift lock actuator through the lever slot. 7. Pull lever to the DRIVE position and remove the shift lock actuator. Installation Procedure 1. In DRIVE position, depress the shift lock actuator button and realign into the shiftier lever. 2. Push lever to NEUTRAL. Notice: Refer to Fastener Notice. 3. Install the top screw through the lever slot. Tighten the actuator screw to 1.65 N.m (15 lb in). Page 10652 Parts Information Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 6044 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 8887 Electrical - Aftermarket Fuse Warning Fuse: Technical Service Bulletins Electrical - Aftermarket Fuse Warning Bulletin No.: 07-08-45-002 Date: September 05, 2007 ADVANCED SERVICE INFORMATION Subject: Service Alert: Concerns With Aftermarket Fuses in GM Vehicles Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2008 and Prior Saab 9-7X Concerns with Harbor Freight Tools "Storehouse" Branded Blade Type Fuses General Motors has become aware of a fuse recall by Harbor Freight Tools/Storehouse for a variety of aftermarket fuses. In two cases, these fuses have not provided protection for the wiring system of the vehicles they were customer installed in. Upon testing the 15 amp version, it was found that the fuse still would not "open" when shorted directly across the battery terminals. How to Identify These Fuses Packed in a 120 piece set, the fuse has a translucent, hard plastic, blue body with the amperage stamped into the top. There are no white painted numbers on the fuse to indicate amperage. There are no identifying marks on the fuse to tell who is making it. The fuses are known to be distributed by Harbor Freight Tools but there may be other marketers, and packaging of this style of fuse. It would be prudent to replace these fuses if found in a customers vehicle. Likewise, if wiring overheating is found you should check the fuse panel for the presence of this style of fuse. All GM dealers should use genuine GM fuses on the vehicles they service. You should also encourage the use of GM fuses to your customers to assure they are getting the required electrical system protection. GM has no knowledge of any concerns with other aftermarket fuses. If additional information becomes available, this bulletin will be updated. Disclaimer Page 1684 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 8587 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4512 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 6151 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9094 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4788 Page 8255 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5848 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7546 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6106 Page 2381 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Alcohol/Contaminants-In-Fuel Diagnosis (With Special Tool) Fuel: Testing and Inspection Alcohol/Contaminants-In-Fuel Diagnosis (With Special Tool) Alcohol/Contaminants-in-Fuel Diagnosis (with Special Tool) Description Water contamination in the fuel system may cause driveability conditions such as hesitation, stalling, no start, or misfires in one or more cylinders. Water may collect near a single fuel injector at the lowest point in the fuel injection system, and cause a misfire in that cylinder. If the fuel system is contaminated with water, inspect the fuel system components for rust or deterioration. Ethanol concentrations of greater than 10 percent can cause driveability conditions and fuel system deterioration. Fuel with more than 10 percent ethanol could result in driveability conditions such as hesitation, lack of power, stalling , or no start. Excessive concentrations of ethanol used in vehicles not designed for it may cause fuel system corrosion, deterioration of rubber components, and fuel filter restriction. Test Procedure 1. Test the fuel composition using J44175 Fuel Composition Tester and J44175-3 Instruction Manual. 2. If water appears in the fuel sample, clean the fuel system. Refer to Fuel System Cleaning. See: Service and Repair 3. Subtract 50 from the reading on the DMM in order to obtain the percentage of alcohol in the fuel sample. Refer to the examples in the Fuel Composition Test Examples table. 4. If the fuel sample contains more than 15 percent ethanol, add fresh, regular gasoline to the vehicle's fuel tank. 5. Test the fuel composition. 6. If testing shows the ethanol percentage is still more than 15 percent, replace the fuel in the vehicle. Refer to Fuel System Cleaning. See: Service and Repair Page 6672 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 11049 Page 854 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 267 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4233 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2939 Drive Belt: Service and Repair Drive Belt Replacement Removal Procedure 1. Install 3/8 inch breaker bar on the drivebelt tensioner arm and turn the breaker bar clockwise enough to relieve the tension on the drivebelt. 2. Remove the drivebelt. 3. Release the tension on the tensioner arm. Installation Procedure 1. Route the drivebelt over all the pulleys except the drivebelt tensioner pulley. 2. Install the 3/8 inch breaker bar on the drivebelt tensioner arm and turn the breaker bar clockwise. 3. Install the drivebelt over the drivebelt tensioner pulley. 4. Slowly release the tension to the drivebelt tensioner arm. 5. Inspect for proper installation of the drivebelt on the pulleys. Page 10733 Ensure that the electrical tabs are facing outboard. Notice: Refer to Fastener Notice. 6. Install the pressure control solenoid retainer and retaining bolt. Tighten the pressure control solenoid retaining bolt to 11 N.m (97 lb in). 7. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 8. Install the 1-2 accumulator. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 9. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 10. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 11. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 5882 Page 2080 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9681 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 11063 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 1574 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 9662 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. OnStar Module Bracket Assembly Replacement (Trailblazer EXT, Envoy XL) Emergency Contact Module: Service and Repair OnStar Module Bracket Assembly Replacement (Trailblazer EXT, Envoy XL) OnStar Module Bracket Assembly Replacement (Trailblazer EXT, Envoy XL) Removal Procedure 1. Fold and tumble the right rear seat to a cargo position. 2. Leaving the electrical connectors attached, remove the communication interface module from the vehicle communication interface module (VCIM) bracket. Refer to Communication Interface Module Replacement (TrailBlazer EXT, Envoy XL) Communication Interface Module Replacement (TrailBlazer, Envoy, Rainier). 3. Using a flat bladed tool, release the retaining tab (1) on the VCIM bracket. 4. Slide the VCIM bracket rearward until the retaining tabs are released from the seat bracket. 5. Remove the VCIM bracket from vehicle. 6. Slide the VCIM bracket rearward until the retaining tabs are released from the seat bracket. 7. Remove the VCIM bracket from vehicle. Installation Procedure 1. Position the VCIM bracket to the seat bracket. 2. Slide the VCIM bracket forward until the retaining tabs become locked to the seat bracket. 3. Ensure the retaining tab (1) on the VCIM bracket is properly seated. 4. Install the communication interface module. Page 1570 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6051 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9360 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5816 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5799 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6105 Page 6962 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 1195 Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Page 8178 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 11235 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 8801 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 1439 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 4840 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2374 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6737 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 2085 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 792 Air Injection Pump Relay: Diagrams Engine Controls Connector End Views Secondary Air Injection (AIR) Pump Relay (K18) Page 10219 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1920 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 5925 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 8865 3. This step applies to Bartholomew style connectors ONLY. Squeeze the plastic quick connect fitting release tabs. 4. This step applies to Q Release style connectors ONLY. Release the fitting by Pushing the tab toward the other side of the slot in the fitting. 5. This step applies to Squeeze to Release style connectors ONLY. Squeeze where indicated by arrows on both sides of the plastic ring surrounding the quick connect fitting. 6. This step applies to Sliding Retainer style connectors ONLY. Release the fitting by pressing on one side of the release tab causing it to push in slightly. If the tab does not move, try pressing the tab in from the opposite side. The tab will only move in one direction. Page 9986 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 1795 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4783 Page 6443 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 9635 Page 4728 Body Control Module: Diagrams Body Control Module (BCM) C2 Body Control Module (BCM) C2 Page 5160 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 9242 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2937 Step 1 - Step 5 Page 2557 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7116 Body Control System Diagram 2 Locations: The locations for the Connectors, Grounds, Splices, and Grommets shown within these diagrams can be found via their numbers at Vehicle Locations. See: Locations Data Communication Diagrams Page 9647 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7165 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Cooling System - Inspecting Radiator/Heater Hose Clamps Coolant Line/Hose: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 9412 Page 4361 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3197 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 11184 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8786 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10274 8. Remove the 3-2 control solenoid retainer. 9. Remove the 3-2 control solenoid. Installation Procedure 1. Install the 3-2 control solenoid. 2. Install the 3-2 control solenoid retainer. 3. Install the 1-2 and 2-3 shift solenoids. 4. Install the 1-2 and 2-3 shift solenoid retainers. 5. Install the pressure control solenoid. Page 9833 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 6064 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Page 4287 Radiator Cooling Fan Motor Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 25 * Dealers using WINs: Add 0.2 hours to the labor time for administrative allowance for the module exchange. Dealers using GWM: Submit 0.2 hours administrative allowance under "Administration Time" for the module exchange. ** The $25 represents the additional net amount allowed for the module exchange. *** Dealers are to claim only administrative allowance of 0.2 hours when the module is replaced by Masscomp's Mobile Unit. Dealers using WINS should submit the 0.2 hours administrative allowance in labor time. Dealer using GWM should submit the 0.2 hours administrative allowance under Administrative Time. Customer Notification OnStar will notify customers of this program on their vehicle. Dealer Program Responsibility All unsold new vehicles in dealers'/retailers' possession and subject to this program must be held and inspected/repaired per the service procedure of this program bulletin before customers take possession of these vehicles. Dealers/retailers are to service all vehicles subject to this program at no charge to customers, regardless of mileage, age of vehicle, or ownership, through April 30, 2011. Customers who have recently purchased vehicles sold from your vehicle inventory, and for which there is no customer information indicated on the dealer/retailer listing, are to be contacted by the dealer/retailer. Arrangements are to be made to make the required correction according to the instructions contained in this bulletin. A copy of the customer letter is provided in this bulletin for your use in contacting customers. Program follow-up cards should not be used for this purpose, since the customer may not as yet have received the notification letter. Page 2566 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 1789 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6091 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8690 Disclaimer Page 8260 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 3384 Fuse Block - Rear C1 (Pin A11 To E7) Page 7595 Page 5707 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5844 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8019 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 7794 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8773 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 2488 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Specifications Drive Pulley: Specifications Water Pump Pulley Bolt ....................................................................................................................... ....................................................... 25 N.m (18 lb ft) Page 7573 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Page 3720 Crankshaft: Specifications Crankshaft Crankshaft End Play ................................................................................................................................................. 0.112-0.388 mm (0.0044-0.0153 in) Crankshaft Main Journal Diameter ....................................................................................................................... 69.968-69.984 mm (2.7567-2.7574 in) Crankshaft Rod Journal Diameter ....................................................................................................................................................... 56.7 mm (2.234 in) Crankshaft Main Journal Out-of-Round .......................................................................................................................................... 0.005 mm (0.0002 in) Crankshaft Main Journal Taper ....................................................................................................................................................... 0.005 mm (0.0002 in) Page 10384 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9727 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9691 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10957 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 7469 Page 8370 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 2057 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 7078 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 8331 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7764 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 6023 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 1223 Turn Signal/Multifunction Switch C4 (With RPO Code K34) Page 10363 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8321 Utility/Van Zoning UTILITY/VAN ZONING Page 10208 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9571 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 9443 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4884 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1843 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 1480 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 10180 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6612 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 4642 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4531 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Air Temperature Sensor Replacement - Upper Right Side Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Upper Right Side Air Temperature Sensor Replacement - Upper Right Side Removal Procedure 1. Remove the radio. 2. Disconnect the electrical connector (2) from the air temperature sensor - upper right (1). 3. Remove the air temperature sensor - upper right (1) by turning the sensor clockwise and pulling out. Installation Procedure 1. Install the air temperature sensor - upper right (1). 2. Connect the electrical connector (2) to the air temperature sensor - upper right (1). 3. Install the radio. Re Wheels/Tires - Tire Radial Force Variation (RFV) Wheels: All Technical Service Bulletins Wheels/Tires - Tire Radial Force Variation (RFV) INFORMATION Bulletin No.: 00-03-10-006F Date: May 04, 2010 Subject: Information on Tire Radial Force Variation (RFV) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X 2000-2005 Saturn L Series 2003-2007 Saturn ION Supercede: This bulletin is being revised to considerably expand the available information on Radial Force Variation (RFV) and should be reviewed in whole. Please discard Corporate Bulletin Number 00-03-10-006E (Section 03 - Suspension). Important - Before measuring tires on equipment such as the Hunter GSP9700, the vehicle MUST be driven a minimum of 16 km (10 mi) to ensure removal of any flat-spotting. Refer to Corporate Bulletin Number 03-03-10-007E - Tire/Wheel Characteristics of GM Original Equipment Tires. - Equipment such as the Hunter GSP9700 MUST be calibrated prior to measuring tire/wheel assemblies for each vehicle. The purpose of this bulletin is to provide guidance to GM dealers when using tire force variation measurement equipment, such as the Hunter GSP9700. This type of equipment can be a valuable tool in diagnosing vehicle ride concerns. The most common ride concern involving tire radial force variation is highway speed shake on smooth roads. Tire related smooth road highway speed shake can be caused by three conditions: imbalance, out of round and tire force variation. These three conditions are not necessarily related. All three conditions must be addressed. Imbalance is normally addressed first, because it is the simpler of the three to correct. Off-vehicle, two plane dynamic wheel balancers are readily available and can accurately correct any imbalance. Balancer calibration and maintenance, proper attachment of the wheel to the balancer, and proper balance weights, are all factors required for a quality balance. However, a perfectly balanced tire/wheel assembly can still be "oval shaped" and cause a vibration. Before balancing, perform the following procedures. Tire and Wheel Diagnosis 1. Set the tire pressure to the placard values. 2. With the vehicle raised, ensure the wheels are centered on the hub by loosening all wheel nuts and hand-tightening all nuts first by hand while shaking the wheel, then torque to specifications using a torque wrench, NOT a torque stick. 3. Visually inspect the tires and the wheels. Inspect for evidence of the following conditions and correct as necessary: - Missing balance weights - Bent rim flange - Irregular tire wear - Incomplete bead seating - Tire irregularities (including pressure settings) - Mud/ice build-up in wheel - Stones in the tire tread - Remove any aftermarket wheels and/or tires and restore vehicle to original condition prior to diagnosing a smooth road shake condition. 4. Road test the vehicle using the Electronic Vibration Analyzer (EVA) essential tool. Drive for a sufficient distance on a known, smooth road surface to duplicate the condition. Determine if the vehicle is sensitive to brake apply. If the brakes are applied lightly and the pulsation felt in the steering wheel increases, refer to the Brakes section of the service manual that deals with brake-induced pulsation. If you can start to hear the vibration as a low boom noise (in addition to feeling it), but cannot see it, the vehicle likely has a first order (one pulse per propshaft revolution) driveline vibration. Driveline first order vibrations are high enough in frequency that most humans can start to hear them at highway speeds, but are too high to be able to be easily seen. These issues can be caused by driveline imbalance or misalignment. If the vehicle exhibits this low boom and the booming pulses in-and-out on a regular basis (like a throbbing), chances are good that the vehicle could have driveline vibration. This type Page 4186 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 10898 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5711 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4430 Radiator: Service and Repair Radiator Vent Inlet Hose Replacement Radiator Vent Inlet Hose Replacement Removal Procedure 1. Partially drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the vent inlet hose from the radiator. 3. Remove the vent inlet hose from the surge tank. Installation Procedure 1. Install the vent inlet hose to the surge tank. 2. Install the vent inlet hose to the radiator. 3. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 9505 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 7962 Page 2808 Behind The Center Of The I/P (With RPO Code W49) Page 484 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9372 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 11227 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8242 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 8586 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 2691 6. Remove the TCC PWM solenoid retainer (2) with a small screwdriver. Rotate the solenoid (1) in the bore, if necessary, until the flat part of the retainer (2) is visible. 7. Remove the TCC PWM solenoid (1) in order to access the TCC solenoid retaining bolts. 8. Remove the TCC solenoid retaining bolts. 9. Remove the TCC solenoid (with O-ring seal) and wiring harness from the control valve body. 10. Reposition the harness to the side of the transmission case. 11. Remove the control valve body bolts which retain the transmission fluid pressure switch to the control valve body. 12. Remove the transmission fluid pressure switch. Page 9646 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 10477 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7687 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. NVG 126-NP4 - Transfer Case Gear Sensor/Switch: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Motor/Encoder Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy) 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 1607 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4593 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 771 Powertrain Control Module (PCM) C2 (Pin 1 To 14) Page 7613 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10394 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 609 Body Control Module (BCM) C2 Page 9907 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9908 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 7131 Step 12 - Step 19 Page 8569 Air Filter Element: Service and Repair Air Cleaner Element Replacement Removal Procedure 1. Remove the radiator support diagonal brace if applicable. 2. Disconnect the secondary air injection (AIR) reaction pump inlet hose from the air cleaner air outlet duct. 3. Loosen the 3 air cleaner housing retaining screws (1). 4. Remove the air cleaner housing (2). 5. Lift the air cleaner element (6) and air outlet duct (3) from the lower air cleaner housing/washer solvent tank assembly (4). 6. Remove the air cleaner element (6) from the air outlet duct (3) with a twisting and pulling motion. 7. Inspect the entire assembly for dust, debris, or water. Clean or replace as necessary. Installation Procedure OnStar(R) - Analog/Digital System Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Analog/Digital System Information INFORMATION Bulletin No.: 06-08-46-008C Date: September 18, 2008 Subject: Information on OnStar(R) Dual-Mode (Analog/Digital) Systems Models Supercede: This bulletin is being revised to correct the model year range for the Chevrolet Impala and Monte Carlo and update the reference to GM Dealerworld. Please discard Corporate Bulletin Number 06-08-46-008B (Section 08 - Body and Accessories). All 2000-2003 model year vehicles equipped with OnStar® from the list above were built with Analog/Digital-Ready OnStar(R) Hardware. Some of these vehicles may have been upgraded to Dual-Mode (Analog/Digital). Certain 2004-2005 model year vehicles equipped with OnStar(R) from the list above may have been either: ^ Originally built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware with Dual-Mode (Analog/Digital) OnStar(R) Hardware OR ^ Upgraded to Dual-Mode (Analog/Digital) Hardware All 2006 model year and newer vehicles equipped with OnStar(R) were built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware. If a vehicle has Dual-Mode (Analog/Digital) OnStar(R) Hardware, then the system is capable of operating on both the analog and digital cellular Page 7649 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10458 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 3349 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 10451 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4455 Utility/Van Zoning UTILITY/VAN ZONING Page 6799 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1450 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9798 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2773 Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case right rear speed sensor electrical connector. 3. Remove the transfer case right rear speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case right rear speed sensor. Tighten the sensor to 17 N.m (13 lb ft). 2. Install the transfer case right rear speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 10850 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6918 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 877 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 10280 Pressure Regulating Solenoid: Service and Repair Pressure Regulator Replacement (with Light Grey Case Connector) Removal Procedure Important: If the transmission has a black case connector, the transmission has an input speed sensor. Oil pump removal will be required. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 3. Compress the reverse boost valve sleeve into the bore of the oil pump to release tension on the reverse boost valve retaining ring. 4. Remove the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 5. Remove the reverse boost valve sleeve (5) and the reverse boost valve (4). 6. Remove the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 7. Remove the pressure regulator valve (1). Installation Procedure 1. Install the pressure regulator valve (1). 2. Install the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 3. Install the reverse boost valve (4) in the reverse boost valve sleeve (5). 4. Install the reverse boost valve (4) and sleeve (5) in the oil pump cover. Page 4818 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 9397 US English/Metric Conversion US English/Metric Conversion Page 1943 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4087 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 746 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6806 US English/Metric Conversion US English/Metric Conversion Page 2551 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 1346 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Locations Control Module: Locations Transmission Control Module (TCM) Transmission Control Module (TCM) 1 - Engine Harness 2 - Transmission Control Module (TCM) 3 - Transmission Control Module (TCM) Connector Harness Page 10864 Ensure that the electrical tabs are facing outboard. Notice: Refer to Fastener Notice. 6. Install the pressure control solenoid retainer and retaining bolt. Tighten the pressure control solenoid retaining bolt to 11 N.m (97 lb in). 7. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 8. Install the 1-2 accumulator. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 9. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 10. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 11. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Page 10213 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Diagram Information and Instructions Radiator Cooling Fan Motor Relay: Diagram Information and Instructions Electrical Symbols Page 1934 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4873 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7248 Page 810 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 703 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9484 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 2157 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 3443 * When lifting or jacking a vehicle, be certain that the lift pads do not contact the exhaust system, brake pipes, cables, HVAC lines, wiring harnesses, fuel lines, or underbody. Such contact may result in damage or unsatisfactory vehicle performance. * When using a frame-contact hoist, only place the pads on flat surfaces. Do not place pads within 50 mm (2 in) of any radius. * Before lifting the vehicle, verify that the vehicle loads are secure and equally distributed. * When major components are removed from the vehicle when supported on a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and secure the vehicle frame to the hoist pads nearest the component to be removed. Vehicle Jacking * Park the vehicle on a clean, hard, level surface before jacking the vehicle. * Any time you lift the vehicle on one end, chock the wheels at the opposite end. * Use jack stands in order to provide support. * When supporting the vehicle using jack stands, place the jack stands under the side rails or the axle. * When lifting under the rear differential, do not allow the jack pad to contact the rear stabilizer bar or mounting hardware. Page 775 Powertrain Control Module (PCM) C3 (Pin 21 To 56) Page 6168 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 93 For vehicles repaired under warranty use, the table. Disclaimer Page 1806 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7230 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5974 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9306 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 6957 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6228 For vehicles repaired under warranty, use the table. Disclaimer Page 9594 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 6305 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10156 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 5118 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 5313 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 9784 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 2490 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 3337 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Locations Power Window Switch: Locations Driver Door Module (DDM) Page 7517 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 1628 4. Clean the fuel sender sealing surfaces (4). Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Page 9285 US English/Metric Conversion US English/Metric Conversion Page 1118 Wheel Speed Sensor: Diagrams Antilock Brake System Connector End Views Wheel Speed Sensor - LF Wheel Speed Sensor - LF Wheel Speed Sensor - LR Page 8115 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 8612 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 1523 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 10788 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 7388 Oxygen Sensor: Service Precautions Heated Oxygen Sensor Resistance Learn Reset Notice Heated Oxygen Sensor Resistance Learn Reset Notice Notice: When replacing the HO2S perform the following: * A code clear with a scan tool, regardless of whether or not a DTC is set * HO2S heater resistance learn reset with a scan tool, where available Perform the above in order to reset the HO2S resistance learned value and avoid possible HO2S failure. Page 9239 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 393 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8846 Fuel Injector: Vehicle Damage Warnings Fuel Injector Balance Test Notice Notice: Do Not repeat any portion of this test before running the engine in order to prevent the engine from flooding. Page 3247 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4561 Page 3365 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 178 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8064 Page 11019 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). Page 2276 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10950 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8071 Manifold Pressure/Vacuum Sensor: Service and Repair Manifold Absolute Pressure Sensor Replacement Removal Procedure 1. Turn OFF the ignition. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector. 3. Press the retainer locking tabs inward, then pull the retainer (1) up to remove it. 4. Remove the MAP sensor (2). 5. Inspect the MAP sensor seal for damage, and replace as necessary. Installation Procedure 1. Install the MAP sensor (2). 2. Install the MAP sensor retainer (1). Page 5649 Specifications Compression Check: Specifications Engine Compression Test ................................................................................................................... ..................................................... 1482 kPa (215 psi) Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. Page 2361 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4110 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 1531 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Instruments - Erratic Speedometer Operation Engine Control Module: Customer Interest Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 2819 available, measurements may also be clearly and legibly handwritten into the Wheel Alignment Repair Order Questionnaire attached to this bulletin. 4. Attach the Wheel Alignment Repair Order Questionnaire below along with the print-out of "Before" and "After" wheel alignment measurements to the Repair Order and retain for use by GM. Wheel Alignment Equipment and Process Wheel alignments must be performed with a quality machine that will give accurate results when performing checks. "External Reference" (image-based camera technology) is preferred. Please refer to Corporate Bulletin Number 05-00-89-029B: General Motors Dealership Critical Equipment Requirements and Recommendations. Requirements: - Computerized four wheel alignment system. - Computer capable of printing before and after alignment reports. - Computer capable of time and date stamp printout. - Racking system must have jacking capability - Racking system must be capable of level to 1.6 mm (1/16 in) - Appropriate wheel stops and safety certification - Built-in turn plates and slip plates - Wheel clamps capable of attaching to 20" or larger wheels - Racking capable of accepting any GM passenger car or light duty truck - Operator properly trained and ASE-certified (U.S. only) in wheel alignment Recommendations: Racking should have front and rear jacking capability. Equipment Maintenance and Calibration: Alignment machines must be regularly calibrated in order to give correct information. Most manufacturers recommend the following: - Alignment machines with "internal reference" sensors should be checked (and calibrated, if necessary) every six months. - Alignment machines with "external reference" (image-based camera technology) should be checked (and calibrated, if necessary) once a year. - Racks must be kept level to within 1.6 mm (1/16 in). - If any instrument that is part of the alignment machine is dropped or damaged in some way, check the calibration immediately. Check with the manufacturer of your specific equipment for their recommended service/calibration schedule. Wheel Alignment Process When performing wheel alignment measurement and/or adjustment, the following steps should be taken: Preliminary Steps: 1. Verify that the vehicle has a full tank of fuel (compensate as necessary). 2. Inspect the wheels and the tires for damage. 3. Inspect the tires for the proper inflation and irregular tire wear. 4. Inspect the wheel bearings for excessive play. 5. Inspect all suspension and steering parts for looseness, wear, or damage. 6. Inspect the steering wheel for excessive drag or poor return due to stiff or rusted linkage or suspension components. 7. Inspect the vehicle trim height. 8. Compensate for frame angle on targeted vehicles (refer to Wheel Alignment Specifications in SI). Satisfactory vehicle operation may occur over a wide range of alignment angles. However, if the wheel alignment angles are not within the range of specifications, adjust the wheel alignment to the specifications. Refer to Wheel Alignment Specifications in SI. Give consideration to excess loads, such as tool boxes, sample cases, etc. Follow the wheel alignment equipment manufacturer's instructions. Measure/Adjust: Important Prior to making any adjustments to wheel alignment on a vehicle, technicians must verify that the wheel alignment specifications loaded into their wheel alignment machine are up-to-date by comparing these to the wheel alignment specifications for the appropriate model and model year in SI. Using incorrect and/or outdated specifications may result in unnecessary adjustments, irregular and/or premature tire wear and repeat customer concerns Page 5006 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 978 Control Module: Diagrams NVG 226-NP8 - Transfer Case Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module - C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C2 Page 379 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5075 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 522 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6129 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9814 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 5360 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6669 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 2567 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 10755 Page 8046 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9037 Fuel Gauge Sender: Service and Repair Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. 4. Clean the fuel sender sealing surfaces (4). Page 1119 Wheel Speed Sensor - LR Wheel Speed Sensor - RF Wheel Speed Sensor - RF Wheel Speed Sensor - RR Page 2732 Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). Diagrams Air Injection Pump: Diagrams Engine Controls Connector End Views Secondary Air Injection (AIR) Pump (K18) Reverse Lockout Solenoid Page 2267 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6078 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4837 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7795 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5364 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Locations Air Injection Vacuum Control Solenoid Valve: Locations Engine Controls Component Views Upper Right Side of the Engine 1 - Secondary Air Injection (AIR) Solenoid (K18) Page 1330 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3256 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 10738 Pressure Regulating Solenoid: Service and Repair Pressure Regulator Replacement (with Light Grey Case Connector) Removal Procedure Important: If the transmission has a black case connector, the transmission has an input speed sensor. Oil pump removal will be required. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 3. Compress the reverse boost valve sleeve into the bore of the oil pump to release tension on the reverse boost valve retaining ring. 4. Remove the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 5. Remove the reverse boost valve sleeve (5) and the reverse boost valve (4). 6. Remove the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 7. Remove the pressure regulator valve (1). Installation Procedure 1. Install the pressure regulator valve (1). 2. Install the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 3. Install the reverse boost valve (4) in the reverse boost valve sleeve (5). 4. Install the reverse boost valve (4) and sleeve (5) in the oil pump cover. Page 3318 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 6299 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 8566 Parts required to complete this service update are to be obtained from Saab Parts Distribution Center (PDC). Service Procedure Tools Required J 45722 or equivalent 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. (1) Fuel Tank Label (2) fuel Tank (3) Rear Axle 2. Locate the fuel tank label (1), which is on the backside of the fuel tank (2) below the fuel tank filler neck. 3. Inspect the fuel tank for a white "X" on the fuel tank and/or a green "C" on the barcode. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is found, the fuel sender assembly does not require replacement. No further action is required. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is not found, proceed to Step 4 for additional inspection. Page 6628 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 619 Body Control Module: Service and Repair Liftgate Control Module Replacement LIFTGATE CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the liftgate trim panel. 2. Disconnect the electrical connectors (3) from the module as necessary. 3. Remove the bolts that retain the module to the liftgate. 4. Remove the module from the liftgate. INSTALLATION PROCEDURE 1. Install the module to the liftgate. 2. NOTE: Refer to Fastener Notice. Install the bolts that retain the module to the liftgate. Tighten the bolts to 10 N.m (89 lb in). 3. Connect the electrical connectors (3) as necessary. 4. Install the liftgate trim panel. 5. Program the liftgate control module. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 6369 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Page 2916 Compression Check: Testing and Inspection Engine Compression Test Tools Required J 38722 Compression Tester A compression pressure test of the engine cylinders determines the condition of the rings, the valves, and the head gasket. Important: The battery must be at or near full charge. Do not block the throttle open. 1. Remove the air duct from the throttle control module. 2. Remove the ignition control modules. 3. Disable the fuel system. 4. Remove the spark plugs. 5. Measure the engine compression, using the following procedure: 1. Firmly install J 38722 to the spark plug hole. 2. Have an assistant crank the engine through at least four compression strokes in the testing cylinder. 3. Check and record the readings on J 38722 at each stroke. 4. Disconnect J 38722. 5. Repeat the compression test for each cylinder. 6. Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. 7. The following are examples of the possible measurements: ^ When the compression measurement is normal, the compression builds up quickly and evenly to the specified compression on each cylinder. ^ When the compression is low on the first stroke and tends to build up on the following strokes, but does not reach the normal compression, or if the compression improves considerably with the addition of three squirts of oil, the piston rings may be the cause. ^ When the compression is low on the first stroke and does not build up in the following strokes, or the addition of oil does not affect the compression, the valves may be the cause. ^ When the compression is low on two adjacent cylinders, or coolant is present in the crankcase, the head gasket may be the cause. 8. Install the air duct to the throttle body. 9. Install the spark plugs. 10. Enable the fuel system. 11. Install the ignition control modules. Page 7181 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 8133 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 7951 Intake Air Temperature Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 4311 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6202 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6647 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Diagrams Data Link Connector (DLC) Page 6552 Page 9010 Notice: Refer to Fuel and Evaporative Emission Hose/Pipe Connection Cleaning Notice. 5. Disconnect the fuel feed pipe (3) from the fuel rail. 6. Disconnect the evaporative emission (EVAP) purge pipe (1) from the EVAP canister purge valve. 7. Disconnect the integral clip (2) from the wire harness bracket. 8. Position the fuel feed pipe (3) above the PCM studs. 9. Raise the vehicle. Refer to Vehicle Lifting. 10. Use the following procedure with 2-wheel drive (2WD): 1. Remove the transmission support. 2. Lower the transmission slightly. 3. Remove the EVAP/fuel hose/pipe assembly retaining bolt (3) from the transmission. 4. Disengage the EVAP/fuel hose/pipe assembly from the clip (1) at the rear of the transmission. 11. Use the following procedure with 4-wheel drive (4WD): 1. Remove the transfer case. 2. Remove the transmission support. 3. Lower the transmission slightly. 4. Remove the EVAP/fuel hose/pipe assembly retaining bolt (3) from the transmission. 5. Remove the EVAP/fuel hose/pipe assembly (2) from the clip at the rear of the transmission. Page 9346 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10747 3. Shift assembly to the LOW position. 4. Loosen and remove the screw at the rear of the shiftier assembly. 5. Shift the assembly to the NEUTRAL position. 6. Loosen and remove the top screw of the shift lock actuator through the lever slot. 7. Pull lever to the DRIVE position and remove the shift lock actuator. Installation Procedure 1. In DRIVE position, depress the shift lock actuator button and realign into the shiftier lever. 2. Push lever to NEUTRAL. Notice: Refer to Fastener Notice. 3. Install the top screw through the lever slot. Tighten the actuator screw to 1.65 N.m (15 lb in). Page 4900 Engine Control Module: Service and Repair Powertrain Control Module Replacement Service of the powertrain control module (PCM) should normally consist of either replacement of the PCM or electrically erasable programmable read only memory (EEPROM) programming. If the diagnostic procedures call for the PCM to be replaced, the PCM should be inspected first to see if the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. Notice: * Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. * Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. * In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. * Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. * The replacement control module must be programmed. Important: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5 000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Loosen the PCM harness connector bolts (4) from the center of the PCM harness connectors. Notice: In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 3. Remove the PCM harness connectors (2) from the PCM (1). 4. Remove the PCM retaining bolts (3) and nuts (6). Notice: Refer to PCM and ESD Notice. 5. Slide the PCM (1) away from the intake manifold past the mounting studs (5) and remove PCM from the vehicle. 6. Remove the PCM mounting studs (5) from the intake manifold only if replacing the studs. Installation Procedure Page 1417 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 9896 Page 5278 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 2409 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5192 View of the connector when released from the component. View of another type of Micro 64 connector. NVG 126-NP4 - Transfer Case Speed Sensor: Locations NVG 126-NP4 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 5930 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Locations Windshield Washer Fluid Reservoir Page 7158 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9527 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6430 Spark Plug: Testing and Inspection Spark Plug Inspection Spark Plug Usage 1. Ensure that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. 2. Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: * Spark plug fouling-Colder plug * Pre-ignition causing spark plug and/or engine damage-Hotter plug Spark Plug Inspection 1. Inspect the terminal post (1) for damage. * Inspect for a bent or broken terminal post (1). * Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should NOT move. 2. Inspect the insulator (2) for flashover or carbon tracking, soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: * Inspect the spark plug boot for damage. * Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated causes arcing to ground. 3. Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). Drivetrain - Updated Transfer Case Speed Sensor Conn. Speed Sensor: All Technical Service Bulletins Drivetrain - Updated Transfer Case Speed Sensor Conn. Bulletin No.: 06-04-21-001 Date: May 17, 2006 INFORMATION Subject: Updated Transfer Case Connector Service Kit Now Available For Transfer Case Speed Sensor Wire Harness Connector that Comes Loose Or Connector Retainer Clip Breaks Models: 2007 and Prior GM Light Duty Trucks 2007 and Prior HUMMER H2, H3 2005-2007 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive Technicians may find that when the transfer case speed sensor wire harness connector is removed, the connector lock flexes/bends and does not return to the original position. The transfer case speed sensor wire harness connector then has no locking device. On older vehicles, the plastic connector retainer becomes brittle and the clip may break as soon as it is flexed. In the past, the only service fix was to install a wire harness connector service pack, P/N 88987183. This repair procedure involved splicing a new service connector with an integral connector lock. This connector service kit is of the same design and was still prone to failure over time. A new connector service repair kit is now available, P/N 15306187, that is an updated design. This new kit should be used whenever the speed sensor wire harness connector requires replacement. Parts Information Disclaimer Fuel System - Driveability Issues/MIL/Multiple DTC's Fuel Injector: Customer Interest Fuel System - Driveability Issues/MIL/Multiple DTC's TECHNICAL Bulletin No.: 03-06-04-030G Date: April 22, 2009 Subject: Various Driveability Symptoms Due to Clogged Fuel Injectors, MIL/SES DTCs P0171, P0172, P0174, P0300, P1174, P1175 (Clean Fuel Injectors and/or Perform Injector Test With AFIT CH-47976) Models: 2005-2009 GM Passenger Cars and Light Duty Trucks 2005-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X Equipped with Engine RPOs listed in the Table above and MULTEC(R) 2 Fuel Injectors Attention: GM does not support cleaning injectors on any engines that are not listed in this bulletin. Engines other than the ones listed in this bulletin that diagnosis indicates having restricted injectors should have those injectors replaced. Supercede: This bulletin is being revised to update the model year to 2009 and to provide applicable engine RPO table. Please discard Corporate Bulletin Number 03-06-04-030F (Section 06 - Engine/Propulsion System). Condition Some customers may comment on any of the following various driveability symptoms: - Extended Crank Time - Hard to Start - MIL/SES Illuminated with DTCs - Hesitation - Lack of Power - Surge or Chuggle - Rough Idle - Light or Intermittent Misfire Cause Due to various factors, the fuel injectors may become restricted. Extensive testing has demonstrated that fuel related issues are the cause of clogged injectors. At this point, no specific fuel, fuel constituent, or engine condition has been identified as causing the restriction. The restriction causes the engine to operate at a lean air fuel ratio. This may either trigger the MIL to illuminate or the engine to develop various driveability symptoms. Correction Page 5851 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7113 Body Control System Diagram 1 (1 Of 3) Page 8522 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 10378 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1572 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5171 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3787 Step 1 - Step 4 Page 1315 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 11182 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10336 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7178 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6089 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Locations Timing Component Alignment Marks: Locations Timing Chain Alignment Diagram 1 - Timing Marks 1 - Timing Marks 1 - Timing Marks Page 5320 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9077 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2543 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2645 Ignition Switch Lock Cylinder: Service and Repair Ignition Lock Cylinder Replacement IGNITION LOCK CYLINDER REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the negative battery cable. CAUTION: Refer to SIR Caution. 2. Disable the SIR system. Refer to SIR Disabling and Enabling. 3. Lower the hush and knee bolster. Refer to Knee Bolster Replacement. 4. Remove the steering column trim covers. 5. With the key installed, turn the key to the RUN position. 6. Install an allen wrench into the hole on top of the lock cylinder housing. Push down on the allen wrench to release the tab on the lock cylinder inside the lock cylinder housing. 7. Slide the lock cylinder out of the lock cylinder housing. INSTALLATION PROCEDURE 1. Install the key into the lock cylinder. IMPORTANT: The gears between the ignition switch and the lock cylinder housing must be in the correct position. Failure to do so will cause a misalignment of the gears in the ignition switch and the lock cylinder housing, which may result in a NO START or BATTERY DRAIN. Page 5872 Page 617 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, remove the BCM (1) from the rear electrical center. INSTALLATION PROCEDURE 1. Index the slots on the BCM (1) to the rear electrical center. 2. Using a downward motion, install the BCM to the rear electrical center. 3. Connect the 24-way gray electrical connector (1) to the BCM. 4. Connect the 32-way tan electrical connector (2) to the BCM. 5. Connect the 40-way body wiring extension (1) to the BCM. Page 1605 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6034 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 837 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 6276 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4344 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 10781 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4940 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 10558 Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). Page 8602 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 6959 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 3656 Compression Check: Testing and Inspection Engine Compression Test Tools Required J 38722 Compression Tester A compression pressure test of the engine cylinders determines the condition of the rings, the valves, and the head gasket. Important: The battery must be at or near full charge. Do not block the throttle open. 1. Remove the air duct from the throttle control module. 2. Remove the ignition control modules. 3. Disable the fuel system. 4. Remove the spark plugs. 5. Measure the engine compression, using the following procedure: 1. Firmly install J 38722 to the spark plug hole. 2. Have an assistant crank the engine through at least four compression strokes in the testing cylinder. 3. Check and record the readings on J 38722 at each stroke. 4. Disconnect J 38722. 5. Repeat the compression test for each cylinder. 6. Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. 7. The following are examples of the possible measurements: ^ When the compression measurement is normal, the compression builds up quickly and evenly to the specified compression on each cylinder. ^ When the compression is low on the first stroke and tends to build up on the following strokes, but does not reach the normal compression, or if the compression improves considerably with the addition of three squirts of oil, the piston rings may be the cause. ^ When the compression is low on the first stroke and does not build up in the following strokes, or the addition of oil does not affect the compression, the valves may be the cause. ^ When the compression is low on two adjacent cylinders, or coolant is present in the crankcase, the head gasket may be the cause. 8. Install the air duct to the throttle body. 9. Install the spark plugs. 10. Enable the fuel system. 11. Install the ignition control modules. Page 9617 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9762 Ignition Coil 4 Ignition Coil 5 Page 1342 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5252 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 3290 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 3493 10. Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. 11. Position the rim so that the valve stem (1) is situated at the 3 o'clock position relative to the head (2). This will protect the sensor when the bottom bead seats. 12. After the bottom bead is on the wheel, reposition the wheel and tire so that the valve stem is situated at the 9 o'clock position relative to the head. This will protect the sensor while mounting the tire bead to the outside of the wheel. Malfunction Indicator Lamp (MIL) Always On Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Always On Malfunction Indicator Lamp (MIL) Always On Circuit Description Ignition voltage is supplied to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. MIL Operation The MIL is located on the instrument panel (IPC). MIL Function * The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. * The MIL illuminates during a bulb test and a system test. * A DTC will be stored if a MIL is requested by the diagnostic. MIL Illumination * The MIL will illuminate with ignition switch ON and the engine not running. * The MIL will turn OFF when the engine is started. * The MIL will remain ON if the self-diagnostic system has detected a malfunction. * The MIL may turn OFF if the malfunction is not present. * If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. * If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. Diagnostic Aids If the problem is intermittent, refer to Intermittent Conditions. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Initial Inspection and Diagnostic Overview/Intermittent Conditions Test Description Step 1 - Step 6 The number below refers to the step number on the diagnostic table. 2. This step determines if the condition is with the MIL control circuit or the PCM. Page 7557 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 7132 Step 20 - Step 27 The numbers below refer to the step numbers on the diagnostic table. 2. A partial malfunction in the class 2 serial data circuit uses a different procedure from a total malfunction of the class 2 serial data circuit. The following modules communicate on class 2 serial data bus: The body control module (BCM) - The communication interface module (OnStar(R)), w/UE1 - The digital radio receiver (DRR), w/U2K - The driver door module (DDM) - The driver seat module (DSM), w/AAB - The DVD player - The electronic brake control module (EBCM) Page 1522 Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 10590 ^ Turn OFF all accessories. ^ Turn ON the ignition, with the engine OFF. Remote Programming Feature 1. Connect the scan tool to the vehicle. 2. Power-up the scan tool and select the Service Programming feature. 3. Select the appropriate vehicle. 4. Press the Request Info button on the scan tool. 5. Disconnect the scan tool from the vehicle and connect the scan tool to the computer station. 6. Follow the menu select items for reprogramming and provide information as to what type of device you are programming and whether you are reprogramming or replacing the electronic control unit (ECU). 7. Select "vehicle"; from the selection menu. 8. Select the module you wish to Program. 9. Select "Normal"; for Programming Type. 10. Select the applicable software calibrations. 11. Transfer data file to the scan tool. 12. Reconnect the scan tool to the vehicle. 13. Turn ON the ignition, with the engine OFF. 14. Select the Service Programming feature on the scan tool. 15. Press the Program button on the scan tool. Programming Using Scan Tool Pass-Through Connection 1. Connect the scan tool to vehicle and power it up. 2. Connect the computer station to the scan tool. 3. Select "PC Using Scan Tool Connection"; from the programming menu on the computer station. 4. Follow the menu select items for reprogramming and provide information as to what type of device you are programming and whether you are reprogramming or replacing the electronic control unit (ECU). 5. Select "vehicle"; from the selection menu. 6. Select the module you wish to program. 7. Select "Normal"; for Programming Type. 8. Select the applicable software calibrations. 9. Transfer data file to the scan tool. Page 1736 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 6175 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 8863 6. Use a clean shop towel in order to wipe off the male pipe end. 7. Inspect both ends of the fitting for dirt and burrs. Clean or replace the components as required. Installation Procedure Caution: In order to reduce the risk of fire and personal injury, before connecting fuel pipe fittings, always apply a few drops of clean engine oil to the male pipe ends. This will ensure proper reconnection and prevent a possible fuel leak. During normal operation, the O-rings located in the female connector will swell and may prevent proper reconnection if not lubricated. 1. Apply a few drops of clean engine oil to the male pipe end. 2. Push both sides of the fitting together in order to snap the retaining tabs into place. 3. Once installed, pull on both sides of the fitting in order to make sure the connection is secure. 4. Install the retainer to the quick-connect fitting. Page 8807 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9595 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 2046 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 4816 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 6142 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8163 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8647 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5428 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 202 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 6575 5. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 6. Install the rear electrical center cover. 7. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 8. If replacing the body wiring harness extension on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 9. Connect the negative battery cable. Page 475 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1385 Page 3943 7. Remove the exhaust camshaft position actuator bolt. 8. Remove the exhaust camshaft position actuator. Installation Procedure 1. Install the exhaust camshaft actuator into the timing chain. 2. Align the marked link of the timing chain with the timing mark on the exhaust camshaft position actuator sprocket (1). Important: Ensure the alignment pin is engaged between the camshaft and the exhaust camshaft position actuator. 3. Install the exhaust camshaft actuator onto the exhaust camshaft. Page 6664 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10861 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side Page 7670 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 6553 Page 7765 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 176 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1007 Lock Cylinder Switch: Diagrams Immobilizer Connector End Views Passlock Sensor (w/o BAE) Capacity Specifications Coolant: Capacity Specifications Cooling System ................................................................................................................................... .................................................. 9.7 quarts (9.2 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Page 8349 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4178 Page 10104 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 4646 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 5663 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 5189 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10773 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 8201 Page 2904 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 8632 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2570 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 1042 Front Passenger Door Module (FPDM) Page 5836 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4249 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. NVG 126-NP4 - Transfer Case Control Module: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Shift Control Module Replacement Removal Procedure Important: The access panel is removed in order to visually see the electrical connectors and the location of the transfer case control module. It will also be easier to see the mounting and alignment slots for the transfer case control module mounting bracket. 1. Remove the access panel. 2. Remove the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 3. Remove the transfer case control module (1) and mounting bracket from the instrument panel mag beam. 4. Disconnect the 3 electrical connectors from the transfer case control module. 5. Remove the transfer case control module from the mounting bracket. Installation Procedure Page 7518 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 286 Memory Positioning Module: Diagrams Memory Seat Module - Driver C4 Memory Seat Module - Driver C4 (w/Memory) Page 1250 Horn Switch: Locations Steering Wheel And Column Page 6242 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 4639 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 876 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 4602 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 5375 Page 6609 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 659 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 5424 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2816 Verify Original Equipment Condition of the Vehicle - Verify that Original Equipment Tires and Wheels or Official GM Accessory Tires and Wheels are on the vehicle. - Verify that aftermarket suspension "Lift" or "Lowering" Kits or other suspension alterations have NOT been done to the vehicle. - Check for accidental damage to the vehicle; for example, severe pothole or curb impacts, collision damage that may have affected the wheel alignment of the vehicle; e.g., engine cradles, suspension control arms, axles, wheels, wheel covers, tires may show evidence of damage/impact. - Check to be sure vehicle has seen "Normal Use" rather than abuse; e.g., very aggressive driving may show up by looking at the tires and condition of the vehicle. - Check for other additional equipment items that may significantly affect vehicle mass such as large tool boxes, campers, snow plow packages (without the snowplow RPO), etc., especially in trucks and cutaway/incomplete vehicles. Significant additional mass can affect trim height and wheel alignment of the vehicle and may necessitate a customer pay wheel alignment when placed semi-permanently in the vehicle (Upfitter instructions are to realign the vehicle after placement of these types of items. (This typically applies to trucks and incomplete vehicles that can be upfit with equipment such as the above.) Customer Concerns, "Normal Operation" Conditions and "Mileage Policy" Possible Concerns The following are typical conditions that may require wheel alignment warranty service: 1. Lead/Pull: defined as "at a constant highway speed on a typical straight road, the amount of effort required at the steering wheel to maintain the vehicle's straight heading." Important Please evaluate for the condition with hands-on the steering wheel. Follow the "Vehicle Leads/Pulls" diagnostic tree located in SI to determine the cause of a lead/pull concern. Lead/Pull concerns can be due to road crown or road slope, tires, wheel alignment or even in rare circumstances a steering gear issue. Lead/pull concerns due to road crown are considered "Normal Operation" and are NOT a warrantable condition -- the customer should be advised that this is "Normal Operation." Important Some customers may comment on a "Lead/Pull" when they hold the steering wheel in a level condition. If so, this is more likely a "steering wheel angle" concern because the customer is "steering" the vehicle to obtain a "level" steering wheel. 2. Steering wheel angle to the left or right (counter-clockwise or clockwise, respectively): Defined as the steering wheel angle (clocking) deviation from "level" while maintaining a straight heading on a typical straight road. 3. Irregular or Premature tire wear: Slight to very slight "feathering" or "edge" wear on the shoulders of tires is NOT considered unusual and should even out with a tire rotation; if the customer is concerned about a "feathering" condition of the tires, the customer could be advised to rotate the tires earlier than the next scheduled mileage/maintenance interval (but no later than the next interval). Be sure to understand the customer's driving habits as this will also heavily influence the tire wear performance; tire wear from aggressive or abusive driving habits is NOT a warrantable condition. Important Slight or mild feathering, cupping, edge or heel/toe wear of tire tread shoulders is "normal" and can show up very early in a tire/vehicle service mileage; in fact, some new tires can show evidence of feathering from the factory. These issues do NOT affect the overall performance and tread life of the tire. Dealer personnel should always check the customer's maintenance records to ensure that tire inflation pressure is being maintained to placard and that the tires are being rotated (modified-X pattern) at the proper mileage intervals. Wheel alignments are NOT to be performed for the types of "Normal" Tire Feathering shown in Figures 1-4 below. Page 9393 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 4944 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 2099 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 657 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 5340 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7866 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6348 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5852 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 7881 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1978 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 5039 Page 2277 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 250 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Fuel Pressure Gage Installation and Removal Fuel Pressure: Testing and Inspection Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 7810 Page 1133 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 5280 Page 177 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 9938 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 4222 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7904 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 6431 4. Inspect for evidence of improper arcing. * Measure the gap between the center electrode (4) and the side electrode (3) terminals. An excessively wide electrode gap can prevent correct spark plug operation. * Inspect for the correct spark plug torque. * Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). * Inspect for a broken or worn side electrode (3). * Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. - A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. * Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. * Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. * Inspect for excessive fouling. 5. Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Spark Plug Visual Inspection 1. Normal operation-Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. 2. Carbon fouled-Dry, fluffy black carbon, or soot caused by the following conditions: * Rich fuel mixtures - Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion * Reduced ignition system voltage output - Weak coils - Worn ignition wires - Incorrect spark plug gap * Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. 3. Deposit fouling-Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark intensity. Most powdery deposits will not effect spark intensity unless they form into a glazing over the electrode. Page 2159 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 2733 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow steps (6-10). The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. Page 9874 US English/Metric Conversion US English/Metric Conversion Page 8281 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1587 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4819 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 2430 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8317 Page 8185 Page 1365 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5593 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9084 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 552 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4099 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 477 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 2453 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 891 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6021 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7424 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 5190 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 6819 Locations Driver Door Module (DDM) OnStar(R) - Language Change Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Language Change Information Bulletin No.: 05-08-46-009B Date: June 29, 2007 INFORMATION Subject: Language Change for OnStar(R) System (U.S. and Canada Only) Models: 2006-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2006-2008 HUMMER H2, H3 2006-2008 Saab 9-7X with OnStar(R) (RPO UE1) Built After and Including VIN Breakpoints Listed Below (2006 MY Only) Attention: This bulletin only applies to vehicles equipped with OnStar(R) Generation 6.1 or later with a Station Identification (STID) Number in the following range: 16,000,000-17,000,000 or 20,000,000-21,999,999 or 23,500,001-26,000,000 Supercede: This bulletin is being revised to update the service procedure and add a Canadian procedure. Please discard Corporate Bulletin Numbers 05-08-46-009A and 05-08-46-008A (Section 08 - Body and Accessories). Page 1821 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 7476 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 800 Page 8649 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 5362 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8897 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 7188 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 6920 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4218 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9123 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Input Speed Sensor (ISS) Harness Transmission Speed Sensor: Diagrams Input Speed Sensor (ISS) Harness Input Speed Sensor (ISS) Harness Input Speed Sensor (ISS) Harness Page 2560 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 844 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 4140 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 261 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10707 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 6260 Utility/Van Zoning UTILITY/VAN ZONING Page 3533 hot particles embed themselves in the chrome layer and create a small pit. If the material is allowed to sit on the wheel while it is exposed to moisture or salt, it will corrode the wheel beneath the chrome leaving a pit or small blister in the chrome. Heavy brake dust build-up should be removed from wheels by using GM Chrome Cleaner and Polish, P/N 1050173 (in Canada use 10953013). For moderate cleaning, light brake dust build-up or water spots use GM Swirl Remover Polish, P/N 12377965 (in Canada, use Meguiars Plast-X(TM) Clear Plastic Cleaner and Polish #G12310C**). After cleaning, the wheel should be waxed using GM Cleaner Wax, P/N 12377966 (in Canada, use Meguiars Cleaner Wax #M0616C**), which will help protect the wheel from brake dust and reduce adhesion of any brake dust that gets on the wheel surface. For general maintenance cleaning, PEEK Metal Polish† may be used. It will clean and shine the chrome and leave behind a wax coating that may help protect the finish. Warranty of Stardust Corroded Chrome Wheels Wheels returned with pitting or spotting as a result of neglect and brake dust build-up may be replaced one time. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean and free of prolonged exposure to brake dust build-up. "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). Customer Assistance and Instructions GM has looked for ways customers may improve the appearance of wheels damaged by acidic cleaners. The following product and procedure has been found to dramatically improve the appearance of stained wheels. For wheels that have milky stains caused by acidic cleaners try the following: Notice THE 3M CHROME AND METAL POLISH REQUIRED FOR THIS PROCEDURE IS AN EXTREMELY AGGRESSIVE POLISH/CLEANER. THE WHEELS MUST BE CLEANED BEFORE APPLICATION TO AVOID SCRATCHING THE WHEEL SURFACE. THIS PRODUCT WILL REDUCE THE THICKNESS OF THE CHROME PLATING ON THE WHEEL AND IF USED INCORRECTLY OR EXCESSIVELY MAY REMOVE THE CHROME PLATING ALL TOGETHER, EXPOSING A LESS BRIGHT AND BRASSY COLORED SUB-LAYER. FOLLOW INSTRUCTIONS EXACTLY. 1. Wash the wheels with vigorously with soap and water. This step will clean and may reduce wheel staining. Flood all areas of the wheel with water to rinse. 2. Dry the wheels completely. Notice Begin with a small section of the wheel and with light pressure buff off polish and examine results. ONLY apply and rub with sufficient force and time to remove enough staining that you are satisfied with the results. Some wheels may be stained to the extent that you may only achieve a 50% improvement while others may be able to be restored to the original lustre. IN ALL CASES, only apply until the results are satisfactory. 3. Apply 3M Chrome and Metal Polish #39527* with a clean terry cloth towel. As you apply the polish, the staining will be diminished. 4. When dry, buff off the polish with a clean portion of the towel. 5. Repeat application of the 3M Chrome and Metal Polish until satisfied with the results. If continued applications fail to improve the appearance further discontinue use. This procedure will improve the appearance of the wheels and may, with repeated applications, restore the finish dramatically. For wheels that exhibit spotting from road chemicals the above procedure may marginally improve the condition but will not restore the finish or remove the pitting. In this type of staining the wheel finish has actually been removed in spots and no manner of cleaning will restore the finish. †*We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Page 6579 Body Control Module: Service and Repair Liftgate Control Module Replacement LIFTGATE CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the liftgate trim panel. 2. Disconnect the electrical connectors (3) from the module as necessary. 3. Remove the bolts that retain the module to the liftgate. 4. Remove the module from the liftgate. INSTALLATION PROCEDURE 1. Install the module to the liftgate. 2. NOTE: Refer to Fastener Notice. Install the bolts that retain the module to the liftgate. Tighten the bolts to 10 N.m (89 lb in). 3. Connect the electrical connectors (3) as necessary. 4. Install the liftgate trim panel. 5. Program the liftgate control module. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 426 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8681 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 7850 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 5552 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9305 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7877 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 10348 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 356 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1893 Page 6577 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, remove the BCM (1) from the rear electrical center. INSTALLATION PROCEDURE 1. Index the slots on the BCM (1) to the rear electrical center. 2. Using a downward motion, install the BCM to the rear electrical center. 3. Connect the 24-way gray electrical connector (1) to the BCM. 4. Connect the 32-way tan electrical connector (2) to the BCM. 5. Connect the 40-way body wiring extension (1) to the BCM. Page 3423 Page 4584 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 4353 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 3460 5. Position the wheel and tire so the valve stem is situated at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the outer tire bead up and over the mounting/dismounting head. 6. Position the wheel and tire so that the valve stem is situated again at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the inner tire bead up and over the mounting/dismounting head. 7. Remove all residual liquid sealant from the inside of the tire and wheel surfaces. If any tire sealant is noted upon tire dismounting on vehicles equipped with TPM replace the tire pressure sensor. 8. Use a wire brush or coarse steel wool in order to remove any rubber, light rust or corrosion from the wheel bead seats. Important: If bead seat corrosion has been identified as an air loss concern on the wheel being worked on, refer to GM Service Bulletin # 08-03-10-006 for additional information on correcting the leak. 9. Apply GM P/N 12345884 (in Canada, P/N 5728223) or equivalent to the tire bead and the wheel rim. Page 7928 Page 6585 Page 2501 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Locations Heated Glass Element Relay: Locations Fuse Block - Rear, Label Page 5557 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4145 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7682 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 838 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 1917 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6590 Page 1634 Fuel Tank Pressure Sensor: Service and Repair Fuel Tank Pressure Sensor Replacement Removal Procedure 1. Remove the fuel tank. 2. Disconnect the fuel tank pressure harness connector. 3. Remove the fuel tank pressure sensor. Installation Procedure 1. Install the new fuel tank pressure sensor seal. 2. Install the fuel tank pressure sensor. 3. Connect the fuel tank sensor harness connector. 4. Install the fuel tank. Page 2297 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 685 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 1754 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 830 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1912 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1924 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 1529 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 463 Radiator Cooling Fan Motor Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 4220 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 9287 Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 474 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Locations Dash Panel Page 10302 Page 9772 Page 1429 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 9656 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10562 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 2367 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4355 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 1818 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8045 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1579 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 3633 The identification tag on the rear half of the transfer case provides the information shown. Disclaimer Page 1800 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1388 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 2066 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8408 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8207 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 2961 Air Filter Element: Service and Repair Air Cleaner Element Replacement Removal Procedure 1. Remove the radiator support diagonal brace if applicable. 2. Disconnect the secondary air injection (AIR) reaction pump inlet hose from the air cleaner air outlet duct. 3. Loosen the 3 air cleaner housing retaining screws (1). 4. Remove the air cleaner housing (2). 5. Lift the air cleaner element (6) and air outlet duct (3) from the lower air cleaner housing/washer solvent tank assembly (4). 6. Remove the air cleaner element (6) from the air outlet duct (3) with a twisting and pulling motion. 7. Inspect the entire assembly for dust, debris, or water. Clean or replace as necessary. Installation Procedure Page 255 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2141 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5105 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 6145 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 11189 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8864 Fuel Line Coupler: Service and Repair Plastic Collar Quick Connect Fitting Service Plastic Collar Quick Connect Fitting Service Removal Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Important: There are several types of Plastic Collar Fuel and Evaporative Emission Quick Connect Fittings used on this vehicle. * Bartholomew (1) * Q Release (2) * Squeeze to Release (3) * Sliding Retainer (4) * Push Down TI (5) The following instructions apply to all of these types of Plastic Collar Quick Connect Fittings except where indicated. 1. Relieve the fuel system pressure before servicing any fuel system connection. Refer to the Fuel Pressure Relief. Caution: Refer to Safety Glasses Caution. Notice: Refer to Fuel and Evaporative Emission Hose/Pipe Connection Cleaning Notice. 2. Using compressed air, blow any dirt out of the quick-connect fitting. Page 1727 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1216 Brake Light Switch: Service and Repair STOP LAMP SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the left sound insulator. 2. Remove the pushrod retainer (3) from the brake pedal pin (4). 3. Remove the stop lamp switch (1) and the pushrod (2) from the brake pedal pin (4). 4. Disconnect the stop lamp switch (1) electrical connector. 5. Remove the stop lamp switch from the vehicle. INSTALLATION PROCEDURE 1. Install the electrical connector to the stop lamp switch (1). 2. Position the stop lamp switch (1) on the pushrod (2) and install the assembly on the brake pedal pin. 3. Install the pushrod retainer (3) to the brake pedal pin (4). The retainer will snap into place. 4. Install the left sound insulator. Page 3018 11. Remove the fuse block cover. 12. Disconnect the negative battery cable (5) from the fender and fuse block. 13. Disconnect the positive battery cable (4) from the fuse block. 14. Disconnect the wiring harness connector from the fuse block and remove from bracket. 15. Disconnect the fuse block wiring harnesses from the wiring loops. 16. Disconnect the wiring harness clips from the fender. 17. Disconnect the upper fuse block locking tabs to lower fuse block. 18. Remove the upper fuse block bolts. 19. Remove the upper fuse block assembly from lower fuse block and set the upper fuse block on the engine. 20. Remove the power steering hose assembly bracket retaining bolt at the wheel well. 21. Remove the power steering hose assembly bracket from the wheel well. 22. Remove the power steering hose assembly to frame brackets retaining bolts. 23. Remove the power steering hose assembly from the vehicle. 24. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. Page 425 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 5733 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9417 Page 241 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 568 Compressor Clutch Relay: Service and Repair Compressor Relay Replacement Removal Procedure 1. Remove the protective cover from the underhood fuse block. 2. Remove the compressor relay (1) from the underhood fuse block (2). Installation Procedure 1. Install the compressor relay (1) to the underhood fuse block (2). 2. Install the protective hood to the underhood fuse block. Page 5133 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5162 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9006 16. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 17. Connect the negative battery cable. 18. Inspect for leaks using the following procedure: 1. Turn ON the ignition, with the engine OFF for 2 seconds. 2. Turn OFF the ignition, for 10 seconds. 3. Turn ON the ignition, with the engine OFF. 4. Inspect for fuel leaks. 19. Install the fuel tank shield, if equipped. Page 6172 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7327 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 4094 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7501 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1306 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8744 Page 7233 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8764 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6028 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 9467 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1519 Utility/Van Zoning UTILITY/VAN ZONING Page 5479 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9820 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7750 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8672 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 497 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 8007 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2022 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 9308 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 11232 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 11146 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 2605 Impact Sensor: Service and Repair Inflatable Restraint Vehicle Rollover Sensor Replacement Inflatable Restraint Vehicle Rollover Sensor Replacement Removal Procedure Caution: Refer to Restraint System Service Precautions. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Fold back the rear carpet in order to gain access to the sensor. Refer to Rear Floor Panel Carpet Replacement. 3. Disconnect the electrical connector. 4. Remove the nuts securing the rollover sensor to the floor panel. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the nuts securing the rollover sensor to the floor panel. Tighten the screws to 10 N.m (88 lb in). 2. Connect the electrical connectors. 3. Install the rear carpet. 4. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 3324 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6633 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: Customer Interest Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 7735 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9033 Parts required to complete this service update are to be obtained from Saab Parts Distribution Center (PDC). Service Procedure Tools Required J 45722 or equivalent 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. (1) Fuel Tank Label (2) fuel Tank (3) Rear Axle 2. Locate the fuel tank label (1), which is on the backside of the fuel tank (2) below the fuel tank filler neck. 3. Inspect the fuel tank for a white "X" on the fuel tank and/or a green "C" on the barcode. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is found, the fuel sender assembly does not require replacement. No further action is required. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is not found, proceed to Step 4 for additional inspection. Page 9486 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9376 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 2677 10. Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. 11. Position the rim so that the valve stem (1) is situated at the 3 o'clock position relative to the head (2). This will protect the sensor when the bottom bead seats. 12. After the bottom bead is on the wheel, reposition the wheel and tire so that the valve stem is situated at the 9 o'clock position relative to the head. This will protect the sensor while mounting the tire bead to the outside of the wheel. Page 6512 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2886 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 4502 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1739 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 336 Electronic Brake Control Module: Diagrams Antilock Brake System Connector End Views Electronic Brake Control Module (EBCM) Page 815 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5508 Page 147 - HVAC Actuator - Inflatable Restraint Sensing and Diagnostic Module (SDM) - Any AIR BAG module - Seatbelt Lap Anchor Pretensioner - Seatbelt Retractor Pretensioner - An SIR system connection or connector condition resulting in the following DTCs being set: B0015, B0016, B0019, B0020, B0022, or B0023 - Powertrain Control Module (PCM) - Remote Control Door Lock Receiver (RCDLR) - Transmission Control Module (TCM) Correction Important DO NOT replace the control module, wiring or component for the following conditions: - The condition is intermittent and cannot be duplicated. - The condition is present and by disconnecting and reconnecting the connector the condition can no longer be duplicated. Use the following procedure to correct the conditions listed above. 1. Install a scan tool and perform the Diagnostic System Check - Vehicle. Retrieve and record any existing history or current DTCs from all of the control modules (refer to SI). ‹› If any DTC(s) are set, refer to Diagnostic Trouble Code (DTC) List - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). ‹› If DTCs are not set, refer to Symptoms - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). 2. When identified, use the appropriate DTC Diagnostics, Symptoms, Schematics, Component Connector End Views and Component Locator documents to locate and disconnect the affected harness connector(s) which are causing the condition. Note Fretting corrosion looks like little dark smudges on electrical terminals and appear where the actual electrical contact is being made. In less severe cases it may be unable to be seen or identified without the use of a magnifying glass. Important DO NOT apply an excessive amount of dielectric lubricant to the connectors as shown, as hydrolock may result when attempting to mate the connectors. Use ONLY a clean nylon brush that is dedicated to the repair of the conditions in this bulletin. 3. With a one-inch nylon bristle brush, apply dielectric lubricant to both the module/component side and the harness side of the affected connector(s). 4. Reconnect the affected connector(s) and wipe away any excess lubricant that may be present. 5. Attempt to duplicate the condition by using the following information: - DTC Diagnostic Procedure - Circuit/System Description - Conditions for Running the DTC - Conditions for Setting the DTC - Diagnostic Aids - Circuit/System Verification ‹› If the condition cannot be duplicated, the repair is complete. ‹› If the condition can be duplicated, then follow the appropriate DTC, Symptom or Circuit/System Testing procedure (refer to SI). Repair Order Documentation Page 4966 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9234 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 359 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5850 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6208 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 5198 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8836 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10058 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7442 If the tools are not available at your dealership, use an aftermarket equivalent. For Display Purposes Only (End Section of the Crankshaft) 18 MM. or 19 MM. Impact Style Socket (Thick Wall) with a 1/2 drive base that is approximately 15 MM. deep with an overall height of 38 MM. (1-1/2"). J 8433-1 Puller Bar or Equivalent Verify the oil leak. Refer to the above illustration (1), showing the leak path through the end of the crankshaft flange bore area. Order a crankshaft service cup plug part number WPC-340 by completing the WPC PART REQUEST FORM at the end of this bulletin and send it to the WPC via fax or E-mail. Typically, the cup plug should arrive within 2 business days. Fax Number - 248-371-0192 E-mail Address - [email protected]. Clean the crankshaft flange bore area with BrakeKleen (12378392, 12346139 (in Canada, 88901247) or equivalent. Thoroughly dry the area and examine the bore surface for irregularities. If the bore surface needs additional cleaning, use sand paper, or equivalent, and clean as necessary. Once the crankshaft bore surface is clean and smooth, apply a thin bead of LOCTITE(TM) 620, P/N 89021297 or Permatex 27010 High Strength Red Thread Locker Gel, P/N 88861429 (in Canada, 88861430), completely around the inside of the crankshaft flange bore. Position the crankshaft service cup plug into the crankshaft flange bore with service cup plug, dish side out. Page 10376 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10398 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1373 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9129 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5091 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4129 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 8202 Page 7569 Powertrain Control Module (PCM) C2 (Pin 15 To 54) Page 2021 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 9026 4. Compare the fuel tank serial number printed on the fuel tank label (1) to the fuel tank serial number (sequencing) range shown. ^ If the serial number of the tank is not within the ranges above, lower the vehicle. No further action is required. ^ If the serial number of the tank is within the ranges above, remove and replace the fuel sender assembly. Proceed to Step 5 in this bulletin. 5. Remove the fuel tank from the vehicle. Remove the fuel sender assembly from the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. Notice: Ensure that the fuel level sensor pigtail wires are routed through the anti-chafing conduit of the fuel sender assembly to avoid damaging the fuel level sensor pigtail wires. Route the fuel level sensor pigtail wires through the anti-chafing conduit the same way the wires were routed in the old fuel sender assembly. 6. Remove the fuel level sensor from the old fuel sender assembly and install it to the new fuel sender assembly. Refer to Fuel Level Sensor Replacement in SI. 7. Install the fuel sender assembly into the fuel tank and install the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. 8. Lower the vehicle. Claim Information - GM and Saab Canada Only For vehicles repaired under this service update, use the table. Claim Information - US Saab Only Locations Intake Air Temperature Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 10094 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Key and Lock Cylinder Coding Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Page 9839 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9758 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 829 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Locations Air Injection Pump Relay: Locations Engine Controls Component Views Left Front of Chassis (K18) 1 - Secondary Air Injection (AIR) Pump 2 - Secondary Air Injection (AIR) Pump Relay Page 10187 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Locations Power Seat Control Module: Locations Beneath Driver Seat Cushion Page 6111 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 2619 Seat Position Sensor: Diagrams SIR Connector End Views Inflatable Restraint Seat Position Sensor (SPS) - Left A/T Shift Lock Control Solenoid Inflatable Restraint Seat Position Sensor (SPS) - Right A/T Shift Lock Control Solenoid Page 1696 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Page 8760 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 7468 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 5779 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 11080 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8489 1. Install the EVAP canister purge pipe (2) to the fuel tank. 2. Install the EVAP hose assembly to the fuel tank. 3. Connect the EVAP hose assembly (3) to the fuel tank vent valves and fuel module. 4. Install new ties (1) securing the EVAP hoses. 5. Attach the EVAP hose assembly retainers (1) to the fuel tank heat shield. 6. Install the fuel tank. Page 4290 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 8889 Page 5379 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 2495 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 7506 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7042 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 1779 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 5472 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 6464 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 1837 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 7722 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 461 Utility/Van Zoning UTILITY/VAN ZONING Page 9580 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8330 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9118 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2422 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7492 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8931 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Tire Chain Usage Description Wheels: Description and Operation Tire Chain Usage Description Tire Chain Usage Description Tire Chain Usage Description When you use tire chains, most current vehicles require the following chain types: ^ SAE Class S or 1100 Series, Type PL tire chains (1) ^ SAE Class U or 1200 Series, Type P tire chains (2) ^ 1800 Series Lug Reinforced tire chains (3) These chains are specially designed in order to limit the fly-off effect that occurs when the wheel rotates. Manufacturers of tire chains have a specific chain size for each tire size. These ensure a proper fit when the chains are installed. Purchase the correct chains for the tires on which the chains will be used. Do not use rubber adjusters to take up slack in chains that are loose due to incorrect size. Always follow the chain manufacturer's installation instructions. The use of chains may adversely affect handling. When using chains, remember the following information: ^ Ensure that the vehicle is designed for chain clearance. ^ Adjust the speed to road conditions. ^ Avoid sharp turns. ^ Avoid locked-wheel braking in order to prevent chain damage to the vehicle. ^ Install the chains as tightly as possible on the drive tires. Tighten the chains again after driving 0.4-0.8 km (0.25-0.5 mi). Do not use chains on the non-drive tires. These chains may contact and damage the vehicle. If you use chains on the non-drive tires, ensure that there is enough clearance. ^ Do not exceed 70 km/h (45 mph). Do not exceed the chain manufacturer's speed limit, if lower. ^ Drive in a restrained manner. Avoid large bumps, potholes, severe turns, and other maneuvers that cause the tires to bounce up and down. ^ Follow any other instructions from the chain manufacturer that do not disagree with the above. Page 3858 Notice: Refer to Fastener Notice. 4. Inspect the oil pan alignment. Use a straight edge on the back of the block and the oil pan transmission mounting surface. ^ Tighten the oil pan side bolts to 25 N.m (18 lb ft). ^ Tighten the oil pan end bolts to 10 N.m (89 lb in). 5. Install the 4 transmission bell housing bolts that attach to the oil pan. Tighten bolts to 47 N.m (35 lb ft). 6. Clip transmission cooler lines to the engine block. 7. Install the front drive axle intermediate shaft bearing assembly. Refer to Front Drive Axle Intermediate Shaft Bearing Assembly Replacement (A4WD) Front Drive Axle Intermediate Shaft Bearing Assembly Replacement (S4WD). 8. Install the oil drain plug and filter. Refer to Engine Oil and Oil Filter Replacement. 9. Install the front differential to the engine. Refer to Differential Carrier Assembly Replacement (4.2L In-Line Six Cylinder) Differential Carrier Assembly Replacement (V8). Page 4856 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9288 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 5127 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4368 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10923 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5888 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 11211 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 6983 Engine Control Module: Service and Repair Powertrain Control Module Replacement Service of the powertrain control module (PCM) should normally consist of either replacement of the PCM or electrically erasable programmable read only memory (EEPROM) programming. If the diagnostic procedures call for the PCM to be replaced, the PCM should be inspected first to see if the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. Notice: * Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. * Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. * In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. * Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. * The replacement control module must be programmed. Important: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5 000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Loosen the PCM harness connector bolts (4) from the center of the PCM harness connectors. Notice: In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 3. Remove the PCM harness connectors (2) from the PCM (1). 4. Remove the PCM retaining bolts (3) and nuts (6). Notice: Refer to PCM and ESD Notice. 5. Slide the PCM (1) away from the intake manifold past the mounting studs (5) and remove PCM from the vehicle. 6. Remove the PCM mounting studs (5) from the intake manifold only if replacing the studs. Installation Procedure Page 6045 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 335 Electronic Brake Control Module: Locations Antilock Brake System Component Views Electronic Brake Control Module 1 - Frame 2 - Electronic Brake Control Module (EBCM) Page 6547 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1685 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 3466 Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Replacement Tire Pressure Sensor Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire/wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting. ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ When separating the tire bead from the wheel, position the bead breaking fixture 90 degrees from the valve stem. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: If any tire sealant is noted upon tire dismounting, remove all residual liquid sealant from the inside of the tire and wheel surfaces. 3. Remove the tire pressure sensor nut. 4. Remove the tire pressure sensor. Installation Procedure 1. Clean any dirt or debris from the grommet sealing area. 2. Insert the sensor in the wheel hole with the air passage facing away from the wheel. Page 8345 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2150 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 10214 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 9682 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 11108 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3367 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Testing and Inspection Wheel Bearing: Testing and Inspection Wheel Bearings Diagnosis Step 1 - Step 7 Page 6542 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 10036 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5934 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5736 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 4577 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 3013 Hose/Line HVAC: Service and Repair Suction Screen Replacement Suction Screen Replacement Tools Required J44551 Suction Screen Kit Removal Procedure 1. Remove the A/C Compressor hose assembly from the A/C compressor. 2. Using the Universal Removal Tool J-44551-9 place the tip of the tool under the inside edge of the compression band of the suction screen and the cushioning fulcrum pad against the open end of the hose or manifold fitting. Important: Do not damage the end of the hose or manifold. 3. Pry upward on the band and move the tool around the diameter of the screen as necessary to remove the screen. Installation Procedure 1. Install suction screen. 2. Install the A/C Compressor hose assembly to the A/C compressor. Install suction screen. Page 3348 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 2411 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 10991 5. Using the J-35616-5, attach the RED lead from the other jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 6. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 7. Touch the battery terminals of the second 9-volt battery to the battery terminals of the second jumper harness. This will rotate the encoder motor ( actuator) shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 8. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the reference lines as shown in the picture. This orientates the encoder motor (actuator) to NETURAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 9. Wiggle the control actuator lever shaft of the transfer case by hand to find the low point of the cam. 10. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. 11. After installation, the transfer case will perform a learn procedure upon a requested MODE change. Parts Information For warranty claims, submit batteries as parts. Page 7364 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9538 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10310 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10340 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 3205 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4868 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8429 Variable Valve Timing Actuator: Service and Repair Camshaft Position Exhaust Actuator Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 44217 Timing Chain Retention Tool Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Rotate the engine until the word Delphi on the exhaust camshaft position actuator is lined up parallel with the cylinder head to cam cover mating surface. 3. Remove the top chain guide bolts. 4. Remove the top chain guide. 5. Using the timing mark on the exhaust camshaft position actuator sprocket as a reference, make a mark on the timing chain link across from it. 6. Install the J-44217 (1). 1. Install the hook portion of the timing chain retention tools into one of the timing chain links near the timing chain shoe on both sides of the engine. 2. Tighten the wingnuts. 3. Ensure the hooks are still in one of the links and the gage blocks of the tool are firmly in place on the edge of the head. Page 10488 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 4472 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 9512 Page 8834 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6309 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6312 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 2622 14. Remove the 4 nuts (1) securing the seat cushion frame to the seat adjusters. 15. Remove the seat adjusters. 16. Remove the 2 nuts (1) securing the seat position switch (3) to the seat adjuster (2). 17. Drill out the rivets securing the sensor to the bracket. Installation Procedure 1. Install new rivets securing the sensor to the bracket. Page 2247 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 6921 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 105 Built After and Including the VIN Breakpoints shown. The Generation (Gen) 6.1 OnStar(R) system found in these vehicles has the capability to change the default English voice recognition to French or Spanish. Changing the language of the OnStar(R) system will change the following features to the language you select: Voice recognition command prompts will be played in the language selected. The voice recognition system will only recognize commands given in the selected language. Once completed, this process completely changes all voice recognition and voice commands of the OnStar(R) system. The process will need to be repeated in its entirety to change to a different language, including English. Page 2077 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4517 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9011 12. Remove the EVAP/fuel hose/pipe assembly (4) from the fuel pipe clip at the rear of the engine. 13. Disconnect the EVAP purge pipe at the fuel tank. 14. Disconnect the chassis fuel feed pipe (1) from the fuel tank. 15. Disconnect the chassis EVAP pipe (2) from the fuel tank. 16. Remove the EVAP/fuel hose/pipe assembly from the vehicle. Important: Note the position of the EVAP/fuel hose/pipe assembly clips before disassembly. 17. Remove the fuel/EVAP hose/pipe assembly retaining clips. 18. Separate the fuel feed pipe (1) from the EVAP purge pipe (2). Installation Procedure Page 4136 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 7029 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4901 Notice: Refer to Fastener Notice. 1. Install the PCM mounting studs (5) to the intake manifold, if removed. Tighten the studs to 6 N.m (53 lb in). 2. Install the PCM (1) onto the studs (5). 3. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). 4. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 5. Install the PCM harness connectors (2) to the PCM body. 6. Tighten the PCM harness connector retaining bolts (4). Tighten the bolts to 8 N.m (71 lb in). 7. If a new PCM is being installed, the PCM must be programmed. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 4932 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 5921 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 7959 Page 5819 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 5940 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 11223 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9709 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 5947 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5367 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6519 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 773 Powertrain Control Module (PCM) C2 (Pin 55 To 73) Powertrain Control Module (PCM) C3 Page 10777 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 2489 Page 2347 Page 6800 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2291 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9946 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Cooling System - Inspecting Radiator/Heater Hose Clamps Coolant Line/Hose: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 7072 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 1352 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9649 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5562 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5199 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4865 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 278 Front Passenger Door Module (FPDM) C3 (Outside Rearview Mirror Passenger) (DS3/DL2) Page 9422 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9739 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Specifications Camshaft: Specifications Camshaft Cap Bolt .............................................................................................................................. ..................................................... 12 N.m (106 lb in) Camshaft Camshaft End Play - Exhaust .................................................................................................................................... 0.045-0.215 mm (0.0017-0.0084 in) Camshaft End Play - Intake ....................................................................................................................................... 0.051-0.201 mm (0.0020-0.0079 in) Camshaft Journal Diameter All Intake and Exhaust #2-#7 .......................................................................................................................... 26.936-26.960 mm (1.0612-1.0622 in) Exhaust #1 ...................................................................................................................................................... 29.936-29.960 mm (1.1794-1.1804 in) Camshaft Journal to Bore Clearance ......................................................................................................................... 0.040-0.085 mm (0.0015-0.0033 in) Page 2544 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Air Suspension Sensor - LR Ride Height Sensor: Diagrams Air Suspension Sensor - LR Air Suspension Sensor - LR Air Suspension Sensor - LR Page 6181 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9787 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 1196 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Page 3239 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7711 Page 8989 Page 4955 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 856 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 9624 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 2751 Parts Information Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 3852 Notice: Refer to Fastener Notice. 2. Install the oil filter adapter. Tighten the oil filter adapter to 30 N.m (22 lb ft). 3. Install the oil filter. Refer to Engine Oil and Oil Filter Replacement. Page 2831 Alignment: Description and Operation Setback Description Setback Description Setback applies to both the front and the rear wheels. Setback is the amount that one wheel may be aligned behind the other wheel. Setback may be the result of a road hazard or a collision. The first clue is a caster difference from side-to-side of more than 1 degree. Page 405 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9969 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9507 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 2092 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9947 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 2390 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 10770 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 8326 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 7136 Step 18 - Step 24 Page 6203 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 10875 Page 7341 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7549 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Service Precautions Vehicle Lifting: Service Precautions Vehicle Lifting Caution Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and strap the vehicle to the hoist. Page 6158 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9935 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 7349 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 8393 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 4089 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6281 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3388 Fuse Block - Rear C2 (Pin E4 To F12) Page 10261 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 5802 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 9421 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 6870 Page 5138 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6871 Page 5996 Page 5056 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 1669 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 4464 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 6110 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10380 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10076 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2486 Utility/Van Zoning UTILITY/VAN ZONING Page 6428 Spark Plug: Specifications Spark Plug Gap ................................................................................................................................... ................................................... 1.08 mm (0.0425 in) Spark Plug Torque ......................................... ............................................................................................................................................. 18 N.m (13 lb ft) Page 11216 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 11214 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Technician Safety Information Fuel Injector: Technician Safety Information Lower O-Ring Removal Caution Caution: Verify that the lower (small) O-ring of each injector does not remain in the lower manifold in order to reduce the risk of fire and personal injury. If the O-ring is not removed with the injector, the replacement injector with new O-rings will not seat properly in the injector socket. Improper seating could cause a fuel leak. Page 7331 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6981 * The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. * The MIL turns OFF after the engine is started if a diagnostic fault is not present. * The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. * The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. * When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. * When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. Trip A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). Warm-Up Cycle The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. Diagnostic Trouble Codes (DTCs) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC Status When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) - Indicates that this DTC failed during the present ignition cycle. Last Test Fail - Indicates that this DTC failed the last time the test ran. MIL Request - Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) - Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History - Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) - DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display Page 422 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 9396 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 6042 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 4461 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 5338 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1167 Low Pressure Sensor / Switch: Diagrams HVAC - Manual HVAC Connector End Views A/C Low Pressure Switch Reverse Lockout Solenoid Page 4352 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6725 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2945 Tighten the resonator to engine bolts to 6 N.m (53 lb in). 4. Connect the air cleaner outlet duct to the air cleaner outlet resonator (3). 5. Properly position the air cleaner outlet duct and air cleaner outlet resonator clamps (2). Tighten the clamps (2) to 4 N.m (35 lb in). Page 5555 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7742 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3222 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1584 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 6516 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4511 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10570 10. Remove the ECM/TCM bracket retaining bolts (2). 11. Remove the ECM/TCM bracket (1) from the vehicle frame. Installation Procedure 1. If the ECM/TCM bracket (1) was previously removed, install the ECM/TCM bracket (1) to the vehicle frame. 2. Install the ECM/TCM bracket retaining bolts (2). Notice: Refer to Fastener Notice. 3. Tighten the ECM/TCM bracket bolts. Tighten the bolts to 10 N.m (89 lb in). Page 8641 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7756 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7852 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 1293 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 3949 Variable Valve Timing Solenoid: Service and Repair Camshaft Position Actuator Solenoid Valve Replacement Removal Procedure 1. Remove the drive belt. 2. Remove the 3 power steering pump bolts and move the pump out of the way. 3. Disconnect the camshaft position actuator solenoid electrical connector. 4. Remove the camshaft position actuator solenoid retaining bolt (3). 5. Remove the camshaft position actuator solenoid (2) from the engine block. 6. Clean debris from the hole (1). Installation Procedure 1. Lubricate the hole (1) with engine oil. Notice: Refer to Fastener Notice. 2. Install the camshaft position actuator solenoid (2) and bolt (3). Tighten the bolt to 10 N.m (89 lb in). 3. Connect the camshaft position actuator solenoid electrical connector. 4. Install the power steering pump and bolts. 5. Install the drive belt. Page 4942 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6067 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9799 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 11133 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 808 Page 7218 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10318 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 10929 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8015 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 235 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: All Technical Service Bulletins A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Page 251 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5953 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 508 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 8226 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8454 4. Connect the AIR hose to the solenoid valve. 5. Connect the ECT sensor electrical connector. 6. Install the intake manifold. 7. Install the number 6 ignition coil. 8. Raise the vehicle. Refer to Vehicle Lifting. Page 1670 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5363 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 10194 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4239 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8155 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7351 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8318 Page 10794 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 5070 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6592 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7665 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6977 Powertrain Control Module (PCM) C3 (Pin 1 To 20) Page 10018 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 9620 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 2212 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7336 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3370 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7642 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1155 Air Temperature Sensor - Upper Right Page 10139 Page 10533 5. Using the J-35616-5, attach the RED lead from the other jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 6. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 7. Touch the battery terminals of the second 9-volt battery to the battery terminals of the second jumper harness. This will rotate the encoder motor ( actuator) shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 8. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the reference lines as shown in the picture. This orientates the encoder motor (actuator) to NETURAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 9. Wiggle the control actuator lever shaft of the transfer case by hand to find the low point of the cam. 10. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. 11. After installation, the transfer case will perform a learn procedure upon a requested MODE change. Parts Information For warranty claims, submit batteries as parts. Page 5476 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9463 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4409 Disclaimer Locations Control Module: Locations Transmission Control Module (TCM) Transmission Control Module (TCM) 1 - Engine Harness 2 - Transmission Control Module (TCM) 3 - Transmission Control Module (TCM) Connector Harness Page 3552 Refer to the appropriate section of SI for specifications and repair procedures that are related to the vibration concern. Disclaimer Page 6498 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9763 Ignition Coil 6 Page 5609 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1333 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 6568 Body Control Module: Diagrams Body Control Module (BCM) C2 Body Control Module (BCM) C2 Page 8177 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2482 Page 10403 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side Page 10267 2. Install the spark plugs to the engine. Tighten the spark plugs to 18 N.m (13 lb ft). 3. Install the ignition coils. Page 1488 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 2400 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 7616 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8654 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 6031 View of the connector when released from the component. View of another type of Micro 64 connector. Page 8866 7. This step applies to the Push Down TI style connectors ONLY. Release the fitting by pressing on the tab indicated by arrow. Caution: Refer to Relieving Fuel Pressure Caution. 8. Pull the connection apart. Installation Procedure Caution: Refer to Fuel Pipe Fitting Caution. 1. Apply a few drops of clean engine oil to the male connection end. 2. Push both sides of the quick-connect fitting together in order to cause the retaining feature to snap into place. Page 2127 Page 4268 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 9078 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 3168 Page 6638 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 3564 Disclaimer Page 1438 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 3709 Disclaimer Page 1035 Behind Left Headlamp Page 6599 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 1666 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2518 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 226 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1543 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7185 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Lower LF of the Passenger Compartment - Pedal Assembly Lower LF Of The Passenger Compartment - Pedal Assembly Page 5159 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 1259 Turn Signal/Multifunction Switch C3 Page 372 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9191 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 4587 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8092 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 11233 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 8943 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 4834 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 171 Page 628 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 10416 Page 7861 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 6502 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 10352 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5964 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 1733 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4536 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 7322 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 8424 Transmission Position Switch/Sensor: Service and Repair Park/Neutral Position Switch Replacement Tools Required J 41364-A Park/Neutral Switch Aligner Removal Procedure 1. Apply the parking brake. 2. Shift the transmission into neutral. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the nut securing the transmission control lever to the manual shaft. 5. Remove the transmission control lever from the manual shaft. 6. Disconnect the electrical connectors from the switch. 7. Remove the bolts securing the park/neutral position switch to the transmission. 8. Remove the park/neutral position switch from the manual shaft. If the park/neutral position switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. Important: If a new switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in it proper position for installation and the use of neutral position adjustment tool will not be necessary. 3. Install the switch to the transmission with 2 bolts finger tight. Page 7050 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 6984 Notice: Refer to Fastener Notice. 1. Install the PCM mounting studs (5) to the intake manifold, if removed. Tighten the studs to 6 N.m (53 lb in). 2. Install the PCM (1) onto the studs (5). 3. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). 4. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 5. Install the PCM harness connectors (2) to the PCM body. 6. Tighten the PCM harness connector retaining bolts (4). Tighten the bolts to 8 N.m (71 lb in). 7. If a new PCM is being installed, the PCM must be programmed. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 7320 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 215 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7718 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8269 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7559 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8975 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4244 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1748 US English/Metric Conversion US English/Metric Conversion Page 10152 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10355 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 6472 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 9915 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9441 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 827 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8986 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 6522 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6004 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 3775 10. Carefully move the camshaft sprockets back onto the camshafts and remove the J 44222. 11. Install a NEW intake camshaft sprocket washer and bolt, and a NEW exhaust camshaft actuator bolt. ^ Tighten the intake camshaft sprocket bolt the first pass to 20 N.m (15 lb ft). ^ Use the J 36660-A to tighten the intake camshaft sprocket bolt the final pass and additional 100 degrees. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt a final pass an additional 135 degrees. ^ Install the spark plugs. Refer to Spark Plug Replacement ^ Install the camshaft cover. Refer to Camshaft Cover Replacement. ^ Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. ^ Remove the J 44226-3A from the torque converter bolt. ^ Install the torque converter access plug. ^ Lower the vehicle. Heater Inlet Hose Replacement (LL8) Heater Hose: Service and Repair Heater Inlet Hose Replacement (LL8) Heater Inlet Hose Replacement (LL8) Tools Required * J43181 Heater Line Quick Connect Release Tool * GE-47622 Hose Clamp Pliers Removal Procedure 1. Drain the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Using the J43181, disconnect the inlet heater hose (2) from the heater core inlet tube. 1. Install the J43181 to the quick connect on the outlet heater core hose (2). 2. Close the tool around the inlet heater core hose. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose (2). Pull the heater hose forward in order to disengage the hose from the heater core. 3. Position the inlet heater hose clamp (1) at the engine block using GE-47622. 4. Remove the heater inlet hose (2) from the inlet hose fitting at the engine block. 5. Remove the heater inlet hose. Installation Procedure 1. Apply coolant to the end of the heater inlet hose. Important: When installing a new heater inlet hose, place the clamps on the hose before installing the hose to the inlet hose fitting at the engine block. 2. Install the heater inlet hose (2) to the inlet hose fitting at the engine block. 3. Position the inlet heater hose clamp (1) at the engine block using GE-47622. 4. Install the quick connect end of the outlet heater core hose (2) to the heater core. 5. Fill the engine cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 5430 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 11166 Page 2410 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7562 US English/Metric Conversion US English/Metric Conversion Page 10739 5. Compress the reverse boost valve sleeve into the bore of the oil pump to expose the retaining ring slot. 6. Install the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 7. Install the transmission oil filter and pan. Refer to Automatic Transmission Fluid and Filter Replacement. 8. Lower the vehicle. 9. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 10. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 10782 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8174 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4190 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 683 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7339 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4192 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 5550 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2173 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 6550 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 6682 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 6626 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1440 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Tire Monitor System - TPM Sensor Information Tire Pressure Monitor Receiver / Transponder: Technical Service Bulletins Tire Monitor System TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Page 6347 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 6469 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9703 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6734 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9035 Disclaimer Page 4946 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5007 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1879 Oxygen Sensor: Service Precautions Excessive Force and Oxygen Sensor Notice Excessive Force and Oxygen Sensor Notice Notice: The oxygen sensor may be difficult to remove when the engine temperature is below 48°C (120°F). Excessive force may damage threads in the exhaust manifold or the exhaust pipe. Page 5667 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 5195 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 2370 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 5207 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Inflatable Restraint Front End Sensor Replacement Impact Sensor: Service and Repair Inflatable Restraint Front End Sensor Replacement Inflatable Restraint Front End Sensor Replacement Removal Procedure Caution: Do not strike or jolt the inflatable restraint front end sensor. Before applying power to the front end sensor make sure that it is securely fastened. Failure to observe the correct installation procedure could cause SIR deployment, personal injury, or unnecessary SIR system repairs. Caution: Refer to Restraint System Service Precautions. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the grille. 3. Remove the headlamp wire harness from the retaining clip (1). 4. Raise and support the headlamp wire harness (1) to gain access to the front end sensor. 5. Loosen the bolts (1) retaining the sensor to the frame. 6. Remove the sensor assembly from the frame (1). Page 9064 Page 6794 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 1568 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 184 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 551 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 6272 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4479 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 813 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4653 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4488 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 2154 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 5255 Page 6958 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8603 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3021 10. Ensure the connectors are properly positioned in the lower fuse block. 11. Install the upper fuse block assembly to lower fuse block. 12. Connect the upper fuse block locking tabs to the lower fuse block. 13. Install the upper fuse block bolts. Tighten the bolt to 6 N.m (53 lb in). 14. Connect the wiring harness clips from fender. 15. Connect the fuse block wiring harnesses to the wiring loops. 16. Connect the wiring harness connector to the fuse block. 17. Connect the positive battery cable (4) to the fuse block. 18. Connect the negative battery cable (5) to the fender and fuse block. 19. Install the fuse block cover. 20. Install the battery tray. Refer to Battery Tray Replacement. Notice: Refer to Component Fastener Tightening Notice. 21. Install the power steering hose assembly to front crossmember bracket mounting bolt. Tighten the bolt to 10 N.m (89 lb in). 22. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 23. Install the power steering cooler hose (2) to the power steering pump. 24. Install the power steering pressure hose (1) to the power steering pump. Tighten the bolt to 25 N.m (18 lb ft). Page 8939 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 3339 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8273 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 8256 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9322 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Locations Seat Belt Tension Sensor: Locations SIR Component Views Right Rear of Passenger Seat 1 - Inflatable restraint Passenger Seat Belt Tension Retractor Sensor Page 10215 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1322 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 7508 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10931 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Locations Pressure Regulating Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 1938 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10264 Spark Plug: Testing and Inspection Spark Plug Inspection Spark Plug Usage 1. Ensure that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. 2. Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: * Spark plug fouling-Colder plug * Pre-ignition causing spark plug and/or engine damage-Hotter plug Spark Plug Inspection 1. Inspect the terminal post (1) for damage. * Inspect for a bent or broken terminal post (1). * Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should NOT move. 2. Inspect the insulator (2) for flashover or carbon tracking, soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: * Inspect the spark plug boot for damage. * Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated causes arcing to ground. 3. Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). Page 8452 10. Remove the bolt and fir-tree fasteners securing the AIR pipe to the cylinder head. 11. Remove the AIR hose assembly by rotating over the top of the engine. Installation Procedure Page 5422 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4516 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 664 Page 9462 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1699 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7312 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7622 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 765 US English/Metric Conversion US English/Metric Conversion Page 10907 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5863 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1834 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5518 3. Connect the electrical connector. Page 2423 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3715 If the tools are not available at your dealership, use an aftermarket equivalent. For Display Purposes Only (End Section of the Crankshaft) 18 MM. or 19 MM. Impact Style Socket (Thick Wall) with a 1/2 drive base that is approximately 15 MM. deep with an overall height of 38 MM. (1-1/2"). J 8433-1 Puller Bar or Equivalent Verify the oil leak. Refer to the above illustration (1), showing the leak path through the end of the crankshaft flange bore area. Order a crankshaft service cup plug part number WPC-340 by completing the WPC PART REQUEST FORM at the end of this bulletin and send it to the WPC via fax or E-mail. Typically, the cup plug should arrive within 2 business days. Fax Number - 248-371-0192 E-mail Address - [email protected]. Clean the crankshaft flange bore area with BrakeKleen (12378392, 12346139 (in Canada, 88901247) or equivalent. Thoroughly dry the area and examine the bore surface for irregularities. If the bore surface needs additional cleaning, use sand paper, or equivalent, and clean as necessary. Once the crankshaft bore surface is clean and smooth, apply a thin bead of LOCTITE(TM) 620, P/N 89021297 or Permatex 27010 High Strength Red Thread Locker Gel, P/N 88861429 (in Canada, 88861430), completely around the inside of the crankshaft flange bore. Position the crankshaft service cup plug into the crankshaft flange bore with service cup plug, dish side out. Page 169 Page 529 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4225 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6342 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9096 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 7376 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6617 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 7317 View of the connector when released from the component. View of another type of Micro 64 connector. Page 7471 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 442 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9854 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5671 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 11105 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4991 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 10313 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5945 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Locations Headlamp Wiper Relay: Locations Fuse Block - Underhood (4.2L), Label Page 10417 Page 5856 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5993 Page 2924 2. Remove the serpentine belt from the accessory drive system. 3. Install the tool onto the power steering pulley. Position the legs of the tool into the outer grooves of the pulley, farthest from the front of the engine. 4. Install the retaining cord around the pulley and to the legs of the tool. 5. Put on the laser safety glasses provided with the tool. 6. Depress the switch on the rear of the tool to activate the light beam. 7. Rotate the power steering pulley as required to project the light beam onto the crankshaft balancer pulley grooves. 8. Inspect for proper power steering pulley alignment. - If the laser beam projects onto the second rib or raised area (1), the pulleys are aligned properly. - If the laser beam projects more than one-quarter rib 0.9 mm (0.035 in) mis-alignment, adjust the position of the power steering pulley as required. - Refer to SI for Power Steering Pulley Removal and Installation procedures. 9. Install the serpentine belt to the accessory drive system in the original orientation. 10. Operate the vehicle and verify that the belt noise concern is no longer present. Tool Information Please visit the GM service tool website for pricing information or to place your order for this tool. Page 7443 Refer to the above graphic illustration (1) (dish side out) for the installation of the service cup plug. Do Not use the impact socket with hammer to drive the service cup plug into place. Damage to the crankshaft thrust bearing may occur. Refer to above illustration (1), showing the 15 MM. step inside the 18 MM. 1/2" drive impact style socket. Refer to the above illustration (1), showing the 38 MM (1-1/2") overall height of an 18 MM or 19 MM 1/2" drive impact style socket. It is best to use a thicker wall socket to equalize installation force with the following approximate dimensions. Page 6727 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8142 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 9413 Page 11106 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 4253 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 1940 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1856 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 11064 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Specifications Engine Mount: Specifications Engine Harness Bracket Bolt ............................................................................................................... ....................................................... 10 N.m (89 lb in) Engine Mount Bracket Bolt - Engine .......................................................................................................................................................... 50 N.m (37 lb ft) Engine Mount Bracket Bolt - Frame ......................................................................................................................................................... 110 N.m (81 lb ft) Engine Mount Nuts - Upper and Lower ...................................................................................................................................................... 70 N.m (52 lb ft) Page 4950 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8350 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 301 Power Seat Control Module: Diagrams Memory Seat Module - Driver C3 Memory Seat Module - Driver C2 (w/Memory) Page 9003 1. Position the fuel feed pipe (1) to the EVAP purge pipe (2). 2. Install the EVAP/fuel hose/pipe assembly clips as noted during disassembly. 3. Position the EVAP/fuel hose/pipe assembly along the engine and transmission. 4. Connect the chassis fuel feed pipe (1) to the fuel tank. 5. Connect the chassis EVAP purge pipe (2) to the fuel tank. 6. Install the EVAP/fuel hose/pipe assembly (4) to the fuel pipe clip at the rear of the engine. 7. Use the following procedure with 2WD: Page 10137 Page 2399 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 870 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 4371 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8728 5. Turn the ignition to the OFF position. 6. Relieve fuel pressure and disconnect the fuel feed and return lines at the fuel rail. Plug the fuel feed and return lines coming off the fuel rail with J 37287, J 42873 or J 42964 as appropriate for the fuel system. 7. Connect the J 35800-A to the vehicle fuel rail. 8. Pressurize the J 35800-A to 510 kPa (75 psi). 9. Start and idle the engine until it stalls, due to lack of fuel. This should take approximately 15-20 minutes. 10. Turn the ignition to the OFF position. 11. Disconnect the J 35800-A from the fuel rail. 12. Reconnect the vehicle fuel pump relay and oil pressure switch connector, if equipped. 13. Remove the J 37287, J 42873 or J 42964 and reconnect the vehicle fuel feed and return lines. 14. Start and idle the vehicle for an additional two minutes to ensure residual injector cleaner is flushed from the fuel rail and fuel lines. 15. Pour the entire contents of GM Fuel System Treatment Plus (P/N 88861011 [in Canada, P/N 88861012]) into the tank and advise the customer to fill the tank. 16. Review the benefits of using Top Tier Detergent gasoline with the customer and recommend that they add a bottle of GM Fuel System Treatment Plus to the fuel tank at every oil change. Regular use of GM Fuel System Treatment Plus should keep the customer from having to repeat the injector cleaning procedure. 17. Road test the vehicle to verify that the customer concern has been corrected. Parts Information * Only 1/8 of the cost may be claimed for 4 and 6 cylinder engines and 1/4 of the cost for 8 cylinder engines. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Warranty Information (Saab U.S. Models) Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 9095 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7304 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9312 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 6257 Page 11020 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Campaign - Possible Fuel Sender Port Fracture Fuel Gauge Sender: All Technical Service Bulletins Campaign - Possible Fuel Sender Port Fracture Subject: Service Update for Inventory and Customer Vehicles-Fuel Sending Unit Port Fracture-Extended Start/Sluggish Acceleration/Check Engine Light-Expires with Base Warranty # 07005 - (02/16/2007) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 Saab 9-7X THIS SERVICE UPDATE INCLUDES VEHICLES IN DEALER INVENTORY AND CUSTOMER VEHICLES THAT RETURN FOR ANY TYPE OF SERVICE, AND WILL EXPIRE AT THE END OF THE INVOLVED VEHICLE'S NEW VEHICLE LIMITED WARRANTY PERIOD. Purpose This bulletin provides a service procedure to determine if a fuel tank sending unit requires replacement on certain 2007 Buick Rainier, Chevrolet Trailblazer, GMC Envoy, and Saab 9-7X vehicles. The fuel tank sending unit on these vehicles may have a fractured internal port. A fractured port will not deliver fuel to the engine at the designed pressure. If this were to occur, it could result in an extended start, sluggish acceleration, and/or the illumination of the check engine light. This service procedure should be completed as soon as possible on involved vehicles currently in dealer inventory and customer vehicles that return to the dealer/retailer for any type of service during the New Vehicle Limited Warranty coverage period. Vehicles Involved A list of involved vehicles currently in dealer inventory is attached to the Administrative Message (GM US), Dealer Communication (Canada), or IRIS (Saab U.S.), used to release this bulletin. Customer vehicles that return for service, for any reason, and are still covered under the vehicle's base warranty, and are within the VIN breakpoints shown, should be checked for vehicle eligibility in the appropriate system listed below. Important: Dealers are to confirm vehicle eligibility prior to beginning repairs by using the system(s) below. Not all vehicles within the above breakpoints may be involved. -- GM dealers and Canadian Saab retailers should use GMVIS. -- US Saab dealers should use IRIS On-Line Recall/Campaign Inquiry. Parts Information - GM and Saab Canada Only Parts required to complete this service update are to be obtained from General Motors Service Parts Operations (GMSPO). Please refer to your "involved vehicles listing" before ordering parts. Normal orders should be placed on a DRO = Daily Replenishment Order. In an emergency situation, parts should be ordered on a CSO = Customer Special Order. Parts Information - Saab US Only Page 547 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5812 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 9625 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 9167 Page 6477 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 4978 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6279 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 7637 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 9192 Page 7790 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 901 US English/Metric Conversion US English/Metric Conversion Page 3321 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7568 Powertrain Control Module (PCM) C2 (Pin 1 To 14) Page 1343 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 3114 Engine Oil: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure 1. Remove the oil fill cap. 2. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Remove the oil pan drain plug and drain the oil into a suitable container. 4. Remove the oil filter using a suitable wrench. 5. Inspect the old oil filter to ensure the filter seal is not left on the engine block. Installation Procedure 1. Wipe the excess oil from the oil filter housing. 2. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice. 3. Install the new oil filter. Tighten the oil filter to 17 N.m (22 lb ft) plus 150 degrees. 4. Install the oil pan drain plug. Tighten the oil pan drain plug to 26 N.m (19 lb ft). 5. Lower the vehicle. A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: Customer Interest A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Page 10341 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8679 Locations Fuel Pump Relay: Locations Fuse Block - Underhood (4.2L), Label Page 10600 18. Carefully begin to lower the control valve body down from the transmission case while simultaneously disconnecting the manual valve link. Installation Procedure Ball Check Valves 1. Install the checkballs (1-7) in the valve body. 2. Install the control valve body to the transmission case while simultaneously connecting the manual valve link to the manual valve. 3. Verify that the manual valve link (3) is installed properly to the inside detent lever (1) and the manual valve (2). Page 387 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 6201 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2215 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1252 Horn Switch: Service and Repair HORN SWITCH REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Servicing the SIR System Caution. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the Inflatable Restraint Steering Wheel module. 3. Remove the horn plunger from the steering column by pressing inward to the stop and by rotating the plunger 90 degrees. 4. Disconnect the screws (1,4) from the steering wheel (3). 5. Remove the horn switch (2) from the steering wheel (3). INSTALLATION PROCEDURE 1. Install the horn switch (2) to the steering wheel (3). 2. NOTE: Refer to Fastener Notice. Connect the screws (1,4) that secure the contact plate to the steering wheel (3). Tighten the screws to 5.5 N.m (49 lb in). Page 6902 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5143 Page 9001 Notice: Refer to Fuel and Evaporative Emission Hose/Pipe Connection Cleaning Notice. 5. Disconnect the fuel feed pipe (3) from the fuel rail. 6. Disconnect the evaporative emission (EVAP) purge pipe (1) from the EVAP canister purge valve. 7. Disconnect the integral clip (2) from the wire harness bracket. 8. Position the fuel feed pipe (3) above the PCM studs. 9. Raise the vehicle. Refer to Vehicle Lifting. 10. Use the following procedure with 2-wheel drive (2WD): 1. Remove the transmission support. 2. Lower the transmission slightly. 3. Remove the EVAP/fuel hose/pipe assembly retaining bolt (3) from the transmission. 4. Disengage the EVAP/fuel hose/pipe assembly from the clip (1) at the rear of the transmission. 11. Use the following procedure with 4-wheel drive (4WD): 1. Remove the transfer case. 2. Remove the transmission support. 3. Lower the transmission slightly. 4. Remove the EVAP/fuel hose/pipe assembly retaining bolt (3) from the transmission. 5. Remove the EVAP/fuel hose/pipe assembly (2) from the clip at the rear of the transmission. Page 5840 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 4299 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9653 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 6867 Page 2060 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2653 1. Position the steering wheel sensor (3) to the steering column. 2. Position the steering wheel sensor retainer plate (2) to the steering column. Notice: Refer to Fastener Notice. 3. Install the steering wheel position sensor retainer screws (1). Tighten the screws to 10 N.m (89 lb in). 4. Remove the steering wheel position sensor anti-rotation pin from the sensor. 5. Connect the electrical connector to the steering wheel position sensor. 6. Install the intermediate shaft to the steering column. Refer to Upper Intermediate Steering Shaft Replacement. 7. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 9618 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6793 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2188 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 6003 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 5798 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9783 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 869 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8368 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 2068 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Specifications Drive Pulley: Specifications Water Pump Pulley Bolt ....................................................................................................................... ....................................................... 25 N.m (18 lb ft) Page 8478 5. Connect the electrical harness connector (2) to the EVAP canister purge valve (1). 6. Lower the vehicle. Page 10774 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 7728 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8148 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7858 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4194 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 5423 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 6076 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 424 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 7901 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5978 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1018 Steering Mounted Controls Assembly: Diagrams Secondary/Configurable Control Connector End Views Steering Wheel Control Switch Assembly - Lower Left (STW) Steering Wheel Controls - Right (UK3) Steering Wheel Control Switch Assembly - Lower Right (STW) Page 10074 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 5854 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 10903 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10583 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module - C3 Page 5176 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8263 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 5130 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10633 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor, follow steps 6-10. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. 10. Disconnect the rotary position sensor (2) from the wiring harness. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps 1-5 to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to ensure the connector is fully installed. Page 4824 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 531 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 6529 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 2576 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 1565 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 757 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6642 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 10473 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 350 Page 7060 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1168 Low Pressure Sensor / Switch: Service and Repair Air Conditioning (A/C) Low Pressure Switch Replacement Tools Required J39400-A Halogen Leak Detector Removal Procedure 1. Disconnect the A/C low pressure switch electrical connector. 2. Remove the A/C low pressure switch (2) from the accumulator (1). 3. Remove and discard the O-ring seal from the A/C low pressure switch port on the accumulator. Installation Procedure 1. Install the new O-ring seal. Notice: Refer to Fastener Notice. 2. Install the A/C low pressure switch (2) to the accumulator (1). Tighten the A/C low pressure switch to 4.8 N.m (42 lb in). 3. Connect the A/C low pressure switch electrical connector. 4. Leak test the fittings of the components using the J39400-A. Restraints - Air Bag Lamp ON/Multiple DTC Set Air Bag Control Module: All Technical Service Bulletins Restraints - Air Bag Lamp ON/Multiple DTC Set TECHNICAL Bulletin No.: 08-09-41-002F Date: June 10, 2010 Subject: Diagnostic Information for Supplemental Inflatable Restraint (SIR) System, Intermittent AIR BAG Indicator/Lamp Illuminated with DTC(s) B0012, B0013, B0015, B0016, B0019, B0020, B0022, B0023, B0026, B0033, B0040, B0042 or B0044 Set (Inspect and Replace Connector Position Assurance (CPA) Retainer) Models: 2005-2007 Buick Rainier 2006-2009 Buick Allure (Canada only), LaCrosse, Lucerne 2008-2010 Buick Enclave 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade Models 2008-2009 Cadillac SRX, XLR 2008-2010 Cadillac CTS, STS 2005-2006 Chevrolet SSR 2005-2009 Chevrolet TrailBlazer, TrailBlazer EXT 2005-2010 Chevrolet Cobalt 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Corvette, HHR, Impala, Malibu Models (includes Malibu Classic) 2007-2009 Chevrolet Equinox 2007-2010 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2005-2009 GMC Envoy Models 2007-2010 GMC Acadia, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 GMC Savana 2005-2006 Pontiac Pursuit 2005-2009 Pontiac G6 2006-2009 Pontiac Solstice 2007-2009 Pontiac G5, Torrent 2008-2009 Pontiac G8 2005-2009 Saab 9-7X 2007-2009 Saturn AURA, OUTLOOK, SKY 2008-2009 Saturn VUE 2008-2009 HUMMER H2 2007-2008 Daewoo G2X 2007-2009 Opel GT Supercede: This bulletin is being revised to update the Warranty Information and add Saab Warranty Information. Please discard Corporate Bulletin Number 08-09-41-002E (Section 09 Restraints). Condition - Some customers may comment on an intermittent or current AIR BAG indicator or lamp being illuminated on the instrument panel cluster (IPC). Important This bulletin only applies to the following DTCs: - Technicians may observe DTC(s) B0012 04, 0D, 0E; B0013 04, 0D, 0E; B0015 04, 0D, 0E; B0016 04, 0D, 0E; B0019 04, 0D, 0E; B0020 04, 0D, 0E; B0022, B0023 04, 0D, 0E; B0033 04, 0D, 0E; B0040 04, 0D, 0E; B0042 or B0044 set as Current or in History in the sensing and diagnostic module (SDM). Cause This condition may be caused by a loose, missing, or damaged connector position assurance (CPA) retainer at a supplemental inflatable restraint (SIR) module electrical connector, or a deployment loop wiring harness electrical connector. Correction Page 5339 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 6508 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9459 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 6311 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 5319 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2783 Front Passenger Door Module (FPDM) Page 3167 Fuse: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 984 Control Module: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Shift Control Module Replacement Transfer Case Shift Control Module Replacement Removal Procedure Important: The access panel is removed in order to visually see the electrical connectors and the location of the transfer case control module. It will also be easier to see the mounting and alignment slots for the transfer case control module mounting bracket. 1. Remove the access panel. 2. Remove the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 3. Remove the transfer case control module (1) and mounting bracket from the instrument panel mag beam. 4. Disconnect the three electrical connectors from the transfer case control module. 5. Remove the transfer case control module from the mounting bracket. Page 9906 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3164 Page 557 US English/Metric Conversion US English/Metric Conversion Page 7926 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10481 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7009 Page 1859 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: All Technical Service Bulletins Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 7145 Page 8952 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 3320 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1406 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4802 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Engine - Broken Bolt Extraction Information Crankshaft Main Bearing: Technical Service Bulletins Engine - Broken Bolt Extraction Information INFORMATION Bulletin No.: 05-06-01-026B Date: October 21, 2008 Subject: Information On Torque to Yield Bolt Breakage and Use of Bolt Extractor Tool Kit Part Number EN-47702 for Removing Broken Cylinder Head or Main Bearing Cap Bolts on Inline Truck Engines Models: 2004-2007 Buick Rainier 2002-2009 Chevrolet TrailBlazer 2004-2009 Chevrolet Colorado 2002-2009 GMC Envoy 2004-2009 GMC Canyon 2002-2004 Oldsmobile Bravada 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with 2.8L, 2.9L, 3.5L, 3.7L or 4.2L Vortec Inline Engine (VINs 8, 9, 6, E, S - RPOs LK5, LLV, L52, LLR, LL8) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 05-06-01-026A (Section 06 - Engine/Propulsion System). A Torque To Yield (TTY) bolt, like a cylinder head bolt or main bearing cap bolt, may break during repair procedures. Interaction between a TTY bolt and threads may cause the bolt to bind or break on removal. Prior to removing the cylinder head or main cap bolts, perform the following procedure: Using an appropriately sized punch and hammer, rap on the head of each bolt. The vibration produced by this procedure will assist in successful removal. If a head bolt or main bolt breaks during engine disassembly, a broken bolt extractor kit (EN-47702) has been released to assist in removal of the remaining bolt segment. Many times the remaining bolt segment will back out easily with a pick tool or a reverse twist drill bit. Bolt Replacement & Tightening Important: Never reuse TTY main bearing or cylinder head bolts. Always make sure that the engine block threaded holes are clean and do not place oil or threadlocker on the bolts. Utilize a thread chase tool followed by cleaning with dry compressed air to insure threads are clean and dry prior to installation of new TTY bolts. Bolts that creak and snap while tightening will fail due to excessive torque caused by threads contaminated with debris, antifreeze or oil. Trace amounts of oil or antifreeze will cause this condition. In extreme cases the threads may need additional cleaning with a non-residue cleaner like a brake clean product followed by drying with clean & dry compressed air. Page 2896 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 6166 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1528 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5688 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 6788 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5286 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Underhood Electrical Center or Junction Block Replacement Fuse Block: Service and Repair Underhood Electrical Center or Junction Block Replacement UNDERHOOD ELECTRICAL CENTER OR JUNCTION BLOCK REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the negative battery cable. 2. Press tabs (1) inward and lift to remove the junction block cover. 3. Pull upward on the fuse relay center cover (1) to release the retaining tabs and remove the cover. 4. Note the location and remove the harness end bolts (2) and remove the harness ends from the fuse relay center. 5. Remove the fuse relay center bolts (3) and remove the fuse relay center from the junction block bracket. 6. Pull downward on the wiring harness ends to remove from the bottom of the fuse relay center. Page 2933 Drive Belt: Testing and Inspection Drive Belt Falls Off and Excessive Wear Diagnosis Drive Belt Falls Off and Excessive Wear Diagnosis Diagnostic Aids If the drive belt repeatedly falls off the drive belt pulleys, this is because of pulley misalignment. An extra load that is quickly applied on released by an accessory drive component may cause the drive belt to fall off the pulleys. Verify the accessory drive components operate properly. If the drive belt is the incorrect length, the drive belt tensioner may not keep the proper tension on the drive belt. Excessive wear on a drive belt is usually caused by an incorrect installation or the wrong drive belt for the application. Minor misalignment of the drive belt pulleys will not cause excessive wear, but will probably cause the drive belt to make a noise or to fall off. Excessive misalignment of the drive belt pulleys will cause excessive wear but may also make the drive belt fall off. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This inspection is to verify the condition of the drive belt. Damage may of occurred to the drive belt when the drive belt fell off. The drive belt may of been damaged, which caused the drive belt to fall off. Inspect the belt for cuts, tears, sections of ribs missing, or damaged belt plys. 4. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure of that pulley. 5. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 6. Accessory drive component brackets that are bent or cracked will let the drive belt fall off. 7. Inspecting of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. Missing. loose, or the wrong fasteners may cause pulley misalignment from the bracket moving under load. Over tightening of the fasteners may cause misalignment of the accessory component bracket. 13. The inspection is to verify the drive belt is correctly installed on all of the drive belt pulleys. Wear on the drive belt may be caused by mis-positioning the drive belt by one groove on a pulley. 14. The installation of a drive belt that is two wide or two narrow will cause wear on the drive belt. The drive belt ribs should match all of the grooves on all of the pulleys. 15. This inspection is to verify the drive belt is not contacting any parts of the engine or body while the engine is operating. There should be sufficient clearance when the drive belt accessory drive components load varies. The drive belt should not come in contact with an engine or a body component when snapping the throttle. Page 10848 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4179 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 5704 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4778 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 10920 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 3362 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 10024 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 1524 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 9440 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 7816 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 2412 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5890 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 5079 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6036 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 10597 Fluid Pressure Sensor/Switch: Service and Repair Valve Body and Pressure Switch Replacement Removal Procedure 1. Ensure that removal of the valve body is necessary before proceeding. The following components can be serviced without removing the valve body from the transmission: ^ The torque converter clutch solenoid (1) ^ The pressure control solenoid (2) ^ The internal wiring harness (3) ^ The 2-3 shift solenoid (4) ^ The 1-2 shift solenoid (5) ^ The transmission fluid pressure manual valve position switch (6) ^ The 3-2 shift solenoid (7) ^ The torque converter clutch (TCC) pulse width modulation (PWM) solenoid (8) 2. Remove the fluid level indicator. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the oil pan, gasket, and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 5. Disconnect the internal wiring harness electrical connectors from the following components: ^ The transmission fluid pressure manual valve position switch (1) ^ The 1-2 shift solenoid (2) ^ The 2-3 shift solenoid (3) ^ The pressure control solenoid (4) ^ The TCC PWM solenoid (5) ^ The 3-2 shift solenoid (6) ^ The input speed sensor, if equipped Page 9976 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 965 6. Release the bracket TCM retainer (1). 7. Tilt the TCM (2) away from the ECM/TCM bracket. 8. Remove the TCM (1) from the TCM bracket (2). 9. Only when replacement of the ECM/TCM bracket (2) is necessary, remove the ECM (3). Refer to Engine Control Module Replacement for the 5.3L engine. Page 11017 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow steps (6-10). The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. Page 10853 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 10849 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10010 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 2055 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 8771 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9119 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6765 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 11141 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8000 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7844 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 1617 Page 7977 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Locations Windshield Washer Switch: Locations Behind The Center Of The I/P (With RPO Code X88) Page 6167 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 10559 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow steps (6-10). The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. Page 10705 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 5675 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1558 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 5969 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Drivetrain - Service 4WD Light/DTC C0374 Set Speed Sensor: Customer Interest Drivetrain - Service 4WD Light/DTC C0374 Set TECHNICAL Bulletin No.: 05-04-21-003C Date: April 15, 2008 Subject: Service 4WD Light Illuminated, DTC C0374 Set (Inspect Wiring Harness to Transfer Case Speed Sensors,, Replace Wiring Harness) Models: 2004-2007 Buick Rainier 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado Classic, TrailBlazer, TrailBlazer EXT 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Envoy, Envoy XL, Sierra Classic 2003-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X With Four Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (RPO NP8) Transfer Case Supercede: This bulletin is being revised to update the Model and Warranty Information. Please discard Corporate Bulletin Number 05-04-21-003B (Section 04 - Driveline/Axle). Condition Some customers may comment on intermittent illumination of the Service 4WD light. Upon investigation, the technician may find DTC C0374 set. The customer may also comment on intermittent erratic operation of the 4WD or AWD system after driving through rain/snow or simply going through a car wash. Cause The speed sensor signal may have become corrupted. Possible openings in the speed sensor wire insulation (twisted pairs) can allow water intrusion. Also wire connections contaminated by water may result in short circuits and erroneous speed sensor readings. This most often occurs on the rear speed sensor circuit. Correction Inspect the wiring harness to the transfer case speed sensors. On Rainier, TrailBlazer, Envoy and 9-7X models, fabricate a replacement speed sensor harness between the C101 connector and the speed sensors. Completely inspect and test all wiring. Refer to Speed Signal Front Axle Actuator and Indicators schematic in SI. Replace the affected twisted pairs. Do not over-twist the two wires in the replacement harness. Wires should be twisted at a rate of 9 revolutions per foot. Use service connector pack, P/N 88987993 at the speed sensor end and terminal, P/N 15326267, at C101. Terminal testing tools and service terminals can be found in Terminal Repair Kit J 38125. Terminals are available from SPX/Kent-Moore. The smaller transfer case harness splices into the larger chassis harness a few inches in front of the crossmember. The chassis harness routes along the left side of the frame under the driver door area. Use nylon tie straps to secure the fabricated harness to the main chassis harness between the transfer case and C101. On the full-size pickup and full-size utility models, replace the 2.2 m (88 in) pigtail harness that runs from the C151 connector under the hood to the transfer case. Use either harness P/N 15832722 or 15224663 depending on vehicle equipment. Refer to Propshaft Speed Sensors Front Axle Actuator and Transfer Case Shift Control Switch schematic in SI. Important: Technicians should verify the integrity of the splice joints after the repair. All splice joints and connections should seal properly against water or a repeat condition can occur. Page 8372 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5830 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 9708 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1860 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2990 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 966 10. Remove the ECM/TCM bracket retaining bolts (2). 11. Remove the ECM/TCM bracket (1) from the vehicle frame. Installation Procedure 1. If the ECM/TCM bracket (1) was previously removed, install the ECM/TCM bracket (1) to the vehicle frame. 2. Install the ECM/TCM bracket retaining bolts (2). Notice: Refer to Fastener Notice. 3. Tighten the ECM/TCM bracket bolts. Tighten the bolts to 10 N.m (89 lb in). Page 9605 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5460 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5843 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1453 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4266 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9985 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 7013 Utility/Van Zoning UTILITY/VAN ZONING Page 9255 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6206 Page 4534 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9263 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 9875 Page 11212 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3286 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 2517 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10935 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Heated Oxygen Sensor 1 Replacement Oxygen Sensor: Service and Repair Heated Oxygen Sensor 1 Replacement Heated Oxygen Sensor 1 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 2. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must install the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). Page 8235 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 3491 Tire Pressure Sensor: Technical Service Bulletins Tires - Minimizing Damage to TPM Sensors INFORMATION Bulletin No.: 08-03-10-007 Date: May 16, 2008 Subject: Minimizing Damage to Tire Pressure Monitor (TPM) Sensors During Tire Mounting/Dismounting Models: 2009 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Wheel Mounted Tire Pressure Sensors Minimizing Damage To TPM Sensors All GM vehicles now in production and sold in the U.S., as well as many vehicles sold in Canada, feature Tire Pressure Monitoring Systems that have valve stem mounted Tire Pressure Sensors. When dismounting and mounting tires, care must be taken when breaking the bead loose from the wheel. If the tire machines bead breaking fixture is positioned too close to the tire pressure sensor, as the tire bead breaks away from the wheel it may be forced into, or catch on the edge of the tire pressure sensor. This can damage the sensor and require the sensor to be replaced. Care must also be taken when transferring the tire bead to the other side of the wheel rim. As the tire machine rotates and the tire bead is stretched around the wheel rim, the bead can come in contact with the sensor if it is not correctly positioned in relation to the mounting/dismounting head prior to tire mounting/dismounting. This can also cause sensor damage requiring replacement. Procedure Notice: Use a tire changing machine in order to dismount tires. Do not use hand tools or tire irons alone in order to remove the tire from the wheel. Damage to the tire beads or the wheel rim could result. Notice: Do not scratch or damage the clear coating on aluminum wheels with the tire changing equipment. Scratching the clear coating could cause the aluminum wheel to corrode and the clear coating to peel from the wheel. 1. Remove the valve core from the valve stem. 2. Deflate the tire completely. Important: Rim-clamp European-type tire changers are recommended. 3. Use the tire changer in order to remove the tire from the wheel. Follow steps 4-7 to remove the tire from the wheel. 4. When separating the tire bead from the wheel position the bead breaking fixture 90, 180 and 270 degrees from the valve stem. Page 5480 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5310 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4926 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 4958 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9901 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Service and Repair Valve Cover: Service and Repair Camshaft Cover Replacement Removal Procedure 1. Remove the intake manifold. Refer to Intake Manifold Replacement. 2. Remove the A/C line at the oil level indicator tube bracket nut. 3. Remove the A/C bracket bolt from the engine lift hook. 4. Position the A/C line out of the way. 5. Remove the engine lift bracket. 6. Disconnect the ignition control module electrical connectors. 7. Loosen the ignition control module bolts. Page 2713 13. Slide the secondary lock (1) over the primary lock. 14. Be sure that the secondary lock tab (1) is securely in place. 15. Lower the vehicle. 16. Check the vehicle for proper operation. Page 6189 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5873 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 7620 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 6165 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4453 Page 3343 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6538 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2530 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10029 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5175 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Drivetrain - Revised Rear Axle Fluid Level/Checking Fluid - Differential: Technical Service Bulletins Drivetrain - Revised Rear Axle Fluid Level/Checking Bulletin No.: 06-04-20-003 Date: October 10, 2006 SERVICE MANUAL UPDATE Subject: Revised Rear Axle Fluid Capacity and Fluid Level Checking Specification Models: 2005-2007 Buick Rainier 2005-2007 Chevrolet TrailBlazer Models 2005-2007 GMC Envoy Models This bulletin is being issued to revise the rear axle fluid capacity and fluid level checking specification in the Rear Axle sub-section of the Service Manual. Please replace the current information in the Service Manual with the following information. Page 5575 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7696 Page 9945 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 10093 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 2061 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 9923 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Specifications Wheel Fastener: Specifications Wheel Lug Nut Tighten the wheel nuts to .................................................................................................................... .................................................... 140 N.m (103 lb ft). Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: Customer Interest Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 4943 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6344 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 8753 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5885 Page 5210 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9978 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6517 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 6146 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 1282 Page 10412 Page 4658 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 5927 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 6598 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 5580 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 8144 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1708 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7811 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 9972 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Diagram Information and Instructions Radiator Cooling Fan Control Module: Diagram Information and Instructions Electrical Symbols Page 8630 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5368 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8407 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5548 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 11148 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 1831 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10675 Propshaft Speed Sensor - Rear Page 5373 US English/Metric Conversion US English/Metric Conversion Page 7640 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 634 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 6090 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3631 Dinghy towing is permitted on the trucks shown with the transfer case placed in the Neutral position. Refer to the end of this bulletin for identification information to determine type of transfer case. The vehicles shown should NOT be dinghy towed because the transfer cases in these vehicles either have no neutral position or do not have an internal oil pump to provide lubrication while being towed. In order to properly tow the vehicles, place the vehicle on a platform trailer with all four tires off the ground. Avoid towing the vehicle with all four tires on the ground. In rare instances when towing with all four tires on the ground is unavoidable, both the front and the rear propeller shafts must be removed in order to prevent damage to the transfer case and/or transmission. Because front and rear propeller shafts are matched to attaching components at assembly, refer to the applicable Service Manual for procedures on propeller shaft removal/installation. Towing Procedure In order to properly dinghy tow the vehicle, use the following procedure: 1. Firmly set the parking brake. Diagrams Electronic Adjustable Pedals (EAP) Switch Page 7306 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5167 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9941 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10057 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 6787 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10088 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10938 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 10925 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10176 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Locations Low Pressure Sensor / Switch: Locations HVAC Component Views RR of the Engine Compartment 1 - A/C Low Pressure Switch 2 - Forward Lamp Harness 3 - A/C Accumulator Page 4606 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 2565 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Specifications Connecting Rod Bearing: Specifications Connecting Rod Connecting Rod Bearing Clearance .......................................................................................................................... 0.021-0.065 mm (0.0008-0.0025 in) Page 1077 Driver Door Module (DDM) Page 7547 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1331 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 1593 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 9967 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 5647 Page 3303 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 4347 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 5619 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8150 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 4172 Page 10357 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5461 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 9867 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6056 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7436 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 4604 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Brakes - ABS Lamp ON/DTC C0040 Set Wheel Speed Sensor: All Technical Service Bulletins Brakes - ABS Lamp ON/DTC C0040 Set Bulletin No.: 07-05-25-006 Date: December 05, 2007 TECHNICAL Subject: ABS Light On, DTC C0040 Stored (Inspect/Repair Wheel Speed Sensor Harness) Models: 2005-2007 Buick Rainier 2005-2008 Chevrolet TrailBlazer, TrailBlazer EXT 2005-2008 GMC Envoy, Envoy XL 2005-2008 Saab 9-7X with 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Condition Some customers may comment that the ABS light is illuminated. Cause This may be caused by the wiring harness coming in contact with the A/C compressor pulley. Correction Remove the engine protection shield. Inspect the wiring harness. If the harness is damaged, refer to Splicing Copper Wire Using Splice Clips in SI. The harness should have a slight loop downward under the A/C compressor. Warranty Information (excluding Saab U.S. Models) Page 10301 Page 9046 3. Install the frame brace. 4. Install the frame brace mounting bolts. Tighten the frame brace mounting bolts to 50 N.m (37 lb ft). 5. Lower the vehicle. Page 3008 Tighten the hose nut to 28 N.m (21 lb ft). 4. Install the compressor hose to the connector through the driver wheel opening. 5. Install the nut. Tighten the nut to 48 N.m (35 lb ft). 6. Install the compressor suction hose to the stud on the engine. 7. Install the nut. Tighten the nut to 48 N.m (35 lb ft). 8. Install the compressor suction hose to the engine lift bracket. 9. Install the bolt. Tighten the bolt to 48 N.m (35 lb ft). 10. Connect the compressor suction hose (1) to the accumulator. 11. Install the compressor suction hose nut to the accumulator. Tighten the nut to 48 N.m (35 lb ft). 12. Install the sealing washers. 13. Connect the compressor hose assembly hose to the compressor (4). 14. Install the compressor hose assembly washers. 15. Install the retaining nut (3). Tighten the nut to 33 N.m (24 lb ft). 16. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. 17. Leak test the fittings of the components using the J39400-A. Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Page 3771 Important: Place the camshaft caps in a rack to ensure the caps are installed in the same location from which they were removed. ^ Remove the camshaft caps. ^ Remove the camshafts. ^ Using a suitable adapter, apply air pressure to the cylinder. ^ Install the J-44228-A and compress the valve springs. Page 1901 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 5824 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6053 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10206 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5087 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9840 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 7841 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5405 Page 6163 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1950 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Locations Fuel Pump Relay: Locations Fuse Block - Underhood (4.2L), Label Page 1719 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 2133 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 5392 Fuel Tank Pressure Sensor: Service and Repair Fuel Tank Pressure Sensor Replacement Removal Procedure 1. Remove the fuel tank. 2. Disconnect the fuel tank pressure harness connector. 3. Remove the fuel tank pressure sensor. Installation Procedure 1. Install the new fuel tank pressure sensor seal. 2. Install the fuel tank pressure sensor. 3. Connect the fuel tank sensor harness connector. 4. Install the fuel tank. Page 6874 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 3813 3. Graphic shows left, right is similar. Install the right engine mount bracket and secure with the bolts (1). Tighten the engine mount bracket bolts to 50 N.m (37 lb ft). 4. Install the right engine mount. Important: Ensure that the heat shield is located properly over the anti-rotation feature - right side only. 5. Lower the engine onto the engine mounts. 6. Install the right and the left upper engine mount nuts (1). Tighten the upper engine mount nuts to 70 N.m (52 lb ft). 7. Raise the vehicle and remove the floor jack from under the vehicle. 8. Install the engine protection shield and secure with the bolts. Refer to Engine Protection Shield Replacement. 9. Install the right and the left lower engine mount nuts. Tighten the lower engine mount nuts to 70 N.m (52 lb ft). 10. Lower the vehicle. 11. Install the right shock module. Refer to Shock Module Replacement. 12. Install the MAP sensor (2). 13. Install the MAP sensor retainer (1) and the electrical connector. Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Page 7522 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7228 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: All Technical Service Bulletins Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 4097 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 3404 Fuse Block - Underhood C5 Page 384 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 10160 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 777 Engine Control Module: Description and Operation Powertrain Control Module Description Powertrain The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: * The engine fueling * The ignition control (IC) * The knock sensor (KS) system * The evaporative emissions (EVAP) system * The secondary air injection (AIR) system (if equipped) * The exhaust gas recirculation (EGR) system * The automatic transmission functions * The generator * The A/C clutch control * The cooling fan control Powertrain Control Module Function The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. Malfunction Indicator Lamp (MIL) Operation The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: Page 3331 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5761 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 6917 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Locations Torque Converter Clutch Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 9782 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 489 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10311 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 248 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10479 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4786 Page 3632 2. Place the AT in Park (P) or the MT in the lowest gear (1st). 3. Securely attach the vehicle being towed to the tow vehicle. Caution: Shifting the transfer case to Neutral can cause the vehicle to roll, even if the transmission is in park (automatic) or 1st gear (manual), and may cause personal injury. 4. If equipped, place the transfer case shift lever in Neutral (N). Note: Use extra care whenever towing another vehicle. Do not exceed the towing vehicle's gross combination weight (GCW) by adding the weight of the dinghy towed vehicle or vehicle damage may result. 5. When the vehicle being towed is firmly attached to the tow vehicle, release the parking brake. 6. The Owner's Manual specifies the appropriate ignition key position to ensure that the steering is unlocked to allow the front wheels to follow the tow vehicle. Rear Wheel Drive Light Duty Trucks Important: ^ Dust or dirt can enter the back of the transmission through the opening created by the removal of the slip yoke from the transmission if proper protection is not provided. ^ Verify that the transmission fluid is at the proper level before driving the truck. Rear wheel drive vehicles, equipped with AT or MT, should NOT be dinghy towed. These transmissions have no provisions for internal lubrication while being towed. In order to properly tow these vehicles, place the vehicle on a platform trailer with all four tires off the ground. Avoid towing the vehicle with all four tires on the ground. In rare instances when it is unavoidable that a rear wheel drive vehicle be dinghy towed, the propeller shaft to axle yoke orientation should be marked and the propeller shaft removed. Refer to the applicable Service Manual for procedures on propeller shaft removal/installation. Transfer Case Identification Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Page 7797 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 1894 Utility/Van Zoning UTILITY/VAN ZONING Page 521 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 4111 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Locations Radiator Cooling Fan Motor Relay: Locations Fuse Block - Underhood (4.2L), Label Page 412 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10315 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 8814 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4156 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 7700 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 9574 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 2402 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5991 Page 2091 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8384 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Horn - Inoperative When Pressing Horn Pad Horn Switch: Customer Interest Horn - Inoperative When Pressing Horn Pad TECHNICAL Bulletin No.: 07-08-54-001C Date: October 17, 2008 Subject: EI07279 - Horn Inoperative from Steering Wheel Horn Pad (Ground Path Repair Procedure) Models: 2006-2007 Buick Rainier 2006 Chevrolet TrailBlazer EXT 2006-2009 Chevrolet TrailBlazer 2006 GMC Envoy XL, Envoy XUV 2006-2009 GMC Envoy, Envoy Denali Supercede: This bulletin is being revised to provide field fix information. Please discard Corporate Bulletin Number 07-08-54-001B (Section 08 - Body and Accessories). Condition Important: If the horn does NOT work from the key fob horn button, disregard this bulletin and proceed with diagnosis/repair according to SI. Some customers may comment that the horn is inoperative from the horn pad on the steering wheel. Cause The general cause of this condition is high resistance in the ground path through the steering column that energizes the horn relay. The key fob panic button uses a different ground path and is not affected. A number of locations in the circuit have been identified as sources of the high resistance. It is often difficult to pinpoint the specific location of the high resistance because the condition is usually intermittent. Attempting to discover the location can be frustrating because as circuit components are moved, the condition will often disappear. A few locations have been identified as frequent contributors to the problem. Correction Complete the following steps to diagnose and repair this condition: 1. Does the horn work by depressing the button(s) on the key fob? ^ Yes - proceed with step 2. ^ No - do not proceed with this bulletin. Diagnose and repair using information found in SI. 2. To aid in the diagnosis and to avoid disturbing others, disconnect the wiring harness from the horn assembly and insert appropriate connectors to monitor the voltage with a multi-meter or a test light. If the horn pad is currently working, rotate the steering wheel lock to lock while depressing the horn pad to determine if there are any spots in the rotation where the horn pad quits working. Caution: When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Refer to SIR Disabling and Enabling. Failure to observe the correct procedure could cause deployment of the SIR components, personal injury, or unnecessary SIR system Page 8425 4. Position the tool J 41364-A onto the park/neutral position switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. Notice: Refer to Fastener Notice. 5. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts securing the switch to 25 N.m (18 lb ft). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Connect the electrical connectors to the switch. 8. Install the transmission control lever to the manual shaft with the nut. Tighten the control lever nut to 25 N.m (18 lb ft). 9. Lower the vehicle. 10. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. If proper operation of the switch can not be obtained, replace the switch. Page 2360 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 10041 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 8706 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 4350 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 6349 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1288 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 5755 Transmission Position Switch/Sensor: Service and Repair Park/Neutral Position Switch Replacement Tools Required J 41364-A Park/Neutral Switch Aligner Removal Procedure 1. Apply the parking brake. 2. Shift the transmission into neutral. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the nut securing the transmission control lever to the manual shaft. 5. Remove the transmission control lever from the manual shaft. 6. Disconnect the electrical connectors from the switch. 7. Remove the bolts securing the park/neutral position switch to the transmission. 8. Remove the park/neutral position switch from the manual shaft. If the park/neutral position switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. Important: If a new switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in it proper position for installation and the use of neutral position adjustment tool will not be necessary. 3. Install the switch to the transmission with 2 bolts finger tight. Page 10514 US English/Metric Conversion US English/Metric Conversion Page 6842 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 5505 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Service and Repair Valve Guide Seal: Service and Repair Valve Stem Oil Seal and Valve Spring Replacement Tools Required ^ J 38820 Valve Stem Seal Remover and Installer ^ J 44222 Camshaft Sprocket Holding Tool ^ J-44228-A Valve Spring Compressor ^ J 44226 Crankshaft Balancer Remover Removal Procedure Important: ^ Organize the valve train components when disassembling so they can be reassembled in the same location and matched up with the same components, as previously installed. ^ Regulate the air pressure to 50 psi before pressurizing the cylinder to help prevent the crankshaft from turning. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 1. Remove the torque converter access plug. 2. Use the J 44226-3A 15 mm holding bar on a torque converter bolt to prevent the crankshaft from turning. 3. Lower the vehicle. 4. Remove and discard the timing gear bolts. 5. Install the J 44222 onto the cylinder head in order to keep from disturbing the timing chain components. 6. Adjust the 2 horizontal bolts into the camshaft sprockets to maintain chain tension. 7. Carefully move the sprockets with the timing chain, off of the camshafts. 8. Remove the camshaft cap bolts. Page 4739 Body Control Module: Service and Repair Liftgate Control Module Replacement LIFTGATE CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the liftgate trim panel. 2. Disconnect the electrical connectors (3) from the module as necessary. 3. Remove the bolts that retain the module to the liftgate. 4. Remove the module from the liftgate. INSTALLATION PROCEDURE 1. Install the module to the liftgate. 2. NOTE: Refer to Fastener Notice. Install the bolts that retain the module to the liftgate. Tighten the bolts to 10 N.m (89 lb in). 3. Connect the electrical connectors (3) as necessary. 4. Install the liftgate trim panel. 5. Program the liftgate control module. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 9575 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8796 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 9591 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 7212 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8532 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 5412 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 9637 Utility/Van Zoning UTILITY/VAN ZONING Page 495 View of the connector when released from the component. View of another type of Micro 64 connector. Page 751 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8823 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8212 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6134 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10491 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7369 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2417 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6288 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 9942 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4133 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 4941 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 7679 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 3847 Oil Filter: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure 1. Remove the oil fill cap. 2. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Remove the oil pan drain plug and drain the oil into a suitable container. 4. Remove the oil filter using a suitable wrench. 5. Inspect the old oil filter to ensure the filter seal is not left on the engine block. Installation Procedure 1. Wipe the excess oil from the oil filter housing. 2. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice. 3. Install the new oil filter. Tighten the oil filter to 17 N.m (22 lb ft) plus 150 degrees. 4. Install the oil pan drain plug. Tighten the oil pan drain plug to 26 N.m (19 lb ft). 5. Lower the vehicle. Page 7796 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7374 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1201 Outside Temperature Display Sensor: Service and Repair Ambient Air Temperature Sensor Replacement Removal Procedure 1. Remove the front grille. 2. Remove the sensor (1) from the panel assembly (2). 3. Disconnect the electrical connector from the sensor (1). Installation Procedure 1. Position the sensor to the panel assembly. 2. Connect the electrical connector to the sensor (1). 3. Install the sensor (1) to the panel assembly (2). 4. Install the front grille. Page 2376 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. NVG 126-NP4 - Transfer Case Control Module: Diagrams NVG 126-NP4 - Transfer Case Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module - C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C2 Page 8808 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9416 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 3562 Important Other forms of slow air leaks are possible. If the body of the tire, valve stem and wheel flange show no signs of air seepage, refer to Corporate Bulletin Number 05-03-10-003D for additional information on possible wheel porosity issues. 3. Bead seat corrosion is identified by what appears like blistering of the wheel finish, causing a rough or uneven surface that is difficult for the tire to maintain a proper seal on. Below is a close-up photo of bead seat corrosion on an aluminum wheel that was sufficient to cause slow air loss. Close-Up of Bead Seat Corrosion 4. If corrosion is found on the wheel bead seat, measure the affected area as shown below. - For vehicles with 32,186 km (20,000 mi) or less, the total allowable combined linear area of repairable corrosion is 100 mm (4 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. - For vehicles that have exceeded 32,186 km (20,000 mi), the total allowable combined linear area of repairable corrosion is 200 mm (8 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. 5. In order to correct the wheel leak, use a clean-up (fine cut) sanding disc or biscuit to remove the corrosion and any flaking paint. You should remove the corrosion back far enough until you reach material that is stable and firmly bonded to the wheel. Try to taper the edge of any flaking paint as best you can in order to avoid sharp edges that may increase the chance of a leak reoccurring. The photo below shows an acceptable repaired surface. Notice Corrosion that extends up the lip of the wheel, where after the clean-up process it would be visible with the tire mounted, is only acceptable on the inboard flange. The inboard flange is not visible with the wheel assembly in the mounted position. If any loose coatings or corrosion extend to the visible surfaces on the FACE of the wheel, that wheel must be replaced. Important Remove ONLY the material required to eliminate the corrosion from the bead seating surface. DO NOT remove excessive amounts of material. ALWAYS keep the sealing surface as smooth and level as possible. Page 9781 Page 1897 Page 10452 View of the connector when released from the component. View of another type of Micro 64 connector. Page 8997 Notice: Refer to Fastener Notice. 4. Apply a 5 mm (0.2 in) band of threadlock GM P/N 12345382 (Canadian P/N 10953489) or equivalent, to the threads of the fuel rail bolts (2). Install the fuel rail attaching bolts (2). Tighten the bolts to 10 N.m (89 lb in). 5. Install the fuel injector harness in-line connector (3) to the rocker cover. 6. Connect the fuel injector harness in-line connector (3) to the engine wire harness. 7. Connect the fuel feed pipe (3) to the fuel rail (2). 8. Connect the fuel injector electrical connectors. 9. Install the intake manifold. 10. Connect the negative battery cable. 11. Inspect for leaks. 1. Turn ON the ignition, with the engine OFF for 2 seconds. 2. Turn OFF the ignition for 10 seconds. 3. Turn ON the ignition, with the engine OFF. 4. Inspect for fuel leaks. Page 8929 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 4236 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4130 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 1709 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8236 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9826 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5058 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4877 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6159 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9157 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 3323 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10955 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9735 Page 6197 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 2559 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10055 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10047 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7302 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9241 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 10918 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 364 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4708 Heat Shield: Service and Repair Exhaust Manifold Heat Shield Replacement Exhaust Manifold Heat Shield Replacement Removal Procedure 1. Remove the air cleaner outlet resonator. Refer to Air Cleaner Outlet Resonator Replacement. 2. Remove the transmission filler tube stud nut from the secondary air injection (AIR) adapter and move the filler out of the way. 3. Remove the oil level indicator tube. Refer to Oil Level Indicator and Tube Replacement. 4. Remove the oxygen sensor from the exhaust manifold. Refer to Heated Oxygen Sensor 1 Replacement. 5. Remove the 4 manifold heat shield nuts and remove the heat shield. Installation Procedure OnStar(R) - Loss of GPS Signal/Hands Free Issues Emergency Contact Module: Customer Interest OnStar(R) - Loss of GPS Signal/Hands Free Issues Bulletin No.: 02-08-46-007C Date: November 19, 2007 INFORMATION Subject: Information on OnStar(R) System - Possible Loss of GPS Signal, Hands-Free Calling Minutes Expire Prematurely and/or Inability to Add Hands-Free Calling Minutes Models: 2001-2008 GM Passenger Cars and Light Duty Trucks (Including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) System (RPO UE1) Supercede: This bulletin is being revised to add the 2008 model year, warranty information and to provide GPS signal recovery steps (under Dealer Action heading) to do PRIOR to determining if the VIU/VCIM needs replacement. Please discard Corporate Bulletin Number 02-08-46-007B (Section 08 - Body & Accessories). If the vehicle currently has analog-upgradable OnStar(R) hardware, then the customer should be made aware of the digital upgrade program per the latest version of Service Bulletin # 05-08-46-006. Any analog OnStar system that is not upgraded prior to the end of 2007 will be deactivated due to the upcoming phase-out of the analog cellular network in the U.S. and Canada. If the vehicle has recently been upgraded or has had a service replacement unit installed, this bulletin may not be applicable. Certain 2001-2008 model year vehicles equipped with OnStar(R) may exhibit a condition with the Global Positioning System (GPS) that causes inaccuracies in the GPS clock. The GPS system is internal to the OnStar(R) Vehicle Interface Unit (VIU) or the Vehicle Communication Interface Module (VCIM). This inaccuracy can result in a symptom where the OnStar(R) Call Center is unable to obtain an accurate GPS signal, hands-Free Calling minutes expire prematurely and/or the inability to add Hands-Free calling minutes. Customer Notification OnStar(R) will notify the customer by mail with instructions to contact their dealership service department. Dealer Action Not all vehicles will require VIU/VCIM replacement. The GPS signal in some vehicles may be recoverable. To determine if the signal is recoverable, simply connect the Tech2(R) and using the GPS information data display option, observe the GPS date and time. If the date/time stamps are equal to a date approximately 19 years in the future, the GPS clock has exceeded its capacity and the VIU/VCIM will need to be replaced. If the date/time stamp is in the past or near future, the GPS clock has simply generated an inaccurate value and may be recoverable by performing the following power-up reset. To initiate a power-up reset, battery voltage (batt. +) must be removed from the VIU/VCIM. The preferred methods, in order, of initiating the reset are outlined below. Remove the fuse that supplies Battery positive (Batt. +) voltage to the module (refer to the applicable Service Information schematics for the appropriate fuse). The next preferred method is to remove the connector to the OnStar(R) unit that Batt + is contained. The least preferable method is to remove the negative terminal of the vehicle battery. This will not only initiate the power-up reset, but it may also result in the loss of radio presets and other stored personalization information/settings in other modules as well. After initiating the power-up reset, the GPS data will be set to the defaulted date and time and will require an acquisition of the GPS signal in order to gain the proper date and time. Acquiring the GPS signal requires running the vehicle in an open/unobstructed view of the sky. First, contact OnStar(R) Technical Support by pressing the blue button. Allow the OnStar(R) Technical Advisor to activate the GPS recovery process. This should take approximately 10 minutes. Continue to Page 2178 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5327 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11153 Page 5565 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7159 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2795 Windshield Washer Fluid Level Switch (With RPO Code U68) Page 3181 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 5628 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1873 Page 8761 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7311 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 1850 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1489 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1600 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 7491 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4173 Page 6909 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 9302 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 1797 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 3198 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9532 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 7660 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9866 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4429 14. Remove the bolts retaining the condenser to the radiator. Installation Procedure 1. Install the condenser to the radiator. Notice: Refer to Fastener Notice. 2. Install the bolts retaining the condenser to the radiator. Tighten the bolts to 28 N.m (21 lb ft). 3. Install the radiator. 4. Install the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. 5. Raise the vehicle. 6. Install the outlet radiator hose (1) to the radiator. 7. Reposition the outlet radiator hose clamp (1) using J 38185. 8. Connect the transmission cooler lines to the radiator. Refer to Transmission Fluid Cooler Hose/Pipe Quick-Connect Fitting Replacement. 9. Install the lower radiator support shield, if equipped. Refer to Radiator Support Shield Replacement. 10. Lower the vehicle. 11. Install the coolant recovery hose to the radiator. 12. Install the radiator support diagonal brace. Refer to Radiator Support Diagonal Brace Replacement. 13. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 6540 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8332 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 4420 Disclaimer Page 4407 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 10045 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4330 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7197 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 390 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Engine - GM dexos 1 and dexos 2(R) Oil Specifications Engine Oil: Technical Service Bulletins Engine - GM dexos 1 and dexos 2(R) Oil Specifications INFORMATION Bulletin No.: 11-00-90-001 Date: March 14, 2011 Subject: Global Information for GM dexos1(TM) and GM dexos2(TM) Engine Oil Specifications for Spark Ignited and Diesel Engines, Available Licensed Brands, and Service Fill for Adding or Complete Oil Change Models: 2012 and Prior GM Passenger Cars and Trucks Excluding All Vehicles Equipped with Duramax(TM) Diesel Engines GM dexos 1(TM) Information Center Website Refer to the following General Motors website for dexos 1(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 1(TM) Engine Oil Trademark and Icons The dexos(TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos‹›(TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos‹›(TM) specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 1(TM) engine oil. GM dexos 1(TM) Engine Oil Specification Important General Motors dexos 1(TM) engine oil specification replaces the previous General Motors specifications GM6094M, GM4718M and GM-LL-A-025 for most GM gasoline engines. The oil specified for use in GM passenger cars and trucks, PRIOR to the 2011 model year remains acceptable for those previous vehicles. However, dexos 1(TM) is backward compatible and can be used in those older vehicles. In North America, starting with the 2011 model year, GM introduced dexos 1(TM) certified engine oil as a factory fill and service fill for gasoline engines. The reasons for the new engine oil specification are as follows: - To meet environmental goals such as increasing fuel efficiency and reducing engine emissions. - To promote long engine life. - To minimize the number of engine oil changes in order to help meet the goal of lessening the industry's overall dependence on crude oil. dexos 1(TM) is a GM-developed engine oil specification that has been designed to provide the following benefits: - Further improve fuel economy, to meet future corporate average fuel economy (CAFE) requirements and fuel economy retention by allowing the oil to maintain its fuel economy benefits throughout the life of the oil. - More robust formulations for added engine protection and aeration performance. Page 10229 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10680 Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case right rear speed sensor electrical connector. 3. Remove the transfer case right rear speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case right rear speed sensor. Tighten the sensor to 17 N.m (13 lb ft). 2. Install the transfer case right rear speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 8664 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 2063 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 4691 Catalytic Converter: Service and Repair Catalytic Converter Replacement (4.2L Engine) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the heated oxygen sensor (H2OS). Refer to Heated Oxygen Sensor 2 Replacement. 3. Remove the nuts that secure the catalytic converter pipe to the exhaust manifold. 4. Discard the old exhaust seal. Do NOT reuse the seal. 5. Remove the nuts that secure the catalytic converter pipe to the muffler. 6. Remove the transmission mount. Refer to Transmission Mount Replacement (4.2L) Transmission Mount Replacement (5.3L). 7. Remove the catalytic converter pipe from the vehicle. Page 1804 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 9082 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 9710 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 9331 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3162 Page 7958 Page 7925 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 106 Method 1 Method 2 Page 2362 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 1592 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10381 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6665 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 4080 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9381 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 4925 Utility/Van Zoning UTILITY/VAN ZONING Page 2852 Fuel Pressure: Testing and Inspection Fuel System Diagnosis Fuel System Diagnosis System Description The fuel system is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. Test Page 9801 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 7657 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2245 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 5408 Page 8122 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1622 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 11079 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8988 US English/Metric Conversion US English/Metric Conversion Page 6948 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Locations Fuel Tank Pressure Sensor: Locations Engine Controls Component Views Fuel Tank 1 - Fuel Tank Pressue (FTP) Sensor 2 - Fuel Pump and Sender Assembly 3 - Chassis Harness 4 Fuel Tank 5 - Evaporative Emission (EVAP) Canister Vent Solenoid Page 6263 Page 6433 2. Install the spark plugs to the engine. Tighten the spark plugs to 18 N.m (13 lb ft). 3. Install the ignition coils. Page 639 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 8208 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents A/T - Shift Lock Control Actuator Available Shift Interlock Solenoid: Technical Service Bulletins A/T - Shift Lock Control Actuator Available Bulletin No.: 05-07-129-001B Date: February 16, 2007 INFORMATION Subject: Automatic Transmission Shift Lock Control Actuator Available for Service Use Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2006 Chevrolet TrailBlazer EXT 2003-2006 Chevrolet SSR 2002-2007 GMC Envoy 2002-2006 GMC Envoy XL 2004-2005 GMC Envoy XUV 2002-2004 Oldsmobile Bravada 2003-2007 HUMMER H2 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to update the model years and add the SSR. Please discard Corporate Bulletin Number 05-07-129-001A (Section 07 - Transmission/Transaxle). The automatic transmission shift lock control actuator is now available for service as a separate part. The actuator was formerly available only as part of the entire shifter assembly. DO NOT replace the shifter assembly if the shift lock control actuator requires replacement. Please refer to the Automatic Transmission Shift Lock Control Actuator Replacement procedure in the Automatic Transmission sub-section of the Service Information. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Page 10807 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. OnStar(R) - Re-establishing OnStar(R) Communications Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Re-establishing OnStar(R) Communications Bulletin No.: 00-08-46-004C Date: January 17, 2008 INFORMATION Subject: Re-establishing Communications with OnStar(R) Center After Battery Disconnect Models: 2000-2008 GM Passenger Cars and Trucks (Including Saturn and Saab) with Digital OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 00-08-46-004B (Section 08 - Body and Accessories). When servicing any of the above models and a battery cable is disconnected or power to the OnStar(R) Vehicle Communication Interface Module (VCIM) is interrupted for any reason the following procedure must be performed to verify proper Global Positioning System (GPS) function. Never swap OnStar(R) Vehicle Communication Interface Modules (VCIM) from other vehicles. Transfer of OnStar(R) modules from other vehicles should not be done. Each OnStar(R) module has a unique identification number. The VCIM has a specific Station Identification (STID). This identification number is used by the National Cellular Telephone Network and OnStar(R) systems and is stored in General Motors Vehicle History files by VIN. After completing ALL repairs to the vehicle you must perform the following procedure: Move the vehicle into an open area of the service lot. Sit in the vehicle with the engine running and the radio turned on for five minutes. Press the OnStar(R) button in the vehicle. When the OnStar(R) advisor answers ask the advisor to verify the current location of the vehicle. If the vehicle location is different than the location the OnStar(R) advisor gives contact GM Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis of a failed VCIM and, if appropriate, order a replacement part. Replacement parts are usually shipped out within 24 hours, and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part, you will avoid a non-return core charge. Disclaimer Page 5020 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 6996 Fuel Tank Pressure Sensor: Service and Repair Fuel Tank Pressure Sensor Replacement Removal Procedure 1. Remove the fuel tank. 2. Disconnect the fuel tank pressure harness connector. 3. Remove the fuel tank pressure sensor. Installation Procedure 1. Install the new fuel tank pressure sensor seal. 2. Install the fuel tank pressure sensor. 3. Connect the fuel tank sensor harness connector. 4. Install the fuel tank. Page 9953 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9470 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 10162 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 303 Power Seat Control Module: Diagrams Memory Seat Module - Driver C4 Memory Seat Module - Driver C4 (w/Memory) Page 6912 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 11071 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 823 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10884 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7187 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 5241 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1537 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9315 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6946 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8190 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Page 5895 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 3801 Drive Belt Tensioner: Service and Repair Drive Belt Tensioner Replacement Removal Procedure 1. Remove the drive belt. Refer to Drive Belt Replacement. 2. Remove the drive belt tensioner bolt. 3. Remove the drive belt tensioner. Installation Procedure 1. Install the drive belt tensioner. Notice: Refer to Fastener Notice. 2. Install the drive belt tensioner bolt. Tighten the drive belt tensioner bolt to 50 N.m (37 lb ft). 3. Install the drive belt. Refer to Drive Belt Replacement. Page 1580 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7779 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 8025 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3880 9. Install the engine electrical harness bracket bolt. Tighten the bolt to 10 N.m (89 lb in). 10. Connect the integral clip (3) to the wire harness bracket. 11. Connect the fuel feed pipe (1) to the fuel rail. Refer to Metal Collar Quick Connect Fitting Service. 12. Install the PCM mounting studs (5) to the intake manifold. Tighten the studs to 6 N.m (53 lb in). 13. Install the PCM (1) onto the studs (5). 14. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). Specifications Piston Ring: Specifications Piston Rings Piston Ring End Gap First Compression Ring ............................................................................................................................................ 0.15-0.3 mm (0.0059-0.0118 in) Second Compression Ring ...................................................................................................................................... 0.36-0.51 mm (0.0142-0.0201 in) Oil Control Ring ................................................................................................................................................. 0.250-0.760 mm (0.0098-0.0299 in) Piston Ring to Groove Clearance First Compression Ring ...................................................................................................................................... 0.043-0.093 mm (0.0017-0.0037 in) Second Compression Ring .................................................................................................................................. 0.043-0.093 mm (0.0017-0.0037 in) Oil Control Ring ................................................................................................................................................. 0.059-0.215 mm (0.0023-0.0085 in) Page 8579 Page 9473 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 2181 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3942 Variable Valve Timing Actuator: Service and Repair Camshaft Position Exhaust Actuator Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 44217 Timing Chain Retention Tool Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Rotate the engine until the word Delphi on the exhaust camshaft position actuator is lined up parallel with the cylinder head to cam cover mating surface. 3. Remove the top chain guide bolts. 4. Remove the top chain guide. 5. Using the timing mark on the exhaust camshaft position actuator sprocket as a reference, make a mark on the timing chain link across from it. 6. Install the J-44217 (1). 1. Install the hook portion of the timing chain retention tools into one of the timing chain links near the timing chain shoe on both sides of the engine. 2. Tighten the wingnuts. 3. Ensure the hooks are still in one of the links and the gage blocks of the tool are firmly in place on the edge of the head. Locations Horn Relay: Locations Fuse Block - Underhood (4.2L), Label Page 7071 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 8576 Page 6095 Page 8375 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9849 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 3009 Hose/Line HVAC: Service and Repair Evaporator Tube Replacement Evaporator Tube Replacement Tools Required * J26549-E Orifice Tube Remover * J39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. 2. Loosen the evaporator tube (5) from the evaporator. 3. Loosen the auxiliary evaporator tube (7) from the auxiliary piping. 4. Remove the evaporator tube nut from the condenser. 5. Remove the nuts (1, 2) retaining the evaporator tube to the fender. 6. Remove the washer solvent container. 7. Remove the coolant recovery tank. 8. Remove the evaporator tube using J26549-E. 9. Remove the O-ring seal and discard. Installation Procedure 1. Install the new O-ring seal. 2. Install the evaporator tube. Page 8001 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 5776 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6718 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7553 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8938 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 9198 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2393 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1758 Manifold Pressure/Vacuum Sensor: Diagrams Engine Controls Connector End Views Manifold Absolute Pressure (MAP) Sensor Page 5501 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 10265 4. Inspect for evidence of improper arcing. * Measure the gap between the center electrode (4) and the side electrode (3) terminals. An excessively wide electrode gap can prevent correct spark plug operation. * Inspect for the correct spark plug torque. * Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). * Inspect for a broken or worn side electrode (3). * Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. - A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. * Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. * Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. * Inspect for excessive fouling. 5. Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Spark Plug Visual Inspection 1. Normal operation-Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. 2. Carbon fouled-Dry, fluffy black carbon, or soot caused by the following conditions: * Rich fuel mixtures - Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion * Reduced ignition system voltage output - Weak coils - Worn ignition wires - Incorrect spark plug gap * Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. 3. Deposit fouling-Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark intensity. Most powdery deposits will not effect spark intensity unless they form into a glazing over the electrode. Page 6543 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3920 7. Remove the exhaust camshaft position actuator bolt. 8. Remove the exhaust camshaft position actuator. 9. Remove the intake camshaft sprocket bolt. 10. Remove the intake camshaft sprocket. 11. Remove the timing chain. 12. Remove the crankshaft sprocket. 13. Remove the cylinder head access hole plugs. Page 5716 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 11113 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 861 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 11109 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1124 Yaw Rate Sensor: Diagrams Antilock Brake System Connector End Views Yaw Rate and Lateral Acceleration Sensor Page 39 Disclaimer Page 11215 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10862 Shift Solenoid: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. Important: Do not remove the valve body for the following procedures. Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. 2. Remove the 1-2 accumulator if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ Torque converter clutch (TCC) pulse width modulation (PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer. 5. Remove the pressure control solenoid. 6. Remove the 1-2 and 2-3 shift solenoid retainers. 7. Remove the 1-2 and 2-3 shift solenoids. Page 700 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5084 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7917 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 3281 Page 5705 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7576 since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Page 5825 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5206 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1958 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4372 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 2293 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8662 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5100 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Ignition System - MIL ON/Misfire DTC's In Wet Weather Ignition Coil: All Technical Service Bulletins Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 7237 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 9111 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 11099 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10077 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 11179 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 10847 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6258 Page 8459 Air Injection Pump: Service and Repair Secondary Air Injection Pump Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect both the air inlet and air outlet pipes from the secondary air injection (AIR) reaction pump. 3. Remove the electrical relay from the AIR pump bracket. 4. Disconnect the electrical connector from the AIR pump. 5. Remove the 3 bolts securing the AIR pump bracket to the vehicle frame. 6. Remove the AIR pump from the vehicle. Installation Procedure 1. Install the AIR pump to the vehicle. Notice: Refer to Fastener Notice. 2. Install the 3 bolts securing the AIR pump bracket to the vehicle frame. Tighten the bolts to 20 N.m (15 lb ft). 3. Connect the electrical connector to the AIR pump. 4. Install the electrical relay to the AIR pump bracket. Important: Ensure the air inlet and air outlet pipes are clean and clear of any debris before connecting to the AIR pump. Page 5301 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8152 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 258 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9902 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 4627 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 1937 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 671 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6503 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6789 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 555 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 3187 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 10450 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5019 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4952 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 710 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4081 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Locations Fuel Tank Pressure Sensor: Locations Engine Controls Component Views Fuel Tank 1 - Fuel Tank Pressue (FTP) Sensor 2 - Fuel Pump and Sender Assembly 3 - Chassis Harness 4 Fuel Tank 5 - Evaporative Emission (EVAP) Canister Vent Solenoid Page 4064 Page 1423 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5371 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 6935 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10584 Transfer Case Shift Control Module C3 Page 6919 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 11089 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9822 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5336 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 9929 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Cooling System - Inspecting Radiator/Heater Hose Clamps Radiator Hose: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 2305 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1410 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7587 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 10758 Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 2284 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 5669 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 7204 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 3772 ^ Remove the valve keys. ^ Remove the J-44228-A. ^ Remove the valve spring retainer and the valve spring. ^ Use the J 38820 and remove the seals. ^ Clean and inspect the cylinder head. Refer to Cylinder Head Cleaning and Inspection. Installation Procedure Important: Lubricate the valve stems with clean engine oil before installing. Page 9004 1. Install the EVAP/fuel hose/pipe assembly into the clip (1) at the rear of the transmission. Notice: Refer to Fastener Notice. 2. Position the EVAP/fuel hose/pipe assembly against the transmission and install the retaining bolt (3) through the EVAP/fuel hose/pipe assembly strap into the transmission. Tighten the bolt to 3.75 N.m (33 lb in). 3. Raise the transmission to the normal installed position. 4. Install the transmission support. 8. Use the following procedure with 4WD: 1. Install the EVAP/fuel hose/pipe assembly (2) into the clip at the rear of the transmission. 2. Position the fuel EVAP/fuel hose/pipe assembly against the transmission and install the retaining bolt (3) through the EVAP/fuel hose/pipe assembly strap into the transmission. Tighten the bolt to 3.75 N.m (33 lb in). 3. Raise the transmission to the normal installed position. 4. Install the transmission support. 5. Install the transfer case. 9. Lower the vehicle. Page 9250 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7652 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2898 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 9750 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 10015 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 174 Door Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 3719 Disclaimer Page 8430 7. Remove the exhaust camshaft position actuator bolt. 8. Remove the exhaust camshaft position actuator. Installation Procedure 1. Install the exhaust camshaft actuator into the timing chain. 2. Align the marked link of the timing chain with the timing mark on the exhaust camshaft position actuator sprocket (1). Important: Ensure the alignment pin is engaged between the camshaft and the exhaust camshaft position actuator. 3. Install the exhaust camshaft actuator onto the exhaust camshaft. Page 7833 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 4709 Notice: Refer to Fastener Notice. 1. Install the exhaust manifold heat shield with the 4 nuts. Tighten the exhaust manifold heat shield nuts to 10 N.m (89 lb in). 2. Install the oxygen sensor. Refer to Heated Oxygen Sensor 1 Replacement. 3. Install the oil level indicator. Refer to Oil Level Indicator and Tube Replacement. 4. Move the transmission filler tube back onto the stud and secure the tube with the nut. Tighten the transmission filler tube bracket nut to 10 N.m (89 lb in). 5. Install the air cleaner outlet resonator. Refer to Air Cleaner Outlet Resonator Replacement. Page 9530 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 6769 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 1872 Service and Repair Fuel Supply Line: Service and Repair Fuel Hose/Pipes Replacement - Chassis Removal Procedure Caution: Refer to Fuel and Evaporative Emission Pipe Caution. Caution: Refer to Gasoline/Gasoline Vapors Caution. 1. Relieve the fuel pressure. Refer to Fuel Pressure Relief. 2. Remove the powertrain control module (PCM) retaining bolts (3) and nuts (6). 3. Slide the PCM (1) off of the studs (5) and position the PCM out of the way. 4. Disconnect the engine coolant temperature sensor electrical connector (1). Page 4193 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7368 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4842 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 430 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 759 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2521 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 7110 Page 4247 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3809 Tighten the mount bracket bolts to 110 N.m (81 lb ft). 3. Install the left engine mount bracket and secure the bracket with the bolts (1). Tighten the engine mount bracket bolts to 50 N.m (37 lb ft). 4. Install the left engine mount onto the bracket. 5. Lower the engine onto the engine mounts. 6. Install the right and the left upper engine mount nuts (1). Tighten the upper engine mount nuts to 70 N.m (52 lb ft). 7. Raise the vehicle and remove the jack from under the vehicle. 8. Install the engine protection shield and secure the shield with the bolts. Refer to Engine Protection Shield Replacement. 9. Install the right and the left lower engine mount nuts. Torque the lower engine mount nuts to 70 N.m (52 lb ft). 10. Lower the vehicle. 11. Install the left shock module. Refer to Shock Module Replacement. 12. Install the MAP sensor (2). 13. Install the MAP sensor retainer (1) and the electrical connector. Page 6514 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 3371 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6951 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10964 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................345-395 kPa (50-57 psi) Page 1723 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 10035 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 6757 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7950 Intake Air Temperature Sensor: Diagrams Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 10498 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 2474 2. Use a screwdriver to rotate the lock cylinder housing gear clockwise to the start position allowing it to spring return into the RUN position. 3. Align the lock cylinder and install into the lock cylinder housing. 4. Install the steering column trim covers. 5. Install the hush and knee bolster. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. 7. Connect the negative battery cable. Page 10936 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7898 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6235 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 2450 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 4316 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7888 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 6619 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10596 Fluid Pressure Sensor/Switch: Diagrams Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch, Wiring Harness Side Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch, Wiring Harness Side Page 8867 3. Once installed, pull on both sides of the quick-connect fitting in order to make sure the connection is secure. Page 6468 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Locations Body Control Module (BCM) Page 8806 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5572 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 8146 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 2841 1. Place hands on the rear bumper and jounce the rear of the vehicle. Make sure that there is at least 38 mm (1.5 in) of movement while jouncing. 2. Allow the vehicle to settle into position. Important: A D-height block can be used to determine the D-height position. Create a D-height measurement gage, using metal stock. Cut a block to 20 mm (0.79 in) X 30 mm (1.81 in) X the correct D trim height specification. For the correct D height specification, refer to Trim Height Specifications. 3. Measure the D height by measuring vertical distance (2) between the top surface of the axle and to the side of the hole, center on the jounce bumper reinforcement bracket. 4. Repeat the jouncing operation and measurement 2 more times for a total of 3 times. 5. Use the highest and lowest measurements to calculate the average height. 6. The true D height dimension is the average of the highest and lowest measurements. Refer to Trim Height Specifications. 7. If these measurements are out of specifications, inspect for the following conditions: ^ Sagging rear suspension-Refer to Coil Spring Replacement or Air Spring Replacement. ^ Collision damage Page 553 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Page 8568 Disclaimer Page 7561 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7318 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2541 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 6783 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1441 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 1916 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5770 Page 2727 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 1668 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8098 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 2569 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 400 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 1428 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 3379 Page 9933 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 3300 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 365 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1864 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1464 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5457 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 6300 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 2606 Impact Sensor: Service and Repair Inflatable Restraint Side Impact Sensor Replacement Inflatable Restraint Side Impact Sensor Replacement Removal Procedure Caution: Do not strike or jolt the inflatable restraint side impact sensor (SIS). Before applying power to the SIS make sure that it is securely fastened. Failure to observe the correct installation procedures could cause SIR deployment, personal injury, or unnecessary SIR system repairs. Caution: Refer to Restraint System Service Precautions. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the front door trim panel. 3. Peel the rear half of the water deflector away from the door in order to access the side impact sensor. 4. Remove the screws that retain the side impact sensor (2) to the door. 5. Disconnect the impact sensor electrical connector (1) from the side impact sensor. 6. Remove the side impact sensor from the door. Installation Procedure 1. Remove any dirt, grease, or other impurities from the mounting surface. 2. Position the side impact sensor (2) horizontally to the door. 3. Connect the electrical connector (1) to the side impact sensor (2). Notice: Refer to Fastener Notice. 4. Install the screws which retain the side impact sensor to the door. Tighten the screws to 8 N.m (71 lb in). 5. Fully seat the water deflector to the door. 6. Install the door trim panel. 7. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 5296 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8819 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10226 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2240 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8895 Page 221 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4211 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 459 Locations Air Injection Pump Relay: Locations Engine Controls Component Views Left Front of Chassis (K18) 1 - Secondary Air Injection (AIR) Pump 2 - Secondary Air Injection (AIR) Pump Relay Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 6889 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2014 Page 10766 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4853 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8347 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 9928 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1295 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7089 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9601 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6884 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 9717 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 2599 Electronic Frontal Sensor (EFS) - Right Inflatable Restraint Passenger Presence System (PPS) Sensor Page 533 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3400 Fuse Block - Underhood C3 Page 7373 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2202 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 3875 Intake Manifold: Specifications Intake Manifold Bolt ............................................................................................................................. ..................................................... 10 N.m (89 lb in) Throttle Control Module Bolt .............................. ....................................................................................................................................... 10 N.m (89 lb in) Page 5651 Page 5071 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS OnStar(R) - Language Change Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Language Change Information Bulletin No.: 05-08-46-009B Date: June 29, 2007 INFORMATION Subject: Language Change for OnStar(R) System (U.S. and Canada Only) Models: 2006-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2006-2008 HUMMER H2, H3 2006-2008 Saab 9-7X with OnStar(R) (RPO UE1) Built After and Including VIN Breakpoints Listed Below (2006 MY Only) Attention: This bulletin only applies to vehicles equipped with OnStar(R) Generation 6.1 or later with a Station Identification (STID) Number in the following range: 16,000,000-17,000,000 or 20,000,000-21,999,999 or 23,500,001-26,000,000 Supercede: This bulletin is being revised to update the service procedure and add a Canadian procedure. Please discard Corporate Bulletin Numbers 05-08-46-009A and 05-08-46-008A (Section 08 - Body and Accessories). Page 5621 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 482 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 528 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9851 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 2954 Disclaimer Page 10913 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 5672 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8976 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7966 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 10828 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Key and Lock Cylinder Coding Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Page 7473 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 9450 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7853 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2094 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 7138 21. This test isolates the rest of the splice pack SP205 serial data circuits. 25. If there are no current DTCs that begin with a "U", the communication malfunction has been repaired. 26. The communication malfunction may have prevented diagnosis of the customer complaint. Page 4515 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 2193 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9587 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8400 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2338 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 2107 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4597 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 3465 3. Insert the sensor in the wheel hole with the air passage facing away from the wheel. Notice: Refer to Fastener Notice. 4. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 N.m (62 lb in). Important: Before installing the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting . ^ Install the tire/wheel assembly on the vehicle. Refer to Tire and Wheel Removal and Installation. ^ Lower the vehicle. Page 2532 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1984 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9669 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7167 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8387 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 10060 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 7621 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7003 Body Control Module (BCM) Page 5051 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8893 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10199 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Restraints - Air Bag Lamp ON/DTC B0092 Set Air Bag Control Module: Customer Interest Restraints - Air Bag Lamp ON/DTC B0092 Set Bulletin No.: 07-09-41-005 Date: July 10, 2007 TECHNICAL Subject: Airbag Light On, Passenger Airbag Status Indicator Reads Off, DTC B0092 Set (Diagnose and Replace SDM, if Necessary) Models: 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 HUMMER H3 without Roof Side Inflatable Restraint (RPO ASF) Condition Some customers may comment that the airbag light is illuminated and the passenger airbag status indicator reads off even though a occupant is in the seat. Upon investigation, the technician may find communication error DTC B0092 set in the sensing and diagnostic module (SDM). Correction Using the Tech 2(R), request module ID information to determine the part number of the SDM. If the SDM part number is 25833651 (Envoy/TrailBlazer) or 25833286 (H3), replace the SDM before proceeding with DTC B0092 diagnosis. If the part number of the SDM is other than those listed above, follow diagnostic instructions published in SI. Parts Information Warranty Information Page 4040 Processes shown in the Table 3 are capable of recycling waste engine coolants (DEX-COOL(R) or conventional) to a conventional (green) coolant. Recycling conventional coolant can be accomplished at your facility by a technician using approved EQUIPMENT (listed by model number in Table 3), or by an approved coolant recycling SERVICE which may recycle the coolant at your facility or at an offsite operation. Refer to the table for GM approved coolant recyclers in either of these two categories. Should you decide to recycle the coolant yourself, strict adherence to the operating procedures is imperative. Use ONLY the inhibitor chemicals supplied by the respective (GM approved) recycling equipment manufacturer. Sealing Tablets Cooling System Sealing Tablets (Seal Tabs) should not be used as a regular maintenance item after servicing an engine cooling system. Discoloration of coolant can occur if too many seal tabs have been inserted into the cooling system. This can occur if seal tabs are repeatedly used over the service life of a vehicle. Where appropriate, seal tabs may be used if diagnostics fail to repair a small leak in the cooling system. When a condition appears in which seal tabs may be recommended, a specific bulletin will be released describing their proper usage. Water Quality The integrity of the coolant is dependent upon the quality of DEX-COOL(R) and water. DEX-COOL(R) is a product that has enhanced protection capability as well as an extended service interval. These enhanced properties may be jeopardized by combining DEX-COOL(R) with poor quality water. If you suspect the water in your area of being poor quality, it is recommended you use distilled or de-ionized water with DEX-COOL(R). "Pink" DEX-COOL(R) DEX-COOL(R) is orange in color to distinguish it from other coolants. Due to inconsistencies in the mixing of the dyes used with DEX-COOL(R), some batches may appear pink after time. The color shift from orange to pink does not affect the integrity of the coolant, and still maintains the 5 yr/150,000 mile (240,000 km) service interval. Back Service Only use DEX-COOL(R) if the vehicle was originally equipped with DEX-COOL(R). Page 1484 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2031 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 6184 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 7177 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8994 Fuel Rail: Service and Repair Fuel Rail Assembly Replacement Removal Procedure Important: An 8-digit identification number is located on the fuel rail. Refer to this model identification number if servicing or part replacement is required. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Disconnect the fuel feed pipe (3) from the fuel rail (2). 3. Remove the intake manifold. 4. Before removal, clean the fuel rail assembly and the cylinder head with a spray type engine cleaner, GM X-30A or equivalent, if necessary. Follow the package instructions. Do not soak the fuel rail in liquid cleaning solvent. 5. Disconnect the fuel injector harness in-line connector (3) from the engine wire harness. 6. Remove the fuel injector harness in-line connector (3) from the rocker cover. 7. Remove the fuel rail attaching bolts (2). Notice: * Remove the fuel rail assembly carefully in order to prevent damage to the injector electrical connector terminals and the injector spray tips. Support the fuel rail after the fuel rail is removed in order to avoid damaging the fuel rail components. * Cap the fittings and plug the holes when servicing the fuel system in order to prevent dirt and other contaminants from entering open pipes and passages. Important: Before removal, clean the fuel rail with a spray type engine cleaner, GM X-30A or equivalent, if necessary. Follow the Page 10335 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 3240 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4779 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 2116 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 1274 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 1494 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 3191 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 2140 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 1571 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5312 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6494 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 3414 7. Connect the instrument panel harness connector (1) to the block base. 8. Install the junction block to the block base.Ensure that the retaining tabs are fully seated. 9. Install the 3 bolts (1) that retain the junction block to the block base. Tighten the 3 bolts to 3.5 N.m (31 lb in). 10. Install the BCM to the rear electrical center. 11. Install the battery feed terminal nut (2) to the junction block. Tighten the battery feed terminal nut to 10 N.m (88 lb in). 12. Install the rear electrical center cover. 13. If replacing the rear electrical center on a Chevrolet TrailBlazer or GMC Envoy, position the left second row seat to a passenger position. 14. If replacing the rear electrical center on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 15. Connect the battery negative cable. Page 6511 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5756 4. Position the tool J 41364-A onto the park/neutral position switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. Notice: Refer to Fastener Notice. 5. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts securing the switch to 25 N.m (18 lb ft). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Connect the electrical connectors to the switch. 8. Install the transmission control lever to the manual shaft with the nut. Tighten the control lever nut to 25 N.m (18 lb ft). 9. Lower the vehicle. 10. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. If proper operation of the switch can not be obtained, replace the switch. Page 7685 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2448 Page 5132 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4790 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9387 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5721 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1498 Page 1751 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Page 614 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, disconnect the body wiring extension (1) from the rear electrical center. 11. Remove the body wiring extension from the vehicle. INSTALLATION PROCEDURE 1. IMPORTANT: Ensure the sliding latch is fully extended before connecting the body wiring extension to the rear electrical center. Using a downward motion, install the body wiring extension (1) to the rear electrical center. 2. Connect the 24-way gray electrical connector (1) to the BCM. 3. Connect the 32-way tan electrical connector (2) to the BCM. 4. Connect the body wiring extension (1) to the BCM. Page 702 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Specifications Idle Speed: Specifications Information not supplied by Manufacturer. Page 752 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10449 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Module: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Page 4651 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4929 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Locations Hood Sensor/Switch (For Alarm): Locations Immobilizer Component Views Behind Left Headlamp 1 - Headlamp Leveling Actuator - Left (TR6) 2 - Hood Ajar Switch (UA2) Page 3091 3. Remove the fill plug. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the drain plug. Tighten the drain plug to 33 N.m (24 lb ft). Important: With a complete drain and refill, subsutiute 4 oz (118 ml) of limited-slip axle lubricant additive. 2. Fill the rear drive axle. ^ Use the proper fluid, refer to Sealers, Adhesives, and Lubricants. ^ For the proper capacity, refer to Approximate Fluid Capacities. Page 5983 Page 10330 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4813 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 11013 Transfer Case Actuator: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 2801 Behind The Center Of The I/P (With RPO Code W49) Page 4860 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7990 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6510 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 10636 Gear Sensor/Switch: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 4730 Body Control Module: Diagrams Body Control Module (BCM) C3 Body Control Module (BCM) C3 Page 7214 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8186 Oxygen Sensor: Connector Views Engine Controls Connector End Views Heated Oxygen Sensor (HO2S) Sensor 1 Heated Oxygen Sensor (HO2S) Sensor 2 Page 9808 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 11003 Transfer Case Actuator: Locations NVG 226-NP8 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 3581 longer. Important Whenever a wheel is refinished, the mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. When re-mounting a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Disclaimer Page 8962 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 4792 Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair Air Cleaner Outlet Resonator Replacement Removal Procedure 1. Loosen the air cleaner outlet duct and air cleaner outlet resonator clamps (2). 2. Disconnect the air cleaner outlet duct from the air cleaner outlet resonator (3). 3. Remove the 2 air cleaner outlet resonator to engine bolts (4). 4. Disconnect the crankcase ventilation hose (1) from the valve cover port (2). 5. Disconnect the electrical connector to the intake air temperature (IAT) sensor. 6. Remove the air cleaner outlet resonator assembly (5) from the engine. Installation Procedure 1. Connect the electrical connector to the IAT sensor. 2. Install the air cleaner outlet resonator assembly (5) to the engine making sure of the following: * The crankcase ventilation hose (1) is connected to the valve cover port (2). * The air cleaner outlet resonator (5) is properly fit to the throttle body assembly. Notice: Refer to Fastener Notice. 3. Install the 2 air cleaner outlet resonator to engine bolts (4). Page 6008 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 8113 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 3725 1. If re-using the old coolant heater, apply thread sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the threads. Notice: Refer to Fastener Notice. 2. Install the coolant heater to the engine block. Tighten the coolant heater to 50 N.m (37 lb ft). Notice: The heater cord must not touch the engine, hot pipes, manifold, or any moving parts. Route the cord to the left front of the engine compartment securing with tie straps as necessary to prevent damage. 3. Connect the coolant heater (1) electrical connector. 4. Lower the vehicle. 5. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 5547 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6883 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7452 If the tools are not available at your dealership, use an aftermarket equivalent. For Display Purposes Only (End Section of the Crankshaft) 18 MM. or 19 MM. Impact Style Socket (Thick Wall) with a 1/2 drive base that is approximately 15 MM. deep with an overall height of 38 MM. (1-1/2"). J 8433-1 Puller Bar or Equivalent Verify the oil leak. Refer to the above illustration (1), showing the leak path through the end of the crankshaft flange bore area. Order a crankshaft service cup plug part number WPC-340 by completing the WPC PART REQUEST FORM at the end of this bulletin and send it to the WPC via fax or E-mail. Typically, the cup plug should arrive within 2 business days. Fax Number - 248-371-0192 E-mail Address - [email protected]. Clean the crankshaft flange bore area with BrakeKleen (12378392, 12346139 (in Canada, 88901247) or equivalent. Thoroughly dry the area and examine the bore surface for irregularities. If the bore surface needs additional cleaning, use sand paper, or equivalent, and clean as necessary. Once the crankshaft bore surface is clean and smooth, apply a thin bead of LOCTITE(TM) 620, P/N 89021297 or Permatex 27010 High Strength Red Thread Locker Gel, P/N 88861429 (in Canada, 88861430), completely around the inside of the crankshaft flange bore. Position the crankshaft service cup plug into the crankshaft flange bore with service cup plug, dish side out. Page 2233 Page 7707 Page 11084 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 6050 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10309 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 7152 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 264 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 8382 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4216 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 774 Powertrain Control Module (PCM) C3 (Pin 1 To 20) Page 10484 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9700 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 5660 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 6521 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 7096 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4459 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 3340 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 8259 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3313 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7377 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 3072 7. If the fluid level is low, add only enough fluid to bring the level into the HOT band. It does not take much fluid, generally less than one pint (0.5L). Do not overfill. Also, if the fluid level is low, inspect the transmission for leaks. Refer to Fluid Leak Diagnosis. 8. If the fluid level is in the acceptable range, push the dipstick back into the dipstick tube all the way, and then flip the handle down to lock the dipstick in place. 9. If applicable and if the vehicle is equipped, reset the transmission oil life monitor only if the fluid was changed. Fluid Condition Inspection Inspect the fluid color. The fluid should be red or dark brown. ^ If the fluid color is very dark or black and has a burnt odor, inspect the fluid and inside of the bottom pan for excessive metal particles or other debris. A small amount of "friction"; material in the bottom pan is a "normal"; condition. If large pieces and/or metal particles are noted in the fluid or bottom pan, flush the oil cooler and cooler lines and overhaul the transmission. If there are no signs of transmission internal damage noted, replace the fluid filter assembly, repair the oil cooler, and flush the cooler lines. ^ Fluid that is cloudy or milky or appears to be contaminated with water indicates engine coolant or water contamination. Refer to Engine Coolant/Water in Transmission. See: Transmission and Drivetrain/Automatic Transmission/Transaxle/Testing and Inspection/Symptom Related Diagnostic Procedures Page 9943 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1192 Disclaimer Page 7065 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9138 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4971 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5376 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Coolant Heater Replacement (LH6 and LS2) Engine Block Heater: Service and Repair Coolant Heater Replacement (LH6 and LS2) Coolant Heater Replacement (LH6 and LS2) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Disconnect the coolant heater (1) electrical connector. Important: Do not score the surface of the engine block hole when removing the coolant heater. 4. Remove the coolant heater from the engine block. 5. Remove any burrs, sealer, paint or other rough spots. Installation Procedure Page 4201 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 1550 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7768 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 3396 Fuse Block - Underhood C1 (4.2L) Page 2051 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10762 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 4394 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Page 6606 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 10191 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 9785 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS NVG 126-NP4 - Transfer Case Transfer Case Actuator: Locations NVG 126-NP4 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 8209 Heated Oxygen Sensor 1 Replacement Oxygen Sensor: Service and Repair Heated Oxygen Sensor 1 Replacement Heated Oxygen Sensor 1 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 2. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must install the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). Page 7478 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 7536 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8124 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10095 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 10086 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9690 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5570 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 1402 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 5822 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8057 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8086 Page 138 3. Position the upper bracket to the processor bracket. 4. Slide the upper bracket outboard until all the retaining tabs are seated to the processor bracket. 5. Install the communication interface module. 6. Install the right rear seat cushion. Page 1552 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9025 Parts required to complete this service update are to be obtained from Saab Parts Distribution Center (PDC). Service Procedure Tools Required J 45722 or equivalent 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. (1) Fuel Tank Label (2) fuel Tank (3) Rear Axle 2. Locate the fuel tank label (1), which is on the backside of the fuel tank (2) below the fuel tank filler neck. 3. Inspect the fuel tank for a white "X" on the fuel tank and/or a green "C" on the barcode. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is found, the fuel sender assembly does not require replacement. No further action is required. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is not found, proceed to Step 4 for additional inspection. Page 6729 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9074 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 8717 Fuel injector restrictions, deposits can be cleaned on the vehicle using the following procedure. Under NO circumstances should this procedure be modified, changed or shortened. As a long term solution, and to prevent reoccurrence, customers should be encouraged to use Top Tier Detergent Gasoline. For further information on Top Tier detergent gasoline and fuel retailers, please refer to the following Corporate Bulletin Numbers: - 04-06-04-047G (U.S. Only) - 05-06-04-022D (Canada ONLY) Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent approved for use with General Motors fuel system components. Other injector cleaners may cause damage to plastics, plated metals or bearings. General Motors has completed extensive laboratory testing of GM Upper Engine and Fuel Injector Cleaner, and can assure its compatibility with General Motors fuel system components, as long as the cleaning procedure is followed correctly. Injector Cleaning Procedure The following tools, or their equivalent, are required: - CH-47976 Active Fuel Injector Tester (AFIT) - J 35800-A Fuel Injector Cleaner - J 37287 Fuel Line Shut-off Adapter - J 42964 Fuel Line Shut-off Adapter - J 42873 Fuel Line Shut-off Adapter - * One bottle of GM Upper Engine and Fuel Injector Cleaner, P/N 88861802 (in Canada, P/N 88861804) - * One bottle of GM Fuel System Treatment Plus, P/N 88861011 (in Canada, P/N 88861012) Active Fuel Injector Tester (AFIT- CH-47976) Some dealers may not have an Active Fuel Injector Tester (AFIT- CH-47976). Dealers can contact to order an AFIT- CH-47976. Dealers still can test the fuel injectors without an AFIT. Refer to Fuel Injector Diagnosis (w/ J 39021 or Tech 2(R)) in SI. Important As mentioned in the AFIT User Guide, vehicles that are not listed in the AFIT menu can still be tested with the AFIT. Depending on the model, it may be possible to enter the previous model year and proceed with testing using the DLC connection. If this is not possible on the model that you are working on, it will be necessary to use the direct connection method outlined in the AFIT User Guide (See Pages 17-31). General Motors recommends that the Active Fuel Injector Tester (AFIT) be used in testing fuel injectors. If the SI diagnostics do not isolate a cause for this concern, use the Active Fuel Injector Tester (AFIT - CH-47976) to perform an "Injector Test" as outlined in the AFIT User Guide. The AFIT "Injector Test" measures the flow characteristics of all fuel injectors, which is more precise when compared with the standard Tech 2(R) fuel injector balance test. As a result, the AFIT is more likely to isolate the cause of a P1174 DTC (for example: if it is being caused by a fuel injector concern). The CH-47976 (Active Fuel Injector Tester - AFIT) can also be used to measure fuel pressure and fuel system leak down. Also, as mentioned in the P1174 SI diagnosis, if the misfire current counters or misfire graph indicate any misfires, it may be an indicator of the cylinder that is causing the concern. Refer to Fuel Injector Diagnosis (w/CH-47976) in SI for additional instructions. Training (U.S.) To access the training video on AFIT, take the following path at the GM Training Website: 1. After logging into the training website, choose the link on the left side of the page titled "web video library." 2. Then choose "technical." 3. Next, within the search box, type in September course number "10206.09D. 4. This will bring up a link with this course. Scroll through to choose "feature topic." 5. At this point, the seminar can be chosen to view or the video related to the AFIT. Additional training is available from the training website. Please see TECHassist 16044.18T2 Active Fuel Injector Tester and also see 16044.14D1 GM Powertrain Performance for more information on GM Upper Engine and Fuel Injector Cleaner. Page 26 In summary, whenever a vehicle subject to this program enters your vehicle inventory, or is in your dealership/facility for service through April 30, 2011, you must take the steps necessary to be sure the program correction has been made before selling or releasing the vehicle. Disclaimer Service Procedure Service Procedure Note Do NOT replace the inside rear view mirror in tandem with this concern. The mirror has no bearing on this specific issue. 1. Remove the OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module removal instructions. Note Inform customer that all Bluetooth devices must be paired with the new VCIM. Bluetooth devices that have not been paired to the new VCIM will not function properly. 2. Install the new OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module installation instructions. Page 4322 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 473 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5446 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 4993 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 1539 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 5965 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2719 Four Wheel Drive Selector Switch: Diagrams Transfer Case Shift Control Switch Transfer Case Shift Control Switch Page 10414 Page 6753 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 11168 Page 6775 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9254 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 7033 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8217 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7939 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. Page 8100 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 8266 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 402 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 9338 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 3960 Fuel Pressure: Testing and Inspection Fuel System Diagnosis Fuel System Diagnosis System Description The fuel system is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. Test Page 1801 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 7176 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 2315 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Locations Variable Valve Timing Solenoid: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 8972 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 2239 Utility/Van Zoning UTILITY/VAN ZONING Page 6907 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10345 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5356 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4124 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2712 8. Carefully squeeze the locking tabs (2) together to disengage the primary lock. 9. Pull the primary lock (1) up. Spring tension will push the end of the cable past the ball stud. Important: If the cable end is pushed rearward past the ball stud during the adjustment procedure, it must be released and allowed to come forward of the ball stud. The cable end must then be pushed back just enough to be installed to the ball stud. 10. Push the end of the cable until it is aligned with the ball stud. 11. Install the cable (4) to the ball stud (6). 12. Seat the primary lock (1) by pressing into the locked position. Page 5970 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 8490 Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Engine/Chassis Evaporative Emission Hoses/Pipes Replacement - Engine/Chassis Removal Procedure 1. Remove the evaporative emission (EVAP)/fuel hose/pipe assembly. Important: Note the position of the EVAP/fuel hose/pipe assembly clips before disassembly. 2. Remove the fuel/EVAP hose/pipe assembly retaining clips. 3. Separate the EVAP purge pipe (2) from the fuel pipe (1). Installation Procedure 1. Position the new EVAP purge pipe (2) to the fuel pipe (1). 2. Install the EVAP/fuel hose/pipe assembly clips as noted during disassembly. 3. Install the EVAP/fuel hose/pipe assembly. Page 5349 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3161 Page 977 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module - C3 Transfer Case Shift Control Module C3 Page 10924 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1949 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 490 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 8227 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 11090 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 3557 10. Align the inscribed mark on the tire with the valve stem on the wheel. 11. Reinstall the Tire Pressure Sensor. Refer to Tire Pressure Sensor installation procedure in SI. 12. Mount the tire on the wheel. Refer to Tire Mounting and Dismounting. 13. Pressurize the tire to 276 kPa (40 psi) and inspect for leaks. 14. Adjust tire pressure to meet the placard specification. 15. Balance the tire/wheel assembly. Refer to Tire and Wheel Assembly Balancing - Off-Vehicle. 16. Install the tire and wheel assembly onto the vehicle. Refer to the appropriate service procedure in SI. Parts Information Warranty Information (excluding Saab U.S. Models) Important The Silicone - Adhesive/Sealant comes in a case quantity of six. ONLY charge warranty one tube of adhesive/sealant per wheel repair. For vehicles repaired under warranty, use: One leak repair per wheel. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Disclaimer Page 3177 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 8908 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 10337 View of the connector when released from the component. View of another type of Micro 64 connector. Page 4068 Radiator Cooling Fan Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6625 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9102 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 9864 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6720 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 1449 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9492 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 8675 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8611 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 1357 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 2073 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7770 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5783 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5835 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5782 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 6891 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10894 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2145 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 3097 Fluid - Transfer Case: Fluid Type Specifications TRANSFER CASE AUTO-TRAK II Fluid (GM Part No. U.S. 12378508, in Canada 10953626). Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 9483 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9067 Page 4821 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 8329 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7314 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 410 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 534 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 8967 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 2832 Alignment: Description and Operation Caster Description Caster Description Caster Description Caster is the tilting of the uppermost point of the steering axis either forward or backward, when viewed from the side of the vehicle. A backward tilt is positive (+) and a forward tilt is negative (-). Caster influences directional control of the steering but does not affect the tire wear. Caster is affected by the vehicle height, therefore it is important to keep the body at its designed height. Overloading the vehicle or a weak or sagging rear spring will affect caster. When the rear of the vehicle is lower than its designated trim height, the front suspension moves to a more positive caster. If the rear of the vehicle is higher than its designated trim height, the front suspension moves to a less positive caster. With too little positive caster, steering may be touchy at high speed and wheel returnability may be diminished when coming out of a turn. If one wheel has more positive caster than the other, that wheel will pull toward the center of the vehicle. This condition will cause the vehicle to pull or lead to the side with the least amount of positive caster. Camber Description Camber Description Camber Description Camber is the tilting of the wheels from the vertical when viewed from the front of the vehicle. When the wheels tilt outward at the top, the camber is positive (+). When the wheel tilts inward at the top, the camber is negative (-). The amount of tilt is measured in degrees from the vertical. Camber settings influence the directional control and the tire wear. Too much positive camber will result in premature wear on the outside of the tire and cause excessive wear on the suspension parts. Too much negative camber will result in premature wear on the inside of the tire and cause excessive wear on the suspension parts. Unequal side-to-side camber of 1 degree or more will cause the vehicle to pull or lead to the side with the most positive camber. Toe Description Toe Description Page 1679 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 6714 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6180 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1022 4. Install the shroud to the steering wheel. Notice: Refer to Fastener Notice. 5. Install the shroud retaining screws to the steering wheel. Tighten the screws to 2 N.m (18 lb in). 6. Install the steering wheel. OnStar(R) - Number Incorrect/Incorrectly Assigned Emergency Contact Module: Customer Interest OnStar(R) - Number Incorrect/Incorrectly Assigned INFORMATION Bulletin No.: 05-08-46-004C Date: December 23, 2010 Subject: OnStar(R) Phone Number Concerns (Phone Number Incorrect/Assigned to Another Vehicle/Phone) That Occur During Diagnosis of OnStar(R) System Models: 2000-2011 GM Passenger Cars and Trucks Equipped with OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to update model years up to 2011. Please discard Corporate Bulletin Number 05-08-46-004B (Section 08 - Body and Accessories). During diagnosis of an OnStar(R) concern, the technician may be told that the OnStar(R) phone number is incorrect or tied to another vehicle and/or phone of some kind. To resolve these concerns, the Tech 2(R) with software version 22.005 (or higher), has the capability to change the OnStar(R) phone number. Service Procedure 1. With the Tech 2(R), build the vehicle to specifications within the Diagnostics area of the Tech 2(R). 2. For vehicles with physical-based diagnostics - under Body, go to the OnStar(R) section. Then select the Special Functions menu. For vehicles with functional-based diagnostics - under Body and Accessories, go to the Cellular Communication section. Select Module Setup and then Vehicle Communication Interface Module. 3. Locate the Program Phone Number prompt and select it. The original phone number will be displayed on the Tech 2(R) screen. 4. Contact the OnStar(R) team at the GM Technical Assistance Center (TAC) to obtain a new phone number. 5. Highlight the digits of the phone number one at a time and enter the new phone number using the number keys on the Tech 2(R). 6. Press the Soft key at the base of the screen for Done once these numbers have been changed on the screen. 7. Press the Soft key for Done again. The area code or new phone number has now been programmed into the phone. 8. Cycle the ignition to Off and open the driver's door. 9. Press the blue OnStar(R) button to make sure that a normal connection can be made to the OnStar(R) call center. If applicable, make sure the Hands-Free Calling (HFC) works properly by making a phone call. 10. If the system is working properly, fax or voicemail a case closing into the OnStar(R) team at TAC with the results. Dealers in Canada should submit case closing information through the GM infoNET. Please follow this diagnostic process thoroughly and complete each step. If the condition exhibited is resolved WITHOUT completing every step, the remaining steps do not need to be performed. If the procedure above does not resolve the condition, you must contact TAC for further assistance. This diagnostic approach was developed specifically for this condition and should not automatically be used for other vehicles with similar symptoms. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Page 516 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 4544 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8640 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 6079 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7111 Page 2406 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 10475 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 3156 Fuse Block - Rear, Label Usage Page 99 For vehicles repaired under warranty, use the table. Disclaimer Page 1436 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 536 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4126 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 4060 Page 935 Air Bag Control Module: Locations SIR Component Views Inflatable Restraint Sensing and Diagnostic Module (SDM) 1 - Lower Console 2 - Inflatable Restraint Sensing and Diagnostic Module (SDM) Page 1241 repairs. 3. Remove the Inflatable Restraint Steering Wheel Module using the procedure found in Service Information. Remove the horn contacts from the steering wheel. Clean the brass contact on the end of the red wires with an abrasive pad. If possible, remove any contamination present on the mating contact on the cancel cam (inside the black tube). Also clean the four copper rivets embedded in the steering wheel frame. Apply GM Dielectric Lubricant to all the contacts to protect against reoccurrence of the corrosion. Refer to the graphic. 4. Reinstall the horn contacts and the Inflatable Restraint Steering Wheel Module and test for proper operation of the horn pad. Test for proper operation of the horn pad through the entire steering wheel rotation. Does the horn pad work properly? ^ Yes - repair is complete. ^ No - proceed with step 5. 5. Is the inoperative condition only present at certain steering wheel positions? ^ Yes - proceed with step 6. ^ No - proceed with step 9. 6. Remove the steering column trim covers. Position the steering wheel on a dead spot. Ground a test light to the steering column frame close to the steering wheel. Probe the surface of the turn signal cancel cam with the test light. Does grounding the cam activate the horn? ^ Yes - this may mean that the contact of the cancel cam that mates to the horn contact wiring harness contact, may not be clean enough or that the cancel cam may need to be replaced. Repair as necessary. Procedure complete. ^ No - proceed with step 7.Turn Signal Cancel Cam: 7. Disconnect the wiring harness that goes to the top of the multi-function switch (connector X1). Using the grounded test light, touch the harness connection for pin G. Does grounding the pin activate the horn? ^ Yes - proceed with step 8. ^ No - try grounding the test light on a known good ground. If this activates the horn, proceed to step 9. If not, investigate a possible condition with the wiring harness or BCM with appropriate SI documents. 8. The condition lies either in the multi-function switch or the interface between the multi-function switch and the cancel cam. In some cases, removing the multi-function switch and clearing the horn contact that mates with the cancel cam (refer to the graphic) of debris and reinstalling the switch will eliminate the condition. In other cases, the cancel cam may be losing contact with the multi-function switch contact. If distortion in the cancel cam is present, it may be necessary to replace the cancel cam. Repair as necessary. Procedure complete. 9. Remove the left side IP insulator (refer to Instrument Panel Insulator Panel Replacement found in SI) so it can be moved aside enough to see the Page 9807 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 3299 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2854 Step 7 - Step 13 Page 10427 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 6659 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9863 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7470 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1638 Intake Air Temperature Sensor: Diagrams Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 11158 Ensure that the electrical tabs are facing outboard. Notice: Refer to Fastener Notice. 6. Install the pressure control solenoid retainer and retaining bolt. Tighten the pressure control solenoid retaining bolt to 11 N.m (97 lb in). 7. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 8. Install the 1-2 accumulator. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 9. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 10. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 11. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 7625 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 10878 Torque Converter Clutch Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 917 Warranty Information (excluding Saab U.S. Models) Important Select the appropriate Labor Operation for the repair that is performed. For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 7762 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10172 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 3490 Tire Pressure Sensor: Technical Service Bulletins Tire Monitor System - TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 6739 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7343 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7870 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7634 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10383 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6024 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4938 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 8496 4. Tighten the throttle body clamps (2). Tighten the clamps to 4 N.m (35 lb in). 5. Connect the fuel pressure regulator vacuum supply hose to the air cleaner outlet resonator. 6. Lubricate the inner diameter of the crankcase ventilation hose. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 7. Connect the crankcase dirty air hose to the intake manifold. 8. Connect the crankcase dirty air hose to the PCV orifice tube. Page 3204 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 3289 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10900 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6624 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 2775 2. Connect the transfer case front speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer, Envoy, Rainier) Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 3. Remove the transfer case front speed sensor electrical connector. 4. Remove the transfer case front speed sensor. Installation Procedure Page 4699 Tighten the heat shield studs to 10 N.m (89 lb in). 5. Install the manifold heat shield. Refer to Exhaust Manifold Heat Shield Replacement. 6. Raise the vehicle. 7. Install the exhaust pipe to the manifold with seal and secure the pipe with the nuts. Tighten the exhaust pipe nuts to 50 N.m (37 lb ft). 8. Lower the vehicle. Page 7344 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4576 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7752 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6097 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Diagrams Throttle Body: Diagrams Engine Controls Connector End Views Throttle Body Page 9909 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. OnStar(R) - Aftermarket Device Interference Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Aftermarket Device Interference Information INFORMATION Bulletin No.: 08-08-46-004 Date: August 14, 2008 Subject: Information on Aftermarket Device Interference with OnStar(R) Diagnostic Services Models: 2009 and Prior GM Passenger Car and Truck (including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X with OnStar(R) (RPO UE1) This bulletin is being issued to provide dealer service personnel with information regarding aftermarket devices connected to the Diagnostic Link Connector (DLC) and the impact to OnStar(R) diagnostic probes and Vehicle Diagnostic e-mails. Certain aftermarket devices, when connected to the Diagnostic Link Connector, such as, but not limited to, Scan Tools, Trip Computers, Fuel Economy Analyzers and Insurance Tracking Devices, interfere with OnStar's ability to perform a diagnostic probe when requested (via a blue button call) by a subscriber. These devices also prohibit the ability to gather diagnostic and tire pressure data for a subscriber's scheduled OnStar(R) Vehicle Diagnostic (OVD) e-mail. These aftermarket devices utilize the Vehicles serial data bus to perform data requests and/or information gathering. When these devices are requesting data, OnStar(R) is designed not to interfere with any data request being made by these devices as required by OBD II regulations. The OnStar(R) advisor is unable to definitively detect the presence of these devices and will only be able to inform the caller or requester of the unsuccessful or incomplete probe and may in some cases refer the subscriber/requester to take the vehicle to a dealer for diagnosis of the concern. When performing a diagnostic check for an unsuccessful or incomplete OnStar(R) diagnostic probe, or for concerns regarding completeness of the OnStar(R) Vehicle Diagnostic (OVD) e-mail, verify that an aftermarket device was not present at the time of the requested probe. Regarding the OVD e-mail, if an aftermarket device is interfering (including a Scan Tool of any type), the e-mail will consistently display a "yellow" indication in diagnostics section for all vehicle systems except the OnStar(R) System and Tire Pressure data (not available on all vehicles) will not be displayed (i.e. section is collapsed). Successful diagnostic probes and complete OVD e-mails will resume following the removal or disconnecting of the off-board device. Disclaimer Page 1726 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 10370 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 4084 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5125 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5141 US English/Metric Conversion US English/Metric Conversion Page 9541 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4051 Disclaimer Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor Grommet Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire/wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal, the cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ Position the bead breaking fixture 90 degrees from the valve stem when separating the tire bead from the wheel. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: If any tire sealant is noted upon tire dismounting, replace the sensor. Refer to Tire Pressure Sensor Replacement. Also remove all residual liquid sealant from the inside of the tire and wheel surfaces. ^ Remove the tire pressure sensor nut. ^ Remove the sensor from the wheel hole. ^ Remove the sensor grommet from the valve stem. Installation Procedure 1. Clean any dirt or debris from the grommet sealing areas. 2. Install the grommet on the sensor valve stem. Page 6817 Data Link Connector: Testing and Inspection DATA LINK REFERENCES DIAGNOSTIC AIDS The air suspension control module does not communicate on any data link. For additional information refer to Diagnostic Trouble Code (DTC) Displaying. This table identifies which serial data link that a particular module uses for in-vehicle data transmission. Some modules may use more than one data link to communicate. Some modules may have multiple communication circuits passing through them without actively communicating on that data link. This table is used to assist in correcting a communication malfunction. For the description and operation of these serial data communication circuits refer to Data Link Communications Description and Operation. TEST Page 9339 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8204 Page 6117 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Heated Oxygen Sensor 1 Replacement Oxygen Sensor: Service and Repair Heated Oxygen Sensor 1 Replacement Heated Oxygen Sensor 1 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 2. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must install the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). Page 8656 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7056 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6466 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 2597 Impact Sensor: Diagrams SIR Connector End Views Inflatable Restraint Side Impact Sensor (SIS) - Left (ASF) Inflatable Restraint Side Impact Sensor (SIS) - Right (ASF) Rollover Sensor Page 5912 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 1304 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 7737 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9385 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 5454 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 6327 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6274 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2294 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 2604 9. Position the headlamp wire harness (1) to the retaining clip. 10. Install and secure the headlamp wire harness in the retaining clip (1). 11. Install the grille. 12. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 5093 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3183 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2335 US English/Metric Conversion US English/Metric Conversion Page 7577 Engine Control Module: Service and Repair Powertrain Control Module Replacement Service of the powertrain control module (PCM) should normally consist of either replacement of the PCM or electrically erasable programmable read only memory (EEPROM) programming. If the diagnostic procedures call for the PCM to be replaced, the PCM should be inspected first to see if the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. Notice: * Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. * Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. * In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. * Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. * The replacement control module must be programmed. Important: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5 000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Loosen the PCM harness connector bolts (4) from the center of the PCM harness connectors. Notice: In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 3. Remove the PCM harness connectors (2) from the PCM (1). 4. Remove the PCM retaining bolts (3) and nuts (6). Notice: Refer to PCM and ESD Notice. 5. Slide the PCM (1) away from the intake manifold past the mounting studs (5) and remove PCM from the vehicle. 6. Remove the PCM mounting studs (5) from the intake manifold only if replacing the studs. Installation Procedure Page 6296 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 9088 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2977 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 10216 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 883 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 2711 Transmission Speed Sensor: Adjustments Range Selector Lever Cable Adjustment Adjustment Procedure 1. Ensure that the range selector cable is not restricted. 2. Ensure that the floor shift control is in the PARK position. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Disconnect the range selector cable (4) from the range selector lever ball stud (6). 5. Ensure that the range selector lever is in the mechanical PARK position. (Rotate the range selector lever fully clockwise.) 6. Release the locking tab (1). 7. Slide the secondary lock cover (1) to the side. Page 9891 Page 743 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 5916 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 7692 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 179 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4451 Wheels/Tires - Refinishing Aluminum Wheels Wheels: All Technical Service Bulletins Wheels/Tires - Refinishing Aluminum Wheels INFORMATION Bulletin No.: 99-08-51-007E Date: March 17, 2011 Subject: Refinishing Aluminum Wheels Models: 2012 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add additional model years. Please discard Corporate Bulletin Number 99-08-51-007D (Section 08 - Body and Accessories). This bulletin updates General Motor's position on refinishing aluminum wheels. GM does not endorse any repairs that involve welding, bending, straightening or re-machining. Only cosmetic refinishing of the wheel's coatings, using recommended procedures, is allowed. Evaluating Damage In evaluating damage, it is the GM Dealer's responsibility to inspect the wheel for corrosion, scrapes, gouges, etc. The Dealer must insure that such damage is not deeper than what can be sanded or polished off. The wheel must be inspected for cracks. If cracks are found, discard the wheel. Any wheels with bent rim flanges must not be repaired or refinished. Wheels that have been refinished by an outside company must be returned to the same vehicle. The Dealer must record the wheel ID stamp or the cast date on the wheel in order to assure this requirement. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. Aluminum Wheel Refinishing Recommendations - Chrome-plated aluminum wheels Re-plating these wheels is not recommended. - Polished aluminum wheels These wheels have a polyester or acrylic clearcoat on them. If the clearcoat is damaged, refinishing is possible. However, the required refinishing process cannot be performed in the dealer environment. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. - Painted aluminum wheels These wheels are painted using a primer, color coat, and clearcoat procedure. If the paint is damaged, refinishing is possible. As with polished wheels, all original coatings must be removed first. Media blasting is recommended. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for the re-painting of this type of wheel. - Bright, machined aluminum wheels These wheels have a polyester or acrylic clearcoat on them. In some cases, the recessed "pocket" areas of the wheel may be painted. Surface refinishing is possible. The wheel must be totally stripped by media blasting or other suitable means. The wheel should be resurfaced by using a sanding process rather than a machining process. This allows the least amount of material to be removed. Important Do not use any re-machining process that removes aluminum. This could affect the dimensions and function of the wheel. Painting is an option to re-clearcoating polished and bright machined aluminum wheels. Paint will better mask any surface imperfections and is somewhat more durable than clearcoat alone. GM recommends using Corsican SILVER WAEQ9283 for a fine "aluminum-like" look or Sparkle SILVER WA9967 for a very bright look. As an option, the body color may also be used. When using any of the painting options, it is recommended that all four wheels be refinished in order to maintain color uniformity. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for specific procedures and product recommendations. Refinisher's Responsibility - Outside Company Important Some outside companies are offering wheel refinishing services. Such refinished wheels will be permanently marked by the refinisher and are warranted by the refinisher. Any process that re-machines or otherwise re-manufactures the wheel should not be used. A refinisher's responsibility includes inspecting for cracks using the Zyglo system or the equivalent. Any cracked wheels must not be refinished. No welding, hammering or reforming of any kind is allowed. The wheel ID must be recorded and follow the wheel throughout the process in order to assure that the same wheel is returned. A plastic media blast may be used for clean up of the wheel. Hand and/or lathe sanding of the machined surface and the wheel window is allowed. Material removal, though, must be kept to a minimum. Re-machining of the wheel is not allowed. Paint and/or clear coat must not be present on the following surfaces: the nut chamfers, the wheel mounting surfaces and the wheel pilot hole. The refinisher must permanently ID stamp the wheel and warrant the painted/clearcoated surfaces for a minimum of one year or the remainder of the new vehicle warranty, whichever is Page 9586 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3899 1. Use the J 38820 to install the valve seals. There is only one size seal. 2. Install the valve spring and the valve spring retainer. 3. Use the J-44228-A and compress the valve springs. Page 10028 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Engine Controls - MIL ON/DTC P0483 Set PROM - Programmable Read Only Memory: Customer Interest Engine Controls - MIL ON/DTC P0483 Set Bulletin No.: 06-06-02-010B Date: September 22, 2006 TECHNICAL Subject: Service Engine Soon Lamp Illuminated with Engine Cooling Fan System Performance DTC P0483 Currently Set or Stored in History (Reprogram PCM) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer Models 2007 GMC Envoy Models 2007 Saab 9-7X with 4.2L, 5.3L or 6.0L Engine (VINs S, M, H - RPOs LL8, LH6, LS2) Supercede: This bulletin is being revised to remove the Isuzu Ascender model from the VIN breakpoint table. Please discard Corporate Bulletin Number 06-06-02-010A (Section 06 - Engine/Propulsion System). Condition Some customers may comment on a Service Engine Soon (SES) lamp illuminated. Technicians may find an Engine Cooling Fan System Performance Diagnostic Trouble Code (DTC) P0483 currently set or stored in history. Cause This condition may be caused by more sensitive Powertrain Control Module (PCM) diagnostics and a reduced fan flare clutch for 2007 that have resulted in a system that is more sensitive to setting the fan performance DTC, P0483, while driving at low speed after a start-up with the Air Conditioning (A/C) on. Correction Technicians are to update the Powertrain Control Module (PCM) software in vehicles built prior to the VIN breakpoints shown. Page 8920 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 3115 6. Fill the crankcase with the proper quantity of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 7. Remove the oil level indicator. 8. Wipe the indicator with a clean cloth. 9. Install the oil level indicator. 10. Remove the oil level indicator and check the oil level. 11. Add oil if necessary. 12. Check for any oil leaks. Page 2067 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 3233 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10174 View of the connector when released from the component. View of another type of Micro 64 connector. Page 449 Page 809 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 8252 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4831 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6949 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6314 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1380 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 7073 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9495 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 767 Page 822 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 1883 Oxygen Sensor: Service and Repair Heated Oxygen Sensor 2 Replacement Heated Oxygen Sensor 2 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 3. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New or service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must reinstall the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). 4. Lower the vehicle. Page 10507 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 3200 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 4866 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8365 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 11107 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 10857 US English/Metric Conversion US English/Metric Conversion Page 10424 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4612 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 10225 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2250 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Locations Intake Air Temperature Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 1663 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 2404 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 835 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 1374 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 2095 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5633 Page 5997 Utility/Van Zoning UTILITY/VAN ZONING Page 1520 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 5419 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2969 11. Grasp firmly while pulling down with a twisting motion in order to remove the filter. 12. Remove the filter seal. The filter seal may be stuck in the pump. If necessary, carefully use pliers or another suitable tool to remove the seal. 13. Discard the seal. 14. Inspect the fluid color. 15. Inspect the filter. Pry the metal crimping away from the top of the filter and pull apart. The filter may contain the following evidence for root cause diagnosis: ^ Clutch material ^ Bronze slivers indicating bushing wear ^ Steel particles 16. Clean the transmission case and the oil pan gasket surfaces with solvent, and air dry. You must remove all traces of the old gasket material. Installation Procedure 1. Coat the new filter seal with automatic transmission fluid. 2. Install the new filter seal into the transmission case. Tap the seal into place using a suitable size socket. 3. Install the new filter into the case. Page 10683 Notice: Refer to Fastener Notice. 1. Install the transfer case front speed sensor. Tighten the speed sensor to 17 N.m (13 lb ft). 2. Install the transfer case front speed sensor electrical connector. 3. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 4. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the transfer case left rear speed sensor electrical connector. 3. Remove the transfer case left rear speed sensor. Installation Procedure Page 9621 US English/Metric Conversion US English/Metric Conversion Page 7527 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3413 11. Disconnect the mobile telephone harness connector (1) from the junction block. 12. Disconnect the body wiring harness connector (1) from the junction block. 13. Disconnect the headliner harness connector (2) from the junction block. 14. Disconnect the console harness connector from the junction block. 15. Remove the block base retaining nuts from the floor studs. 16. Remove the block base from the floor panel. INSTALLATION PROCEDURE 1. Install the block base to the floor studs. 2. NOTE: Refer to Fastener Notice. Install the block base retaining nuts to the floor studs. Tighten the block base retaining nuts to 10 N.m (88 lb in). 3. Connect the console harness connector to the block base. 4. Connect the headliner harness connector (2) to the block base. 5. Connect the body wiring harness connector (1) to the block base. 6. Connect the mobile telephone harness connector (1) to the junction block. Page 6140 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 9202 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 1200 Outside Temperature Display Sensor: Diagrams Displays and Gages Connector End Views Ambient Air Temperature Sensor (DF5) Page 6667 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7631 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Specifications Harmonic Balancer - Crankshaft Pulley: Specifications Crankshaft Balancer Bolt First Pass ............................................................................................................................................. ............................................. 150 N.m (110.6 lb ft) Final Pass ............................................................ ............................................................................................................................................ 180 degrees Page 9414 Utility/Van Zoning UTILITY/VAN ZONING Page 3295 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10463 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 11170 Utility/Van Zoning UTILITY/VAN ZONING Page 5691 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7830 Page 7542 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5690 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 460 Page 1321 View of the connector when released from the component. View of another type of Micro 64 connector. Page 5955 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7378 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 2208 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 3049 Brake Fluid: Specifications HYDRAULIC BRAKE SYSTEM Delco Supreme 11 Brake Fluid or equivalent DOT-3 brake fluid. Page 8584 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6844 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 1555 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2693 18. Carefully begin to lower the control valve body down from the transmission case while simultaneously disconnecting the manual valve link. Installation Procedure Ball Check Valves 1. Install the checkballs (1-7) in the valve body. 2. Install the control valve body to the transmission case while simultaneously connecting the manual valve link to the manual valve. 3. Verify that the manual valve link (3) is installed properly to the inside detent lever (1) and the manual valve (2). Page 10835 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 9962 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 5868 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 3782 Disclaimer Page 6094 Page 5892 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 10099 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 5000 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 2306 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9819 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 7886 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 9992 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 5009 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 6020 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1817 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7303 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 5537 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 277 Front Passenger Door Module (FPDM) C2 Page 2052 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 252 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 937 Page 10306 Page 7843 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5632 Oxygen Sensor: Connector Views Engine Controls Connector End Views Heated Oxygen Sensor (HO2S) Sensor 1 Heated Oxygen Sensor (HO2S) Sensor 2 Page 9089 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 3403 Fuse Block - Underhood C4 (Pin B2 To F6) Page 9705 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8922 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3217 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. OnStar(R) - Availability for Hearing Impaired Communications Control Module: All Technical Service Bulletins OnStar(R) - Availability for Hearing Impaired INFORMATION Bulletin No.: 06-08-46-005B Date: February 11, 2010 Subject: Availability of OnStar(R) for Hearing Impaired Models: 2007-2010 GM Passenger Cars and Light Duty Trucks (Including Saturn and Saab) Except 2007 Cadillac CTS Except 2007-2008 HUMMER H2, H2 SUT Except 2007 Pontiac Montana SV6 Except 2007-2010 Pontiac Vibe Except 2007 Saturn ION, VUE Except 2008 Saturn Astra Supercede: This bulletin is being revised to add a Note regarding 2009 Bluetooth(R)-equipped vehicles, additional models and model years. Please discard Corporate Bulletin Number 06-08-46-005A (Section 08 - Body and Accessories). Important This service bulletin is not applicable to 'GM of Canada' dealers and retailers. Note On 2009 and newer model year vehicles equipped with the Bluetooth(R) feature (option code UPF), when up-fitted with TTY capabilities, the Bluetooth(R) feature will be disabled. OnStar with Text Telephone Capability (TTY) General Motors is pleased to announce that the safety and security of OnStar is now available to our deaf, hard of hearing and speech impaired customers. The current vehicles listed above, as well as forthcoming vehicles equipped with OnStar hardware version 7.0 or higher, have the ability to utilize texting telephones. Vehicle specific TTY capability can be determined by utilizing the VIN lookup Tool. Additional information may be found by referring to www.onstar.com/tty. TTY equipment allows people who are deaf, hard of hearing or speech impaired, in-vehicle access to 911 and basic OnStar(R) services by pressing the OnStar(R) blue button or red emergency button. The keypad provides a means to communicate by allowing customers to type messages back and forth, with an OnStar(R) advisor or other party when using the OnStar(R) Hands-Free Calling feature. A TTY is required at both ends of the conversation in order to communicate. OnStar(R) Turn by Turn Navigation and Virtual Advisor are not available with the addition of TTY. The Reimbursement Program This equipment will be made available to eligible customers through GM Mobility and OnStar(R). Under this program, the customer must complete a GM Mobility application form. To take advantage of the program, vehicles must be adapted at the time of delivery for purchase / lease and a dealer claim ($1,000 Maximum per GM Mobility guidelines) with the application form submitted to GM Mobility. Saab dealers must fax documents. GM Dealers will receive electronic reimbursement directly from GM Mobility. Saab dealers will receive a check directly from OnStar(R). Additional questions or concerns should be directed to the OnStar Dealer Center. How to Order To order the dealer installed kit, contact AutoCraft Electronics or via the web at www.autocraft.com. The kit consists of an OnStar Interface Module, a Dial Pad (for making calls), OTIM wiring harness, the TTY device, installation/Tech 2(R) programming instructions and owner's guide. Warranty Information The Ultra-Tec Compact C TTY device is manufactured by an independent manufacturer and is covered by the manufacturer's warranty. It is not covered under the GM New Vehicle Limited Warranty. All other parts (OTIM, dial pad and OTIM wiring harness) are covered by the standard GM new vehicle parts and labor warranty. Replacement parts are available through AutoCraft Electronics. Contact AutoCraft Electronics or via the web. Warranty claims for the OTIM, dial pad and OTIM wiring harness should be submitted through normal warranty procedures using a sublet warranty claim with GM Labor Operation R5140. Page 8173 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6636 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 3280 Engine - GM dexos 1 and dexos 2(R) Oil Specifications Engine Oil: Technical Service Bulletins Engine - GM dexos 1 and dexos 2(R) Oil Specifications INFORMATION Bulletin No.: 11-00-90-001 Date: March 14, 2011 Subject: Global Information for GM dexos1(TM) and GM dexos2(TM) Engine Oil Specifications for Spark Ignited and Diesel Engines, Available Licensed Brands, and Service Fill for Adding or Complete Oil Change Models: 2012 and Prior GM Passenger Cars and Trucks Excluding All Vehicles Equipped with Duramax(TM) Diesel Engines GM dexos 1(TM) Information Center Website Refer to the following General Motors website for dexos 1(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 1(TM) Engine Oil Trademark and Icons The dexos(TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos‹›(TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos‹›(TM) specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 1(TM) engine oil. GM dexos 1(TM) Engine Oil Specification Important General Motors dexos 1(TM) engine oil specification replaces the previous General Motors specifications GM6094M, GM4718M and GM-LL-A-025 for most GM gasoline engines. The oil specified for use in GM passenger cars and trucks, PRIOR to the 2011 model year remains acceptable for those previous vehicles. However, dexos 1(TM) is backward compatible and can be used in those older vehicles. In North America, starting with the 2011 model year, GM introduced dexos 1(TM) certified engine oil as a factory fill and service fill for gasoline engines. The reasons for the new engine oil specification are as follows: - To meet environmental goals such as increasing fuel efficiency and reducing engine emissions. - To promote long engine life. - To minimize the number of engine oil changes in order to help meet the goal of lessening the industry's overall dependence on crude oil. dexos 1(TM) is a GM-developed engine oil specification that has been designed to provide the following benefits: - Further improve fuel economy, to meet future corporate average fuel economy (CAFE) requirements and fuel economy retention by allowing the oil to maintain its fuel economy benefits throughout the life of the oil. - More robust formulations for added engine protection and aeration performance. Page 5697 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10471 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9983 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 435 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 4935 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10800 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 3250 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10369 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 10805 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5137 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 7532 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 3230 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5808 View of the connector when released from the component. View of another type of Micro 64 connector. Page 5961 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON Wheels: Customer Interest Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON TECHNICAL Bulletin No.: 08-03-10-006C Date: April 27, 2010 Subject: Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat) Models: 2000-2011 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2010 HUMMER H3 2005-2009 Saab 9-7X Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 08-03-10-006B (Section 03 - Suspension). Condition Some customers may comment on a tire that slowly loses air pressure over a period of days or weeks. Cause Abrasive elements in the environment may intrude between the tire and wheel at the bead seat. There is always some relative motion between the tire and wheel (when the vehicle is driven) and this motion may cause the abrasive particles to wear the wheel and tire materials. As the wear continues, there may also be intrusion at the tire/wheel interface by corrosive media from the environment. Eventually a path for air develops and a 'slow' leak may ensue. This corrosion may appear on the inboard or outboard bead seating surface of the wheel. This corrosion will not be visible until the tire is dismounted from the wheel. Notice This bulletin specifically addresses issues related to wheel bead seat corrosion that may result in an air leak. For issues related to porosity of the wheel casting that may result in an air leak, please refer to Corporate Bulletin Number 05-03-10-006F - Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Correction In most cases, this type of air loss can be corrected by following the procedure below. Important DO NOT replace a wheel for slow air loss unless you have evaluated and/or tried to repair the wheel with the procedure below. Notice The repair is no longer advised or applicable for chromed aluminum wheels. 1. Remove the wheel and tire assembly for diagnosis. Refer to Tire and Wheel Removal and Installation in SI. 2. After a water dunk tank leak test, if you determine the source of the air leak to be around the bead seat of the wheel, dismount the tire to examine the bead seat. Shown below is a typical area of bead seat corrosion.Typical Location of Bead Seat Corrosion Page 2167 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6539 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 6707 Page 7359 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6872 Utility/Van Zoning UTILITY/VAN ZONING Page 5012 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4456 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9092 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 1775 Utility/Van Zoning UTILITY/VAN ZONING Locations Air Injection Pump Relay: Locations Engine Controls Component Views Left Front of Chassis (K18) 1 - Secondary Air Injection (AIR) Pump 2 - Secondary Air Injection (AIR) Pump Relay Page 2879 1. Install the air cleaner element (6) onto the air outlet duct (3) with a twisting and pushing motion. 2. Install the air cleaner element (6) and air outlet duct (3) into the lower air cleaner housing/washer solvent tank assembly (4). Notice: Refer to Fastener Notice. Important: Ensure the air inlet duct (5) is properly positioned in the lower air cleaner housing/washer solvent tank assembly (4) before installing the air cleaner housing (2). 3. Install the air cleaner housing (2). Tighten the 3 air cleaner housing retaining screws (1) to 4 N.m (35 lb in). 4. Connect the AIR pump inlet hose to the air cleaner air outlet duct. 5. Install the radiator support diagonal brace if applicable. Page 6282 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9509 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 3225 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 2546 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8691 Fuel: Technical Service Bulletins Fuel System - 'TOP TIER' Detergent Gasoline Information INFORMATION Bulletin No.: 04-06-04-047I Date: August 17, 2009 Subject: TOP TIER Detergent Gasoline (Deposits, Fuel Economy, No Start, Power, Performance, Stall Concerns) - U.S. Only Models: 2010 and Prior GM Passenger Cars and Trucks (including Saturn) (U.S. Only) 2003-2010 HUMMER H2 (U.S. Only) 2006-2010 HUMMER H3 (U.S. Only) 2005-2009 Saab 9-7X (U.S. Only) Supercede: This bulletin is being revised to add model years and additional sources to the Top Tier Fuel Retailers list. Please discard Corporate Bulletin Number 04-06-04-047H (Section 06 Engine/Propulsion System). In Canada, refer to Corporate Bulletin Number 05-06-04-022F. A new class of fuel called TOP TIER Detergent Gasoline is appearing at retail stations of some fuel marketers. This gasoline meets detergency standards developed by six automotive companies. All vehicles will benefit from using TOP TIER Detergent Gasoline over gasoline containing the "Lowest Additive Concentration" set by the EPA. Those vehicles that have experienced deposit related concerns may especially benefit from the use of TOP TIER Detergent Gasoline. Intake valve: - 10,000 miles with TOP TIER Detergent Gasoline Intake valve: - 10,000 miles with Legal Minimum additive Gasoline Brands That Currently Meet TOP TIER Detergent Gasoline Standards As of August 1, 2009, all grades of the following gasoline brands meet the TOP TIER Detergent Gasoline Standards: - Chevron - Chevron-Canada - QuikTrip - Conoco Phillips 66 - 76 Page 2377 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8778 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10887 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 1957 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 1588 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 3736 Harmonic Balancer - Crankshaft Pulley: Service and Repair Crankshaft Balancer Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 41478 Crankshaft Front Oil Seal Installer ^ J 41816-2 Crankshaft End Protector ^ J 44226 Crankshaft Balancer Remover/Holder Removal Procedure 1. Remove the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. 2. Remove the drive belt. Refer to Drive Belt Replacement. 3. Carefully loosen and remove the balancer bolt. 4. Install J 41816-2 into the end of the crankshaft. Important: Do not pull on outer edge of the crankshaft balancer. 5. Use a 3 jaw puller to remove the crankshaft balancer. 6. Remove the 3 jaw puller and the J 41816-2. 7. Remove the crankshaft balancer shim from the crankshaft snout. 8. Clean and inspect the crankshaft balancer. Refer to Crankshaft Balancer Cleaning and Inspection. Installation Procedure Important: The crankshaft balancer does not have a key-way; so the crankshaft could turn when tightening, causing an improper Page 8970 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 731 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 2097 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 8763 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 939 5. Connect the electrical connectors (2) to the SDM (1). 6. Return the carpet to the fully installed position. 7. Install the console mounting bracket to the floor panel. 8. Install the floor console. Important: The AIR BAG indicator may remain ON after the SDM has been replaced. DTC B1001 may set requiring the SDM part number to be set in multiple modules. If the indicator remains ON after enabling the SIR system, perform the diagnostic system check and follow the steps thoroughly to ensure that the SDM is set up properly. 9. Enable the SIR system. Refer to SIR Disabling and Enabling. See: Body and Frame/Interior Moulding / Trim/Dashboard / Instrument Panel/Air Bag(s) Arming and Disarming/Service and Repair Page 4242 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 2392 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Restraints - Passenger Presence System Information Seat Occupant Sensor: Technical Service Bulletins Restraints - Passenger Presence System Information INFORMATION Bulletin No.: 06-08-50-009F Date: December 23, 2010 Subject: Information on Passenger Presence Sensing System (PPS or PSS) Concerns With Custom Upholstery, Accessory Seat Heaters or Other Comfort Enhancing Devices Models: 2011 and Prior GM Passenger Cars and Trucks Equipped with Passenger Presence Sensing System Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 06-08-50-009E (Section 08 - Body and Accessories). Concerns About Safety and Alterations to the Front Passenger Seat Important ON A GM VEHICLE EQUIPPED WITH A PASSENGER SENSING SYSTEM, USE THE SEAT COVERS AND OTHER SEAT-RELATED EQUIPMENT AS RELEASED BY GM FOR THAT VEHICLE. DO NOT ALTER THE SEAT COVERS OR SEAT-RELATED EQUIPMENT. ANY ALTERATIONS TO SEAT COVERS OR GM ACCESSORIES DEFEATS THE INTENDED DESIGN OF THE SYSTEM. GM WILL NOT BE LIABLE FOR ANY PROBLEMS CAUSED BY USE OF SUCH IMPROPER SEAT ALTERATIONS, INCLUDING ANY WARRANTY REPAIRS INCURRED. The front passenger seat in many GM vehicles is equipped with a passenger sensing system that will turn off the right front passenger's frontal airbag under certain conditions, such as when an infant or child seat is present. In some vehicles, the passenger sensing system will also turn off the right front passenger's seat mounted side impact airbag. For the system to function properly, sensors are used in the seat to detect the presence of a properly-seated occupant. The passenger sensing system may not operate properly if the original seat trim is replaced (1) by non-GM covers, upholstery or trim, or (2) by GM covers, upholstery or trim designed for a different vehicle or (3) by GM covers, upholstery or trim that has been altered by a trim shop, or (4) if any object, such as an aftermarket seat heater or a comfort enhancing pad or device is installed under the seat fabric or between the occupant and the seat fabric. Aftermarket Seat Heaters, Custom Upholstery, and Comfort Enhancing Pads or Devices Important ON A GM VEHICLE EQUIPPED WITH A PASSENGER SENSING SYSTEM, USE ONLY SEAT COVERS AND OTHER SEAT-RELATED EQUIPMENT RELEASED AS GM ACCESSORIES FOR THAT VEHICLE. DO NOT USE ANY OTHER TYPE OF SEAT COVERS OR SEAT-RELATED EQUIPMENT, OR GM ACCESSORIES RELEASED FOR OTHER VEHICLE APPLICATIONS. GM WILL NOT BE LIABLE FOR ANY PROBLEMS CAUSED BY USE OF SUCH IMPROPER SEAT ACCESSORIES, INCLUDING ANY WARRANTY REPAIRS MADE NECESSARY BY SUCH USE. Many types of aftermarket accessories are available to customers, upfitting shops, and dealers. Some of these devices sit on top of, or are Velcro(R) strapped to the seat while others such as seat heaters are installed under the seat fabric. Additionally, seat covers made of leather or other materials may have different padding thickness installed that could prevent the Passenger Sensing System from functioning properly. Never alter the vehicle seats. Never add pads or other devices to the seat cushion, as this may interfere with the operation of the Passenger Sensing System and either prevent proper deployment of the passenger airbag or prevent proper suppression of the passenger air bag. Disclaimer Specifications Idle Speed: Specifications Information not supplied by Manufacturer. Page 10091 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6037 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7603 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 11142 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 5217 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 462 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 4661 US English/Metric Conversion US English/Metric Conversion Page 10415 Page 7847 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9775 Page 4615 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1680 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7105 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 470 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 1462 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4644 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6777 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 370 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9789 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Page 10289 3. Shift assembly to the LOW position. 4. Loosen and remove the screw at the rear of the shiftier assembly. 5. Shift the assembly to the NEUTRAL position. 6. Loosen and remove the top screw of the shift lock actuator through the lever slot. 7. Pull lever to the DRIVE position and remove the shift lock actuator. Installation Procedure 1. In DRIVE position, depress the shift lock actuator button and realign into the shiftier lever. 2. Push lever to NEUTRAL. Notice: Refer to Fastener Notice. 3. Install the top screw through the lever slot. Tighten the actuator screw to 1.65 N.m (15 lb in). Page 256 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 9480 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9332 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7717 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 3328 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 10892 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 5587 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4071 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 7319 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 739 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Locations Fluid Pressure Sensor/Switch: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 8729 For vehicles repaired under warranty, use the table above. Disclaimer Page 7087 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 2493 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10448 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3774 4. Install the valve keys. 5. Remove the J-44228-A. 6. Remove the air pressure to the cylinder. 7. Coat the camshaft journals, the camshaft journal thrust face, and the camshaft lobes with clean engine oil. 8. Install the camshafts to their original position. Notice: Refer to Fastener Notice. 9. Install the camshaft caps onto their original journal. Tighten the camshaft cap bolts to 12 N.m (106 lb in). Page 2056 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8216 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10433 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................345-395 kPa (50-57 psi) Page 888 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Door Lock and Side Window Switch Replacement - Driver Side Power Door Lock Switch: Service and Repair Door Lock and Side Window Switch Replacement Driver Side DOOR LOCK AND SIDE WINDOW SWITCH REPLACEMENT - DRIVER REMOVAL PROCEDURE 1. Lift up on the front edge of the switch panel in order to release the front retaining clip. 2. Lift up on the rear edge of the switch panel in order to release the 2 rear retaining clips. 3. If equipped, disconnect the electrical connectors from the driver door module (1). 4. If replacing only the driver door module, remove the module from the door trim panel. 5. Disconnect the remaining electrical connectors from the switch panel. 6. If replacing only the switch panel, retain the driver door module for transfer. 7. Remove the switch panel assembly from the vehicle INSTALLATION PROCEDURE 1. Install the driver door module (1) to the door trim panel. 2. Connect the electrical connector to the driver door module. 3. If replacing the switch panel, connect the remaining electrical connectors. 4. IMPORTANT: When replacing the driver door module, the set up procedure must be performed. If replacing the driver door module, program the driver door module. Refer to LINK and Personalization Description and Operation. 5. Install the switch panel to the door trim panel, ensuring the front and rear retaining clips are fully seated. Page 1545 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6065 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9684 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 3476 Page 5136 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8414 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 9218 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 9390 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2554 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5743 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8265 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 3401 Fuse Block - Underhood C3 Page 9535 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 3519 10. Align the inscribed mark on the tire with the valve stem on the wheel. 11. Reinstall the Tire Pressure Sensor. Refer to Tire Pressure Sensor installation procedure in SI. 12. Mount the tire on the wheel. Refer to Tire Mounting and Dismounting. 13. Pressurize the tire to 276 kPa (40 psi) and inspect for leaks. 14. Adjust tire pressure to meet the placard specification. 15. Balance the tire/wheel assembly. Refer to Tire and Wheel Assembly Balancing - Off-Vehicle. 16. Install the tire and wheel assembly onto the vehicle. Refer to the appropriate service procedure in SI. Parts Information Warranty Information (excluding Saab U.S. Models) Important The Silicone - Adhesive/Sealant comes in a case quantity of six. ONLY charge warranty one tube of adhesive/sealant per wheel repair. For vehicles repaired under warranty, use: One leak repair per wheel. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Disclaimer Page 1323 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 6771 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1907 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10673 Propshaft Speed Sensor - Rear Page 7474 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7633 View of the connector when released from the component. View of another type of Micro 64 connector. Page 7405 5. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 6. Install the rear electrical center cover. 7. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 8. If replacing the body wiring harness extension on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 9. Connect the negative battery cable. Page 3108 - Support the GM Oil Life System, thereby minimizing the replacement of engine oil, before its life has been depleted. - Reduce the duplication of requirements for a large number of internal GM engine oil specifications. International Lubricants Standardization and Approval Committee (ILSAC) GF-5 Standard In addition to GM dexos 1(TM), a new International Lubricants Standardization and Approval Committee (ILSAC) standard called GF-5, was introduced in October 2010. - There will be a corresponding API category, called: SN Resource Conserving. The current GF-4 standard was put in place in 2004 and will become obsolete in October 2011. Similar to dexos 1(TM), the GF-5 standard will use a new fuel economy test, Sequence VID, which demands a statistically significant increase in fuel economy versus the Sequence VIB test that was used for GF-4. - It is expected that all dexos 1(TM) approved oils will be capable of meeting the GF-5 standard. However, not all GF-5 engine oils will be capable of meeting the dexos 1(TM) specification. - Like dexos(TM), the new ILSAC GF-5 standard will call for more sophisticated additives. The API will begin licensing marketers during October 2010, to produce and distribute GF-5 certified products, which are expected to include SAE 0W-20, 0W-30, 5W-20, 5W-30 and 10W-30 oils. Corporate Average Fuel Economy (CAFE) Requirements Effect on Fuel Economy Since CAFE standards were first introduced in 1974, the fuel economy of cars has more than doubled, while the fuel economy of light trucks has increased by more than 50 percent. Proposed CAFE standards call for a continuation of increased fuel economy in new cars and trucks. To meet these future requirements, all aspects of vehicle operation are being looked at more critically than ever before. New technology being introduced in GM vehicles designed to increase vehicle efficiency and fuel economy include direct injection, cam phasing, turbocharging and active fuel management (AFM). The demands of these new technologies on engine oil also are taken into consideration when determining new oil specifications. AFM for example can help to achieve improved fuel economy. However alternately deactivating and activating the cylinders by not allowing the intake and exhaust valves to open contributes to additional stress on the engine oil. Another industry trend for meeting tough fuel economy mandates has been a shift toward lower viscosity oils. dexos 1(TM) will eventually be offered in several viscosity grades in accordance with engine needs: SAE 0W-20, 5W-20, 0W-30 and 5W-30. Using the right viscosity grade oil is critical for proper engine performance. Always refer to the Maintenance section of a vehicle Owner Manual for the proper viscosity grade for the engine being serviced. GM Oil Life System in Conjunction With dexos (TM) Supports Extended Oil Change Intervals To help conserve oil while maintaining engine protection, many GM vehicles are equipped with the GM Oil Life System. This system can provide oil change intervals that exceed the traditional 3,000 mile (4,830 km) recommendation. The dexos (TM) specification, with its requirements for improved oil robustness, compliments the GM Oil Life System by supporting extended oil change intervals over the lifetime of a vehicle. If all GM customers with GM Oil Life System equipped vehicles would use the system as intended, GM estimates that more than 100 million gallons of oil could be saved annually. GM dexos 2(TM) Information Center Website Refer to the following General Motors website for dexos 2(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 2(TM) Engine Oil Trademark and Icons Page 207 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 3248 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 801 Page 6328 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 2330 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1847 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 8354 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Locations Body Control Module (BCM) Page 1786 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 3459 Tire Pressure Sensor: Technical Service Bulletins Tires - Minimizing Damage to TPM Sensors INFORMATION Bulletin No.: 08-03-10-007 Date: May 16, 2008 Subject: Minimizing Damage to Tire Pressure Monitor (TPM) Sensors During Tire Mounting/Dismounting Models: 2009 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Wheel Mounted Tire Pressure Sensors Minimizing Damage To TPM Sensors All GM vehicles now in production and sold in the U.S., as well as many vehicles sold in Canada, feature Tire Pressure Monitoring Systems that have valve stem mounted Tire Pressure Sensors. When dismounting and mounting tires, care must be taken when breaking the bead loose from the wheel. If the tire machines bead breaking fixture is positioned too close to the tire pressure sensor, as the tire bead breaks away from the wheel it may be forced into, or catch on the edge of the tire pressure sensor. This can damage the sensor and require the sensor to be replaced. Care must also be taken when transferring the tire bead to the other side of the wheel rim. As the tire machine rotates and the tire bead is stretched around the wheel rim, the bead can come in contact with the sensor if it is not correctly positioned in relation to the mounting/dismounting head prior to tire mounting/dismounting. This can also cause sensor damage requiring replacement. Procedure Notice: Use a tire changing machine in order to dismount tires. Do not use hand tools or tire irons alone in order to remove the tire from the wheel. Damage to the tire beads or the wheel rim could result. Notice: Do not scratch or damage the clear coating on aluminum wheels with the tire changing equipment. Scratching the clear coating could cause the aluminum wheel to corrode and the clear coating to peel from the wheel. 1. Remove the valve core from the valve stem. 2. Deflate the tire completely. Important: Rim-clamp European-type tire changers are recommended. 3. Use the tire changer in order to remove the tire from the wheel. Follow steps 4-7 to remove the tire from the wheel. 4. When separating the tire bead from the wheel position the bead breaking fixture 90, 180 and 270 degrees from the valve stem. Page 5741 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6169 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 10290 4. Shift lever to LOW. 5. Install the screw at the rear of the shiftier assembly. Tighten the actuator screw to 1.65 N.m (15 lb in). 6. Connect the electrical connector (3). 7. Verify the shift lock actuator functions properly. 8. Install the console. Refer to Console Replacement. Page 611 Body Control Module (BCM) C3 Page 9950 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2217 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8356 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 5139 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 7205 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 4335 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 205 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9850 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 8624 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4014 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 1704 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3800 Drive Belt Tensioner: Testing and Inspection Drive Belt Tensioner Diagnosis Inspection Procedure Notice: Allowing the drive belt tensioner to snap into the free position may result in damage to the tensioner. 1. Remove the drive belts. Refer to Drive Belt Replacement. 2. Position a hex-head socket on the belt tensioner pulley bolt head. 3. Move the drive belt tensioner through it's full travel. ^ The movement should feel smooth. ^ There should be no binding. ^ The tensioner should return freely. 4. If any binding is observed, replace the tensioner. Refer to Drive Belt Tensioner Replacement. 5. Install the drive belt. Refer to Drive Belt Replacement. Page 1840 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9699 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 2359 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2766 Propshaft Speed Sensor - Rear Page 9289 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 4440 Disclaimer Page 7533 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 7623 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4181 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 7429 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 7430 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 2533 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 764 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4559 Page 5951 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9531 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 3622 Jump Starting: Service and Repair Jump Starting in Case of Emergency Caution: Batteries produce explosive gases. Batteries contain corrosive acid. Batteries supply levels of electrical current high enough to cause burns. Therefore, in order to reduce the risk of personal injury while working near a battery, observe the following guidelines: * Always shield your eyes. * Avoid leaning over the battery whenever possible. * Do not expose the battery to open flames or sparks. * Do not allow battery acid to contact the eyes or the skin. - Flush any contacted areas with water immediately and thoroughly. - Get medical help. Notice: This vehicle has a 12 volt, negative ground electrical system. Make sure the vehicle or equipment being used to jump start the engine is also 12 volt, negative ground. Use of any other type of system will damage the vehicle's electrical components. 1. Position the vehicle with the booster battery so that the jumper cables will reach. * Do not let the 2 vehicles touch. * Make sure that the jumper cables do not have loose ends, or missing insulation. 2. Place an automatic transmission in PARK. If equipped with a manual transmission, place in NEUTRAL and set the parking brake. 3. Turn OFF all electrical loads on both vehicles that are not needed. Leave the hazard flashers ON, if required. 4. Turn OFF the ignition on both vehicles. Important: Some vehicles have a battery remote positive stud. ALWAYS use the battery remote positive stud in order to give or to receive a jump start. 5. Connect the red positive (+) cable to the battery positive (+) terminal (2) of the vehicle with the discharged battery. 6. Connect the red positive (+) cable to the positive (+) terminal (1) of the booster battery. 7. Connect the black negative (-) cable to the negative (-) terminal (3) of the booster battery. Caution: Do not connect a jumper cable directly to the negative terminal of a discharged battery to prevent sparking and possible explosion of battery gases. 8. The final connection is made to a heavy, unpainted metal engine part (4) of the vehicle with the discharged battery. This final attachment must be at least 46 cm (18 in) away from the dead battery. 9. Start the engine of the vehicle that is providing the boost and perform the following: * Turn OFF all accessories. * Raise the engine RPM to approximately 1,500 RPM for 5 minutes Notice: Never operate the starter motor more than 15 seconds at a time without pausing in order to allow it to cool for at least 2 minutes. Overheating will damage the starter motor. 10. Crank the engine of the vehicle with the discharged battery. If the engine does not crank or cranks too slowly, perform the following: * Turn the ignition OFF. * Allow the booster vehicle engine to run at approximately 1,500 RPM for an additional 5 minutes. * Attempt to start the engine of the vehicle with the discharged battery. 11. After the engine of the vehicle with the discharged battery starts, remove the jumper cables as follows: Page 6374 Step 1 - Step 6 Page 6150 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 6991 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Key and Lock Cylinder Coding Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Page 3347 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 4801 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 2128 Utility/Van Zoning UTILITY/VAN ZONING Page 8798 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8593 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) A/T - Shift Lock Control Actuator Available Shift Interlock Solenoid: Technical Service Bulletins A/T - Shift Lock Control Actuator Available Bulletin No.: 05-07-129-001B Date: February 16, 2007 INFORMATION Subject: Automatic Transmission Shift Lock Control Actuator Available for Service Use Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2006 Chevrolet TrailBlazer EXT 2003-2006 Chevrolet SSR 2002-2007 GMC Envoy 2002-2006 GMC Envoy XL 2004-2005 GMC Envoy XUV 2002-2004 Oldsmobile Bravada 2003-2007 HUMMER H2 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to update the model years and add the SSR. Please discard Corporate Bulletin Number 05-07-129-001A (Section 07 - Transmission/Transaxle). The automatic transmission shift lock control actuator is now available for service as a separate part. The actuator was formerly available only as part of the entire shifter assembly. DO NOT replace the shifter assembly if the shift lock control actuator requires replacement. Please refer to the Automatic Transmission Shift Lock Control Actuator Replacement procedure in the Automatic Transmission sub-section of the Service Information. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Specifications Crankshaft Gear/Sprocket: Specifications Install the crankshaft sprocket. Install the intake camshaft sprocket into the timing chain. Align the - dark link of the timing chain with the timing mark on the intake camshaft sprocket (1). Feed the timing chain down through the opening in the head. Install the timing chain onto the crankshaft sprocket. Align the - dark link of the timing chain with the timing mark on the crankshaft sprocket (2). Page 5002 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7367 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 10462 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10890 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8613 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5131 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 389 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1211 Ambient Light Sensor: Service and Repair AMBIENT LIGHT SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the windshield garnish moldings. 2. Remove the trim pad. 3. IMPORTANT: Cover the windshield defrost vents with clean shop rags. Disconnect the electrical connector from the sensor. 4. In order to remove the sensor from the trim pad, rotate the sensor counterclockwise 1/4 turn. 5. Remove the sensor from the trim pad. INSTALLATION PROCEDURE 1. Position the sensor to the trim pad. 2. In order to install the sensor to the trim pad, rotate the sensor clockwise 1/4 turn. 3. Position the trim pad to the upper portion of the instrument panel (I/P). 4. Connect the electrical connector to the sensor. 5. Remove the shop rags from the windshield defrost vents. 6. Install the trim pad to the I/P. 7. Install the windshield garnish moldings. Page 5088 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7856 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Communication Interface Module Replacement (TrailBlazer EXT, Envoy XL) Central Control Module: Service and Repair Communication Interface Module Replacement (TrailBlazer EXT, Envoy XL) Communication Interface Module Replacement (TrailBlazer EXT, Envoy XL) Removal Procedure Important: Do not exchange the vehicle communication interface module with other vehicles. Each vehicle communication interface module has a specific station identification (STID) and electronic serial number (ESN). These identification numbers are stored in the General Motors vehicle history files by VIN and used by OnStar(R) and the National Cellular Telephone Network. 1. Fold and tumble the right second row seat to a cargo position. 2. Remove the protective cover (1) from the vehicle communication interface module (VCIM). 3. Remove the VCIM from the bracket by releasing the retaining tab (1). 4. Remove the electrical connectors from the VCIM. 5. Remove the VCIM from the vehicle. Installation Procedure 1. If replacing the VCIM, record the 10-digit STID number, and the 11-digit ESN number from the labels on the new module. 2. Position the VCIM near the mounting location. 3. Install the quick connector to the VCIM. Page 8665 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8577 Page 7010 Page 3338 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 8325 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 3231 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1499 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 4377 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 10852 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9142 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 1215 Stop Lamp Switch Page 5407 Page 233 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10822 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5579 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 6018 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 766 Page 3629 Note: The vehicles shown must not be towed backwards or transmission damage may occur. Towing Procedure Note: Failure to follow these instructions may result in damage to the transmission. Important: The towing speed as stated in the Owner's Manual should not exceed 104 km/h (65 mph) for 1995-2005 vehicles. In order to properly dinghy tow the vehicle, follow these steps: 1. Firmly set the parking brake. 2. Open the fuse panel and pull the fuse(s) indicated in the Owner's Manual section detailing towing your vehicle. This prevents the instrument panel (IP) and/or electronic PRNDL indicator from draining the battery. 3. Securely attach the vehicle to the tow vehicle. 4. Turn the ignition key to the OFF position, which is one position forward of LOCK. Unlocking the steering column allows for proper movement of the front wheels and tires during towing. For 1997-1999 Cutlass, 1997-2003 Malibu, 2004-2006 Chevrolet Classic and 1999-2004 Alero/Grand Am models, turn the ignition switch to the accessory (ACC) position, which is one position forward of OFF. This position unlocks the transaxle. 5. Shift the transmission to Neutral (N). Note: Page 415 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 10786 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4896 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Page 8159 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 11027 Ensure that the electrical tabs are facing outboard. Notice: Refer to Fastener Notice. 6. Install the pressure control solenoid retainer and retaining bolt. Tighten the pressure control solenoid retaining bolt to 11 N.m (97 lb in). 7. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 8. Install the 1-2 accumulator. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 9. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 10. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 11. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 10453 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6419 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 8642 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 11213 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9361 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 6930 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Engine Controls - MIL ON/DTC P0483 Set PROM - Programmable Read Only Memory: All Technical Service Bulletins Engine Controls - MIL ON/DTC P0483 Set Bulletin No.: 06-06-02-010B Date: September 22, 2006 TECHNICAL Subject: Service Engine Soon Lamp Illuminated with Engine Cooling Fan System Performance DTC P0483 Currently Set or Stored in History (Reprogram PCM) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer Models 2007 GMC Envoy Models 2007 Saab 9-7X with 4.2L, 5.3L or 6.0L Engine (VINs S, M, H - RPOs LL8, LH6, LS2) Supercede: This bulletin is being revised to remove the Isuzu Ascender model from the VIN breakpoint table. Please discard Corporate Bulletin Number 06-06-02-010A (Section 06 - Engine/Propulsion System). Condition Some customers may comment on a Service Engine Soon (SES) lamp illuminated. Technicians may find an Engine Cooling Fan System Performance Diagnostic Trouble Code (DTC) P0483 currently set or stored in history. Cause This condition may be caused by more sensitive Powertrain Control Module (PCM) diagnostics and a reduced fan flare clutch for 2007 that have resulted in a system that is more sensitive to setting the fan performance DTC, P0483, while driving at low speed after a start-up with the Air Conditioning (A/C) on. Correction Technicians are to update the Powertrain Control Module (PCM) software in vehicles built prior to the VIN breakpoints shown. Page 5730 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5780 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1319 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 780 Engine Control Module: Service and Repair Powertrain Control Module Replacement Service of the powertrain control module (PCM) should normally consist of either replacement of the PCM or electrically erasable programmable read only memory (EEPROM) programming. If the diagnostic procedures call for the PCM to be replaced, the PCM should be inspected first to see if the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. Notice: * Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. * Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. * In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. * Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. * The replacement control module must be programmed. Important: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5 000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Loosen the PCM harness connector bolts (4) from the center of the PCM harness connectors. Notice: In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 3. Remove the PCM harness connectors (2) from the PCM (1). 4. Remove the PCM retaining bolts (3) and nuts (6). Notice: Refer to PCM and ESD Notice. 5. Slide the PCM (1) away from the intake manifold past the mounting studs (5) and remove PCM from the vehicle. 6. Remove the PCM mounting studs (5) from the intake manifold only if replacing the studs. Installation Procedure Page 2776 Notice: Refer to Fastener Notice. 1. Install the transfer case front speed sensor. Tighten the speed sensor to 17 N.m (13 lb ft). 2. Install the transfer case front speed sensor electrical connector. 3. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 4. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the transfer case left rear speed sensor electrical connector. 3. Remove the transfer case left rear speed sensor. Installation Procedure Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Page 8381 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 203 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5325 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10334 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7516 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair Air Cleaner Outlet Resonator Replacement Removal Procedure 1. Loosen the air cleaner outlet duct and air cleaner outlet resonator clamps (2). 2. Disconnect the air cleaner outlet duct from the air cleaner outlet resonator (3). 3. Remove the 2 air cleaner outlet resonator to engine bolts (4). 4. Disconnect the crankcase ventilation hose (1) from the valve cover port (2). 5. Disconnect the electrical connector to the intake air temperature (IAT) sensor. 6. Remove the air cleaner outlet resonator assembly (5) from the engine. Installation Procedure 1. Connect the electrical connector to the IAT sensor. 2. Install the air cleaner outlet resonator assembly (5) to the engine making sure of the following: * The crankcase ventilation hose (1) is connected to the valve cover port (2). * The air cleaner outlet resonator (5) is properly fit to the throttle body assembly. Notice: Refer to Fastener Notice. 3. Install the 2 air cleaner outlet resonator to engine bolts (4). Page 5623 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 8284 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 3301 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 7681 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8090 Page 2548 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4976 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5245 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 7708 Specifications Crankshaft Gear/Sprocket: Specifications Install the crankshaft sprocket. Install the intake camshaft sprocket into the timing chain. Align the - dark link of the timing chain with the timing mark on the intake camshaft sprocket (1). Feed the timing chain down through the opening in the head. Install the timing chain onto the crankshaft sprocket. Align the - dark link of the timing chain with the timing mark on the crankshaft sprocket (2). Page 848 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9275 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9452 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1961 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 1791 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 6745 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1695 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9695 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 6256 Page 5865 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 5726 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 4830 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 897 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9641 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6974 Powertrain Control Module (PCM) C2 (Pin 1 To 14) Page 10658 Parts Information Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 735 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9127 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 285 Memory Seat Module - Driver C3 (w/Memory) Page 9523 Page 5605 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 284 Memory Positioning Module: Diagrams Memory Seat Module - Driver C3 Memory Seat Module - Driver C2 (w/Memory) Page 10930 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 3410 7. Remove the junction block bracket retaining bolts (1) and remove the junction block bracket from the vehicle. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Position the junction block bracket and install the bolts (1). Tighten the junction block bracket bolts to 6 N.m (53 lb in). 2. Align the wiring harnesses and install the fuse relay center. Page 5485 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4301 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9664 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 2820 Important When performing adjustments to vehicles requiring a 4-wheel alignment, set the rear wheel alignment angles first in order to obtain proper front wheel alignment angles. Perform the following steps in order to measure the front and rear alignment angles: 1. Install the alignment equipment according to the manufacturer's instructions. 2. Jounce the front and the rear bumpers 3 times prior to checking the wheel alignment. 3. Measure the alignment angles and record the readings. If necessary, adjust the wheel alignment to vehicle specification and record the before and after measurements. Refer to Wheel Alignment Specifications in SI. Important Technicians must refer to SI for the correct wheel alignment specifications. SI is the only source of GM wheel alignment specifications that is kept up-to-date throughout the year. Test drive vehicle to ensure proper repair. Page 10804 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9496 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9835 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 6337 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10164 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9546 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Locations Manifold Pressure/Vacuum Sensor: Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 1589 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. OnStar(R) - Negative Impact of Cloth/Vinyl Roofs Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Negative Impact of Cloth/Vinyl Roofs INFORMATION Bulletin No.: 02-08-44-007D Date: May 12, 2009 Subject: Negative Impact of Dealer-Installed Cloth/Vinyl Roofs on XM Radio and/or OnStar(R) Systems Models: 2002-2009 Passenger Cars and Trucks (Including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with XM Radio (RPO U2K) and/or OnStar(R) (RPO UE1) .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to include the 2009 model year. Please discard Corporate Bulletin Number 02-08-44-007C (Section 08 - Body and Accessories). .............................................................................................................................................................. .................................................................................. Dealers should not install a cloth or vinyl roof on vehicles that have been ordered with the XM radio option (RPO U2K) and/or OnStar(R) (RPO UE1). The performance of these systems may be negatively impacted by the installation of the cloth/vinyl roof. Additionally, water leaks may result from installing a cloth or vinyl roof on vehicles with roof-mounted antenna systems. Relocating the antenna to another spot on the vehicle exterior, in order to install a cloth or vinyl roof, is not advised either. The performance of the OnStar(R) and XM Radio antennas has been optimized for their current locations. Relocating the antennas may result in a performance degradation. Disclaimer Page 209 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Diagrams Electronic Adjustable Pedals (EAP) Switch Page 4748 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 3342 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 5315 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 4362 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10911 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1981 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1397 Page 10486 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5083 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1687 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6500 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 5021 US English/Metric Conversion US English/Metric Conversion Page 4578 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3213 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9643 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6875 Page 6489 View of the connector when released from the component. View of another type of Micro 64 connector. Page 11151 US English/Metric Conversion US English/Metric Conversion Page 7189 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 1430 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5294 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 7819 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 8451 8. Disconnect the AIR hose from the solenoid valve. 9. Disconnect the engine coolant temperature (ECT) sensor electrical connector. Page 10854 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 7316 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 1904 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10513 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 6131 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2287 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8913 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 469 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4586 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 1660 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2984 6. Fill the crankcase with the proper quantity of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 7. Remove the oil level indicator. 8. Wipe the indicator with a clean cloth. 9. Install the oil level indicator. 10. Remove the oil level indicator and check the oil level. 11. Add oil if necessary. 12. Check for any oil leaks. Page 7540 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 5905 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 4535 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Locations Fluid Pressure Sensor/Switch: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 5731 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 689 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8018 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5915 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10390 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 732 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9221 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 10236 US English/Metric Conversion US English/Metric Conversion Page 7036 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9374 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4541 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8809 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5488 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5559 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 11236 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6952 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 3010 Notice: Refer to Fastener Notice. 3. Connect the evaporator tube to the evaporator (5). Tighten the nut to 28 N.m (21 lb ft). 4. Connect the auxiliary evaporator tube to the auxiliary piping. Tighten the nut to 28 N.m (21 lb ft). 5. Connect the evaporator tube to the condenser. Tighten the nut to 28 N.m (21 lb ft). 6. Install the coolant recovery tank. 7. Install the washer solvent container. 8. Install the nuts (1, 2) retaining the evaporator tube to the fender. Tighten the nuts to 28 N.m (21 lb ft). 9. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. 10. Leak test the fittings of the components using the J39400-A. Page 7996 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 8293 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Diagrams Battery Control Module: Diagrams Starting and Charging Connector End Views Regulated Voltage Control Module Page 10826 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9526 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 3921 14. Remove the timing chain tensioner shoe bolt. 15. Remove the timing chain tensioner shoe. 16. Remove the timing chain tensioner guide bolts. 17. Remove the timing chain tensioner guide. 18. Remove the timing chain tensioner bolts. 19. Remove the timing chain tensioner. Installation Procedure Page 4041 Contamination Mixing conventional green coolant with DEX-COOL(R) will degrade the service interval from 5 yrs./150,000 miles (240,000 km) to 2 yrs./30,000 miles (50,000 km) if left in the contaminated condition. If contamination occurs, the cooling system must be flushed twice immediately and re-filled with a 50/50 mixture of DEX-COOL(R) and clean water in order to preserve the enhanced properties and extended service interval of DEX-COOL(R). After 5 years/150,000 miles (240,000 km) After 5 yrs/150,000 miles (240,000 km), the coolant should be changed, preferably using a coolant exchanger. If the vehicle was originally equipped with DEX-COOL(R) and has not had problems with contamination from non-DEX-COOL(R) coolants, then the service interval remains the same, and the coolant does not need to be changed for another 5 yrs/150,000 miles (240,000 km) Equipment (Coolant Exchangers) The preferred method of performing coolant replacement is to use a coolant exchanger. A coolant exchanger can replace virtually all of the old coolant with new coolant. Coolant exchangers can be used to perform coolant replacement without spillage, and facilitate easy waste collection. They can also be used to lower the coolant level in a vehicle to allow for less messy servicing of cooling system components. It is recommended that you use a coolant exchanger with a vacuum feature facilitates removing trapped air from the cooling system. This is a substantial time savings over repeatedly thermo cycling the vehicle and topping-off the radiator. The vacuum feature also allows venting of a hot system to relieve system pressure. Approved coolant exchangers are available through the GMDE (General Motors Dealer Equipment) program. For refilling a cooling system that has been partially or fully drained for repairs other than coolant replacement, the Vac-N-Fill Coolant Refill Tool (GE-47716) is recommended to facilitate removal of trapped air from the cooling system during refill. Disclaimer Page 2683 Notice: Refer to Fastener Notice. 3. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 N.m (62 lb in). Important: Before reinstalling the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting. ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting. Important: A service replacement tire pressure sensor is shipped in OFF mode. In this mode the sensor's unique identification code cannot be learned into the passenger door modules (PDMs) memory. The sensor must be taken out of OFF mode by spinning the tire/wheel assembly above 32 km/h (20 mph) in order to close the sensors internal roll switch for at least 10 seconds. 4. Install the tire/wheel assembly on the vehicle. Refer to Tire and Wheel Removal and Installation. 5. Lower the vehicle. 6. Learn the tire pressure sensors. Refer to Tire Pressure Sensor Learn. Page 1457 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9409 Page 5161 Service and Repair Exhaust Pipe/Muffler Hanger: Service and Repair Exhaust System Insulator, Hanger, Bracket Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the heated oxygen sensor (H2OS) electrical connector. 3. Remove the nuts that secure the catalytic converter pipe to the exhaust manifold. 4. Discard the old exhaust seal. Do NOT reuse the seal. 5. Remove the nuts that secure the catalytic converter pipe to the muffler. 6. Remove the bolt securing the exhaust hanger to the transmission mount. 7. Remove the transmission mount. 8. Remove the catalytic converter and exhaust hanger assembly from the vehicle. 9. Remove the exhaust hanger from the catalytic converter. Installation Procedure Page 6711 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7792 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 10621 Transmission Speed Sensor: Service and Repair Vehicle Speed Sensor Replacement Removal Procedure 1. Remove the harness connector. 2. Remove the bolt (2). 3. Remove the vehicle speed sensor (1). 4. Remove the O-ring seal (3). Installation Procedure 1. Install the O-ring seal (3) on the vehicle speed sensor (1). 2. Coat the O-ring seal (3) with a thin film of transmission fluid. 3. Install the vehicle speed sensor (1) into the transmission case. Notice: Refer to Fastener Notice. 4. Install the bolt (2). Tighten the bolt to 11 N.m (97 lb in). 5. Connect the wiring harness electrical connector to the vehicle speed sensor. 6. Refill the fluid as required. Page 1467 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 7055 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4603 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 2197 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 2593 1 - Front Passenger Door 2 - Inflatable Restraint Side Impact Sensor (SIS) - Right 3 - Right Front Door Harness Electronic Frontal Sensors Page 5458 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4599 View of the connector when released from the component. View of another type of Micro 64 connector. Page 7575 * The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. * The MIL turns OFF after the engine is started if a diagnostic fault is not present. * The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. * The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. * When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. * When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. Trip A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). Warm-Up Cycle The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. Diagnostic Trouble Codes (DTCs) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC Status When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) - Indicates that this DTC failed during the present ignition cycle. Last Test Fail - Indicates that this DTC failed the last time the test ran. MIL Request - Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) - Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History - Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) - DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display Page 6923 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 7929 Page 2251 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 666 Page 11015 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 4784 Page 9344 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6531 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8606 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6287 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10926 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1158 Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Upper Left Side Air Temperature Sensor Replacement - Upper Left Side Removal Procedure 1. Remove the radio. 2. Remove the HVAC control module. 3. Remove the air temperature sensor. 4. Disconnect the electrical connector (2) from the upper air temperature sensor (1). Installation Procedure 1. Install the upper air temperature sensor (1) to the air duct (2). 2. Connect the electrical connector (2) to the upper air temperature sensor (1). 3. Install the upper air temperature sensor. 4. Install the HVAC control module. 5. Install the radio. Page 9958 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9310 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9366 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 9553 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10767 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 5444 View of the connector when released from the component. View of another type of Micro 64 connector. Page 4044 Coolant: Fluid Type Specifications ENGINE COOLANT The cooling system in your vehicle is filled with DEX-COOL engine coolant. This coolant is designed to remain in your vehicle for 5 years or 150,000 miles (240 000 km), whichever occurs first, if you add only DEX-COOL extended life coolant. A 50/50 mixture of clean, drinkable water and DEX-COOL coolant will: - Give freezing protection down to -34°F (-37°C). - Give boiling protection up to 265°F (129°C). - Protect against rust and corrosion. - Help keep the proper engine temperature. - Let the warning lights and gages work as they should. NOTICE: Using coolant other than DEX-COOL may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50 000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX-COOL (silicate-free) coolant in your vehicle. WHAT TO USE Use a mixture of one-half clean, drinkable water and one-half DEX-COOL coolant which won't damage aluminum parts. If you use this coolant mixture, you don't need to add anything else. CAUTION: Adding only plain water to your cooling system can be dangerous. Plain water, or some other liquid such as alcohol, can boil before the proper coolant mixture will. Your vehicle's coolant warning system is set for the proper coolant mixture. With plain water or the wrong mixture, your engine could get too hot but you would not get the overheat warning. Your engine could catch fire and you or others could be burned. Use a 50/50 mixture of clean, drinkable water and DEX-COOL coolant. NOTICE: If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. If you have to add coolant more than four times a year, check your cooling system. NOTICE: If you use the proper coolant, you do not have to add extra inhibitors or additives which claim to improve the system. These can be harmful. Page 6576 Body Control Module: Service and Repair Body Control Module Replacement BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. Do not open the BCM housing. The module does not have any serviceable components. The module may be replaced only as an assembly. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the 40-way body wiring extension (1) from the BCM. Page 690 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 11239 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 2185 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 10945 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 10103 Page 10288 Shift Interlock Solenoid: Service and Repair Automatic Transmission Shift Lock Actuator Replacement Important: After assembling the shift lock actuator, turn the ignition forward but do not start (auxiliary position) and attempt to pull the lever from PARK with and without the brake pedal depressed to verify there is no gear access without the brake pedal depressed. Important: Ensure the key cannot be removed from the ignition unless both the shiftier is in PARK and the shift knob button has been depressed. Removal Procedure 1. Remove the console. Refer to Console Replacement. 2. Disconnect the shift lock actuator (3) electrical connector. Page 8051 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion NVG 126-NP4 - Transfer Case Transfer Case Actuator: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Motor/Encoder Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy) 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 4229 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 3056 Processes shown in the Table 3 are capable of recycling waste engine coolants (DEX-COOL(R) or conventional) to a conventional (green) coolant. Recycling conventional coolant can be accomplished at your facility by a technician using approved EQUIPMENT (listed by model number in Table 3), or by an approved coolant recycling SERVICE which may recycle the coolant at your facility or at an offsite operation. Refer to the table for GM approved coolant recyclers in either of these two categories. Should you decide to recycle the coolant yourself, strict adherence to the operating procedures is imperative. Use ONLY the inhibitor chemicals supplied by the respective (GM approved) recycling equipment manufacturer. Sealing Tablets Cooling System Sealing Tablets (Seal Tabs) should not be used as a regular maintenance item after servicing an engine cooling system. Discoloration of coolant can occur if too many seal tabs have been inserted into the cooling system. This can occur if seal tabs are repeatedly used over the service life of a vehicle. Where appropriate, seal tabs may be used if diagnostics fail to repair a small leak in the cooling system. When a condition appears in which seal tabs may be recommended, a specific bulletin will be released describing their proper usage. Water Quality The integrity of the coolant is dependent upon the quality of DEX-COOL(R) and water. DEX-COOL(R) is a product that has enhanced protection capability as well as an extended service interval. These enhanced properties may be jeopardized by combining DEX-COOL(R) with poor quality water. If you suspect the water in your area of being poor quality, it is recommended you use distilled or de-ionized water with DEX-COOL(R). "Pink" DEX-COOL(R) DEX-COOL(R) is orange in color to distinguish it from other coolants. Due to inconsistencies in the mixing of the dyes used with DEX-COOL(R), some batches may appear pink after time. The color shift from orange to pink does not affect the integrity of the coolant, and still maintains the 5 yr/150,000 mile (240,000 km) service interval. Back Service Only use DEX-COOL(R) if the vehicle was originally equipped with DEX-COOL(R). Page 9936 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4185 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4349 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 2621 7. Remove the 2 bolts (1) securing the seat recliner to the seat adjuster. 8. Remove the seat back assembly from the seat cushion assembly. 9. Disconnect the seat belt buckle electrical connector (1). 10. Disconnect the wiring harness (2) from the seat position switch. 11. Remove the bolt (2) securing the seat belt buckle assembly (1) to the seat adjuster. 12. Remove the seat cushion cover and foam. 13. Remove the assist spring. Page 1667 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 5870 US English/Metric Conversion US English/Metric Conversion Page 6961 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1983 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8504 Air Injection Pump Relay: Diagrams Engine Controls Connector End Views Secondary Air Injection (AIR) Pump Relay (K18) Page 10933 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 5307 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9236 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1690 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5411 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7524 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 8830 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10319 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 7827 Page 9805 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4632 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 4841 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3985 Disclaimer Page 10541 5. Using the J-35616-5, attach the RED lead from the other jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 6. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 7. Touch the battery terminals of the second 9-volt battery to the battery terminals of the second jumper harness. This will rotate the encoder motor ( actuator) shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 8. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the reference lines as shown in the picture. This orientates the encoder motor (actuator) to NETURAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 9. Wiggle the control actuator lever shaft of the transfer case by hand to find the low point of the cam. 10. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. 11. After installation, the transfer case will perform a learn procedure upon a requested MODE change. Parts Information For warranty claims, submit batteries as parts. Page 4500 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 5806 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5103 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4013 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 7103 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 8961 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 4614 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 3277 Page 468 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 3170 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10637 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow these additional steps. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps to install the sensor, otherwise proceed to installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. Page 2264 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2260 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Wheels - Chrome Wheel Staining/Pitting/Corrosion Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Staining/Pitting/Corrosion INFORMATION Bulletin No.: 00-03-10-002F Date: April 21, 2011 Subject: Chemical Staining, Pitting, Corrosion and/or Spotted Appearance of Chromed Aluminum Wheels Models: 2012 and Prior GM Cars and Trucks Supercede: This bulletin is being revised to update model years, suggest additional restorative products and add additional corrosion information. Please discard Corporate Bulletin Number 00-03-10-002E (Section 03 - Suspension). Important You may give a copy of this bulletin to the customer. What is Chemical Staining of Chrome Wheels? Figure 1 Chemical staining in most cases results from acid based cleaners (refer to Figure 1 for an example). These stains are frequently milky, black, or greenish in appearance. They result from using cleaning solutions that contain acids on chrome wheels. Soap and water is usually sufficient to clean wheels. If the customer insists on using a wheel cleaner they should only use one that specifically states that it is safe for chromed wheels and does not contain anything in the following list. (Dealers should also survey any products they use during prep or normal cleaning of stock units for these chemicals.) - Ammonium Bifluoride (fluoride source for dissolution of chrome) - Hydrofluoric Acid (directly dissolves chrome) - Hydrochloric Acid (directly dissolves chrome) - Sodium Dodecylbenzenesulfonic Acid - Sulfamic Acid - Phosphoric Acid - Hydroxyacetic Acid Notice Many wheel cleaner instructions advise to take care to avoid contact with painted surfaces. Most customers think of painted surfaces as the fenders, quarter panels and other exterior sheet metal. Many vehicles have painted brake calipers. Acidic wheel cleaners may craze, crack, or discolor the paint on the brake calipers. Damage from wheel cleaners is not covered under the vehicle new car warranty. Soap and water applied with a soft brush is usually all that is required to clean the calipers. Whenever any wheel cleaner is used, it must be THOROUGHLY rinsed off of the wheel with clean, clear water. Special care must be taken to rinse under the hub cap, balance weights, wheel nuts, lug nut caps, between the wheel cladding and off the back side of the wheel. Wheels returned to the Warranty Parts Center (WPC) that exhibit damage from wheel cleaners most often have the damage around and under the wheel weight where the cleaner was incompletely flushed away. Notice Page 9013 1. Install the EVAP/fuel hose/pipe assembly into the clip (1) at the rear of the transmission. Notice: Refer to Fastener Notice. 2. Position the EVAP/fuel hose/pipe assembly against the transmission and install the retaining bolt (3) through the EVAP/fuel hose/pipe assembly strap into the transmission. Tighten the bolt to 3.75 N.m (33 lb in). 3. Raise the transmission to the normal installed position. 4. Install the transmission support. 8. Use the following procedure with 4WD: 1. Install the EVAP/fuel hose/pipe assembly (2) into the clip at the rear of the transmission. 2. Position the fuel EVAP/fuel hose/pipe assembly against the transmission and install the retaining bolt (3) through the EVAP/fuel hose/pipe assembly strap into the transmission. Tighten the bolt to 3.75 N.m (33 lb in). 3. Raise the transmission to the normal installed position. 4. Install the transmission support. 5. Install the transfer case. 9. Lower the vehicle. Page 200 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 498 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8811 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 10443 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 245 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7183 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 6082 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10031 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 708 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6164 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1332 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 2379 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5262 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 8583 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 1576 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Ignition System - MIL ON/Misfire DTC's In Wet Weather Ignition Coil: Customer Interest Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 6463 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10391 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7252 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 10966 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6708 Page 5584 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 7691 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2578 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 8776 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 8406 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2418 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 8239 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. NVG 126-NP4 - Transfer Case Speed Sensor: Diagrams NVG 126-NP4 - Transfer Case Propshaft Speed Sensor - Front Transfer Case Control Connector End Views Propshaft Speed Sensor - Front Propshaft Speed Sensor - Front Propshaft Speed Sensor - Rear Propshaft Speed Sensor - Rear Page 6449 Page 9109 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 4703 1. Install the exhaust hanger to the catalytic converter. 2. Install the catalytic converter and exhaust hanger assembly to the vehicle. Notice: Refer to Fastener Notice. 3. Install the bolt securing the catalytic converter pipe hanger to the transmission mount. Tighten the bolt to 30 N.m (22 lb ft). 4. Install the transmission mount. 5. Install the catalytic converter pipe to the exhaust manifold with a NEW exhaust seal. 6. Hand thread the nuts evenly against the exhaust flange until the pipe is secure. Tighten the nuts to 50 N.m (37 lb ft). 7. Connect the H2OS electrical connector. 8. Lower the vehicle. Page 9282 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 7323 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 10791 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10840 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10359 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5499 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8302 US English/Metric Conversion US English/Metric Conversion Page 1830 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 500 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6527 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 6895 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 3080 Page 9697 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 6480 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8191 Oxygen Sensor: Service Precautions Excessive Force and Oxygen Sensor Notice Excessive Force and Oxygen Sensor Notice Notice: The oxygen sensor may be difficult to remove when the engine temperature is below 48°C (120°F). Excessive force may damage threads in the exhaust manifold or the exhaust pipe. Page 8058 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 6528 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 8824 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 3979 Disclaimer Page 4848 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 1316 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 6972 Powertrain Control Module (PCM) C1 (Pin 1 To 24) Page 5306 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 9678 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9383 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4288 Page 4187 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 9368 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 2255 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8084 Diagram Information and Instructions Torque Converter Clutch Solenoid: Diagram Information and Instructions Electrical Symbols Page 1792 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 1427 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 5249 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 5299 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 6990 4. Clean the fuel sender sealing surfaces (4). Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Page 10001 Page 8483 Canister Vent Valve: Diagrams Engine Controls Connector End Views Evaporative Emission (EVAP) Canister Vent Solenoid A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: All Technical Service Bulletins A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Page 9964 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Tire Monitor System - TPM Sensor Information Tire Pressure Monitor Receiver / Transponder: Technical Service Bulletins Tire Monitor System TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Page 9786 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5235 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4574 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 8336 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 10572 7. Connect the ECM electrical connector (1) to the TCM (2) if previously removed. 8. Install the ECM/TCM cover (2) to the ECM/TCM bracket (1). 9. Ensure the ECM/TCM cover retainers (2) are fully engaged with the ECM/TCM bracket (1). 10. Connect the cooling fan electrical connector. 11. Connect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 12. If the TCM was replaced the replacement TCM must be programmed. Refer to Control Module References. Page 3919 Timing Chain: Service and Repair Timing Chain, Sprockets, and/or Tensioner Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 44221 Camshaft Holding Tool Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Remove the engine front cover. Refer to Engine Front Cover Replacement. 3. Release the tension on the timing chain by moving the tensioner shoe in. 4. Place the tee into the tensioner to hold the shoe in place. 5. Remove the top chain guide bolts. 6. Remove the top chain guide. Page 729 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 2579 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 5984 Page 1268 Behind Left Headlamp Page 1444 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5502 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 10944 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 1172 Solar Sensor: Service and Repair Sun Load Sensor Replacement Removal Procedure 1. Remove the I/P upper trim pad. 2. Remove the sun load sensor from the I/P upper trim pad by turning counter clockwise. 3. Disconnect the electrical connector from the sun load sensor. Installation Procedure 1. Connect the electrical connector to the sun load sensor. 2. Install the sun load sensor to the I/P upper trim pad by turning clockwise. 3. Install the I/P upper trim pad. Page 1913 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8119 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 6205 US English/Metric Conversion US English/Metric Conversion Page 10817 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5777 Page 9806 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 3814 14. Connect the cooling fan hub nut to the water pump shaft. 15. Install the cooling fan. Refer to Cooling Fan and Shroud Replacement. 16. Connect the battery negative cable. Refer to Battery Negative Cable Disconnection and Connection. Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 5474 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5274 Page 3888 8. Wipe off any excess material from the bottom of the oil pan sealing area (1). 9. Install the flywheel and secure with the bolts. Tighten the flywheel bolts in sequence to 25 N.m (18 lb ft). 10. Use the J 36660-A to tighten the bolts an additional 50 degrees. 11. Install the transmission. Refer to Transmission Replacement (LL8) Transmission Replacement (LM4, LS2). Page 2568 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3054 Coolant: Technical Service Bulletins Cooling System - Coolant Recycling Information Bulletin No.: 00-06-02-006D Date: August 15, 2006 INFORMATION Subject: Engine Coolant Recycling and Warranty Information Models: 2007 and Prior GM Passenger Cars and Trucks (Including Saturn) 2007 and Prior HUMMER Vehicles 2005-2007 Saab 9-7X Attention: Please address this bulletin to the Warranty Claims Administrator and the Service Manager. Supercede: This bulletin is being revised to adjust the title and Include Warranty Information. Please discard Corporate Bulletin Number 00-06-02-006C (Section 06 - Engine/Propulsion System). Coolant Reimbursement Policy General Motors supports the use of recycled engine coolant for warranty repairs/service, providing a GM approved engine coolant recycling system is used. Recycled coolant will be reimbursed at the GMSPO dealer price for new coolant plus the appropriate mark-up. When coolant replacement is required during a warranty repair, it is crucial that only the relative amount of engine coolant concentrate be charged, not the total diluted volume. In other words: if you are using two gallons of pre-diluted (50:50) recycled engine coolant to service a vehicle, you may request reimbursement for one gallon of GM Goodwrench engine coolant concentrate at the dealer price plus the appropriate warranty parts handling allowance. Licensed Approved DEX-COOL(R) Providers Important: USE OF NON-APPROVED VIRGIN OR RECYCLED DEX-COOL(R) OR DEVIATIONS IN THE FORM OF ALTERNATE CHEMICALS OR ALTERATION OF EQUIPMENT, WILL VOID THE GM ENDORSEMENT, MAY DEGRADE COOLANT SYSTEM INTEGRITY AND PLACE THE COOLING SYSTEM WARRANTY UNDER JEOPARDY. Shown in Table 1 are the only current licensed and approved providers of DEX-COOL(R). Products that are advertised as "COMPATIBLE" or "RECOMMENDED" for use with DEX-COOL(R) have not been tested or approved by General Motors. Non-approved coolants may degrade the Page 11172 Torque Converter Clutch Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 814 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 10059 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9585 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 5745 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 5828 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1404 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6086 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10367 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 10181 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 8008 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7337 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8674 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 5253 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 742 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 5668 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9272 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 674 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 479 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1300 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 7168 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9394 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 10143 Page 5450 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 5435 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4513 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5477 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 839 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6982 since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Page 9079 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 396 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 2908 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ...................................................................AC 41-981 Page 1968 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 2101 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 11178 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10177 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 234 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 4964 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7332 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4785 Page 1890 Page 6195 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5569 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 182 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4075 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 3424 Frequently Asked Questions Disclaimer Page 5283 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 2191 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6130 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8770 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 2910 4. Inspect for evidence of improper arcing. * Measure the gap between the center electrode (4) and the side electrode (3) terminals. An excessively wide electrode gap can prevent correct spark plug operation. * Inspect for the correct spark plug torque. * Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). * Inspect for a broken or worn side electrode (3). * Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. - A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. * Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. * Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. * Inspect for excessive fouling. 5. Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Spark Plug Visual Inspection 1. Normal operation-Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. 2. Carbon fouled-Dry, fluffy black carbon, or soot caused by the following conditions: * Rich fuel mixtures - Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion * Reduced ignition system voltage output - Weak coils - Worn ignition wires - Incorrect spark plug gap * Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. 3. Deposit fouling-Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark intensity. Most powdery deposits will not effect spark intensity unless they form into a glazing over the electrode. Page 9722 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7776 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7234 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 9151 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4829 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 33 * Dealers using WINs: Add 0.2 hours to the labor time for administrative allowance for the module exchange. Dealers using GWM: Submit 0.2 hours administrative allowance under "Administration Time" for the module exchange. ** The $25 represents the additional net amount allowed for the module exchange. *** Dealers are to claim only administrative allowance of 0.2 hours when the module is replaced by Masscomp's Mobile Unit. Dealers using WINS should submit the 0.2 hours administrative allowance in labor time. Dealer using GWM should submit the 0.2 hours administrative allowance under Administrative Time. Customer Notification OnStar will notify customers of this program on their vehicle. Dealer Program Responsibility All unsold new vehicles in dealers'/retailers' possession and subject to this program must be held and inspected/repaired per the service procedure of this program bulletin before customers take possession of these vehicles. Dealers/retailers are to service all vehicles subject to this program at no charge to customers, regardless of mileage, age of vehicle, or ownership, through April 30, 2011. Customers who have recently purchased vehicles sold from your vehicle inventory, and for which there is no customer information indicated on the dealer/retailer listing, are to be contacted by the dealer/retailer. Arrangements are to be made to make the required correction according to the instructions contained in this bulletin. A copy of the customer letter is provided in this bulletin for your use in contacting customers. Program follow-up cards should not be used for this purpose, since the customer may not as yet have received the notification letter. Engine/Transmission - Aftermarket Calibrations PROM - Programmable Read Only Memory: All Technical Service Bulletins Engine/Transmission Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 6677 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4113 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7907 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5229 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 4382 Procedures Fuel Injector: Procedures Fuel Injector Cleaning Tools Required * J37287 Fuel Line Shut-Off Adapters * J35800-A Fuel Injector Cleaner * J42873-1 3/8 Fuel Line Shut-Off Valve * J42873-2 5/16 Return Pipe Shut-Off Valve * J42964-1 3/8 Fuel Pipe Shut-Off Valve * J42964-2 5/16 Fuel Pipe Shut-Off Valve Notice: * GM Top-Engine Cleaner is the only injector cleaning agent recommended. Do not use other cleaning agents, as they may contain methanol which can damage fuel system components. * Under NO circumstances should the top engine cleaner be added to the vehicles fuel tank, as it may damage the fuel pump and other system components. * Do not exceed a 10 percent cleaning solution concentration. Higher concentrations may damage fuel system components. Testing has demonstrated that exceeding the 10 percent cleaning solution concentration does not improve the effectiveness of this procedure. Important: Vehicles with less than 160 km (100 mi) on the odometer should not have the injectors cleaned. These vehicles should have the injectors replaced. Important: During this procedure you will need a total of 960 ml (32.4 oz) of cleaning solution. That is 2 tanks of solution for the J35800-A. Other brands of tools may have a different capacity and would therefore require more or less tanks to complete the procedure. You must use all 960 ml (32.4 oz) of solution to ensure complete injector cleaning. 1. Obtain J35800-A (2). Important: Make sure the valve at the bottom of the canister (3) is closed. 2. For US dealers, empty 2 pre-measured GM Top-Engine Cleaner containers, 24 ml (0.812 oz) each, GM P/N 12346535, into the J35800-A. 3. For Canadian dealers, measure and dispense 48 ml (1.62 oz) of Top-Engine Cleaner, Canadian P/N 992872, into the J35800-A. 4. If you are using any other brand of tank you will need a total of 96 ml (3.24 oz) of Top-Engine Cleaner mixed with 864 ml (29.16 oz) of regular unleaded gasoline. 5. Fill the injector cleaning tank with regular unleaded gasoline. Be sure to follow all additional instructions provided with the tool. 6. Electrically disable the vehicle fuel pump by removing the fuel pump relay and disconnecting the oil pressure switch connector, if equipped. 7. Disconnect the fuel feed and return line, if equipped, at the fuel rail. Plug the fuel feed and return line, if equipped, coming off the fuel rail with J37287 , or J42964-1 , and J42964-2 or J42873-1 , and J42873-2 as appropriate for the fuel system. 8. Connect the J35800-A to the vehicle fuel rail. 9. Pressurize the J35800-A to 510 kPa (75 psi). 10. Start and idle the engine until it stalls due to lack of fuel. This should take approximately 15-20 minutes. 11. Disconnect J35800-A from the fuel rail. 12. Reconnect the vehicle fuel pump relay and oil pressure switch connector, if equipped. Page 7079 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 4655 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9734 Page 7574 Engine Control Module: Description and Operation Powertrain Control Module Description Powertrain The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: * The engine fueling * The ignition control (IC) * The knock sensor (KS) system * The evaporative emissions (EVAP) system * The secondary air injection (AIR) system (if equipped) * The exhaust gas recirculation (EGR) system * The automatic transmission functions * The generator * The A/C clutch control * The cooling fan control Powertrain Control Module Function The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. Malfunction Indicator Lamp (MIL) Operation The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: Page 10307 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 10395 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9524 Page 9146 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1782 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 1640 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 1724 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 5462 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 1671 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 11129 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 1610 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4471 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 7626 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 738 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9660 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 2029 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 728 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7362 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3326 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 1803 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Heated Oxygen Sensor 1 Replacement Oxygen Sensor: Service and Repair Heated Oxygen Sensor 1 Replacement Heated Oxygen Sensor 1 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 2. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must install the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). Page 5227 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 6808 Page 7150 Utility/Van Zoning UTILITY/VAN ZONING Page 9335 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9448 View of the connector when released from the component. View of another type of Micro 64 connector. Page 3604 4. Install the ABS sensor to the wheel hub and bearing. 5. Install the ABS sensor mounting bolt to the wheel hub and bearing. Tighten the ABS sensor to the wheel hub and bearing mounting bolt to 18 N.m (13 lb ft). 6. Install the brake rotor. Refer to Front Brake Rotor Replacement. 7. Install the tire and wheel. Refer to Tire and Wheel Removal and Installation. 8. Lower the vehicle. 9. Install the drive axle nut. Tighten the drive axle nut to 140 N.m (103 lb ft). 10. Install the tire and wheel center cap. Page 5920 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9458 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 8767 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 4196 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9674 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 6595 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 5333 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 2104 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9076 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency NVG 126-NP4 - Transfer Case Transfer Case Actuator: Diagrams NVG 126-NP4 - Transfer Case Transfer Case Encoder Motor Transfer Case Encoder Motor Transfer Case Encoder Motor Page 1308 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8254 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3208 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8552 Disclaimer Page 9718 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 5258 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 3322 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 10189 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4806 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8726 Fuel injector restrictions, deposits can be cleaned on the vehicle using the following procedure. Under NO circumstances should this procedure be modified, changed or shortened. As a long term solution, and to prevent reoccurrence, customers should be encouraged to use Top Tier Detergent Gasoline. For further information on Top Tier detergent gasoline and fuel retailers, please refer to the following Corporate Bulletin Numbers: - 04-06-04-047G (U.S. Only) - 05-06-04-022D (Canada ONLY) Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent approved for use with General Motors fuel system components. Other injector cleaners may cause damage to plastics, plated metals or bearings. General Motors has completed extensive laboratory testing of GM Upper Engine and Fuel Injector Cleaner, and can assure its compatibility with General Motors fuel system components, as long as the cleaning procedure is followed correctly. Injector Cleaning Procedure The following tools, or their equivalent, are required: - CH-47976 Active Fuel Injector Tester (AFIT) - J 35800-A Fuel Injector Cleaner - J 37287 Fuel Line Shut-off Adapter - J 42964 Fuel Line Shut-off Adapter - J 42873 Fuel Line Shut-off Adapter - * One bottle of GM Upper Engine and Fuel Injector Cleaner, P/N 88861802 (in Canada, P/N 88861804) - * One bottle of GM Fuel System Treatment Plus, P/N 88861011 (in Canada, P/N 88861012) Active Fuel Injector Tester (AFIT- CH-47976) Some dealers may not have an Active Fuel Injector Tester (AFIT- CH-47976). Dealers can contact to order an AFIT- CH-47976. Dealers still can test the fuel injectors without an AFIT. Refer to Fuel Injector Diagnosis (w/ J 39021 or Tech 2(R)) in SI. Important As mentioned in the AFIT User Guide, vehicles that are not listed in the AFIT menu can still be tested with the AFIT. Depending on the model, it may be possible to enter the previous model year and proceed with testing using the DLC connection. If this is not possible on the model that you are working on, it will be necessary to use the direct connection method outlined in the AFIT User Guide (See Pages 17-31). General Motors recommends that the Active Fuel Injector Tester (AFIT) be used in testing fuel injectors. If the SI diagnostics do not isolate a cause for this concern, use the Active Fuel Injector Tester (AFIT - CH-47976) to perform an "Injector Test" as outlined in the AFIT User Guide. The AFIT "Injector Test" measures the flow characteristics of all fuel injectors, which is more precise when compared with the standard Tech 2(R) fuel injector balance test. As a result, the AFIT is more likely to isolate the cause of a P1174 DTC (for example: if it is being caused by a fuel injector concern). The CH-47976 (Active Fuel Injector Tester - AFIT) can also be used to measure fuel pressure and fuel system leak down. Also, as mentioned in the P1174 SI diagnosis, if the misfire current counters or misfire graph indicate any misfires, it may be an indicator of the cylinder that is causing the concern. Refer to Fuel Injector Diagnosis (w/CH-47976) in SI for additional instructions. Training (U.S.) To access the training video on AFIT, take the following path at the GM Training Website: 1. After logging into the training website, choose the link on the left side of the page titled "web video library." 2. Then choose "technical." 3. Next, within the search box, type in September course number "10206.09D. 4. This will bring up a link with this course. Scroll through to choose "feature topic." 5. At this point, the seminar can be chosen to view or the video related to the AFIT. Additional training is available from the training website. Please see TECHassist 16044.18T2 Active Fuel Injector Tester and also see 16044.14D1 GM Powertrain Performance for more information on GM Upper Engine and Fuel Injector Cleaner. Page 5350 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. OnStar(R) - Analog/Digital System Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Analog/Digital System Information INFORMATION Bulletin No.: 06-08-46-008C Date: September 18, 2008 Subject: Information on OnStar(R) Dual-Mode (Analog/Digital) Systems Models Supercede: This bulletin is being revised to correct the model year range for the Chevrolet Impala and Monte Carlo and update the reference to GM Dealerworld. Please discard Corporate Bulletin Number 06-08-46-008B (Section 08 - Body and Accessories). All 2000-2003 model year vehicles equipped with OnStar® from the list above were built with Analog/Digital-Ready OnStar(R) Hardware. Some of these vehicles may have been upgraded to Dual-Mode (Analog/Digital). Certain 2004-2005 model year vehicles equipped with OnStar(R) from the list above may have been either: ^ Originally built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware with Dual-Mode (Analog/Digital) OnStar(R) Hardware OR ^ Upgraded to Dual-Mode (Analog/Digital) Hardware All 2006 model year and newer vehicles equipped with OnStar(R) were built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware. If a vehicle has Dual-Mode (Analog/Digital) OnStar(R) Hardware, then the system is capable of operating on both the analog and digital cellular Page 10312 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 8221 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 6062 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9140 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8132 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 2282 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6724 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Locations Pressure Regulating Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 7361 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 8023 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 9316 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 1019 Steering Wheel Control Switch Assembly - Upper Left (STW) Steering Wheel Control Switch Assembly - Upper Right (STW) Page 892 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 472 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 8179 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 8016 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5180 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2510 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6778 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7605 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6513 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 1348 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5102 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Service and Repair Fluid Filter - A/T: Service and Repair Automatic Transmission Fluid and Filter Replacement Removal Procedure Caution: When the transmission is at operating temperatures, take necessary precautions when removing the drain plug, to avoid being burned by draining fluid. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the catalytic converter. Refer to Catalytic Converter Replacement (4.2L Engine) Catalytic Converter Replacement (5.3L and 6.0L Engines). 3. Place a drain pan under the transmission oil pan. 4. Remove the oil pan drain plug, if equipped. 5. If necessary, remove the bolts and position aside the range selector cable bracket for clearance while lowering the pan. It is not necessary to remove the cable from the lever or bracket. 6. Remove the oil pan bolts from the front and sides of the pan only. 7. Loosen the rear oil pan bolts approximately 4 turns. 8. Lightly tap the oil pan with a rubber mallet in order to loosen the pan to allow the fluid to drain. 9. Remove the remaining oil pan bolts. 10. Remove the oil pan and the gasket. Page 8290 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 9528 Page 8371 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2122 Page 8231 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8410 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10472 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4088 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 4100 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2513 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 7350 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 3002 Heater Hose: Service and Repair Heater Outlet Hose Replacement (LL8) Heater Outlet Hose Replacement (LL8) Tools Required * J43181 Heater Line Quick Connect Release Tool * GE-47622 Hose Clamp Pliers Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the transmission. 3. Remove the generator. 4. Using the J43181, disconnect the outlet hose from the heater core outlet tube (1). 1. Install the J43181 to the outlet heater core hose. 2. Close the tool around the outlet heater core hose. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. 5. Remove the heater outlet hose (3) from the heater core (1). 6. Position the outlet heater hose clamp (6) at the water pump using GE-47622. 7. Remove the heater outlet hose (7) from the outlet hose fitting. 8. Remove the heater outlet hose. Installation Procedure 1. Install the outlet heater hose. 2. Install the heater outlet hose (7) to the outlet hose fitting. 3. Position the outlet heater hose clamp (6) at the outlet hose fitting using GE-47622. Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor Grommet Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire/wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal, the cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ Position the bead breaking fixture 90 degrees from the valve stem when separating the tire bead from the wheel. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: If any tire sealant is noted upon tire dismounting, replace the sensor. Refer to Tire Pressure Sensor Replacement. Also remove all residual liquid sealant from the inside of the tire and wheel surfaces. ^ Remove the tire pressure sensor nut. ^ Remove the sensor from the wheel hole. ^ Remove the sensor grommet from the valve stem. Installation Procedure 1. Clean any dirt or debris from the grommet sealing areas. 2. Install the grommet on the sensor valve stem. Page 2209 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 3022 25. Install the power steering return hose and the power steering cooler hose to the power steering cooler as shown. 26. Connect the power steering hose assembly to the power steering gear. 27. Install the power steering hose assembly to power steering gear retaining bolt. Tighten the bolt to 12 N.m (106 lb in). 28. Remove the drain pan from under the vehicle. 29. Install the engine protection shield. Refer to Engine Protection Shield Replacement. 30. Lower the vehicle. 31. Bleed the power steering system. Refer to Power Steering System Bleeding. Page 6776 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1301 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Diagram Information and Instructions Shift Solenoid: Diagram Information and Instructions Electrical Symbols Page 1657 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 7290 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 9476 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9186 Page 11219 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 3165 Utility/Van Zoning UTILITY/VAN ZONING Page 8089 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 3893 2. Use the J 44218 to install the front oil seal. 3. Remove the J 44218. 4. Install the crank balancer shaft. Refer to Crankshaft Balancer Replacement. Page 9110 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6358 Page 7454 Assemble the arbor, forcing screw, attaching bolts and socket. Refer to the illustration titled, Special Installation Tool Assembly Needed. Install the tool press assembly to the end of the crankshaft flange and position the socket and service cup plug into the bore of the crankshaft flange. Refer to the above illustration for proper tool set up before pressing the cup plug into the end of the crankshaft. The forcing screw will fit inside an 18 MM or 19 MM end of the impact style socket with the 1/2" drive side of the socket facing the service cup plug. The forcing screw should bottom on the 15 MM step inside the socket. Refer to the above illustrations on 1/2" drive impact style socket dimensions. Hand tighten the forcing screw into the socket, making sure that it is centered on the service cup plug. Mark the forcing screw and arbor for reference, then tighten the forcing screw two complete turns and an additional 90 degrees or 1/4 turn more. When completed, remove the installation tool assembly and confirm the installation depth of the service cup plug. Place a straight edge across the center of the crankshaft flange as the measurement point. Measure from the straight edge to the center of the installed cup plug. The depth of the installed cup plug should be 16-17 mm (0.63-0.67 in). Refer to the above illustration to confirm the installed depth. Parts Information Warranty Information (excluding Saab U.S. Models) Page 10511 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6663 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Drivetrain - Transfer Case Grinds In 4WD/AWD Transfer Case Actuator: Customer Interest Drivetrain - Transfer Case Grinds In 4WD/AWD TECHNICAL Bulletin No.: 08-04-21-001B Date: August 25, 2008 Subject: NVG 126/226 Transfer Case Grating/Grinding Noise When 4WD is Engaged, Service 4WD Lamp On, DTC C0327 Set (Replace Clutch Pressure Plate Bearing Assembly and Clutch Lever) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (NP8) Transfer Case Built Prior to September 18, 2007 (NVG 126) or September 21, 2007 (NVG 226) Supercede: This bulletin is being revised to update the correction information to include a procedure to reindex the transfer case encoder motor (actuator). This procedure is being provided to help reduce unnecessary warranty expenses. Please discard Corporate Bulletin Number 08-04-21-001A (Section 04 - Transmission/Transaxle). Condition Some customers may comment on a grinding type noise in the transfer case when 4WD is engaged in either AUTO or 4WD mode. This noise may also be accompanied by the SERVICE 4WD lamp being illuminated and DTC C0327 set. This condition is more prevalent on vehicles where 4WD is continuously used. Cause This noise may be caused by a faulty clutch pressure plate bearing. Correction A more robust clutch pressure plate bearing, inner plate and clutch lever has been released for service. Replace the clutch pressure plate bearing, inner plate and clutch lever. Refer to the Transfer Case Disassemble and Transfer Case Assemble procedures in SI. Former and new parts should not be intermixed during transfer case overhaul and they are to be used in sets only. DO NOT replace the transfer case assembly unless extensive internal damage has occurred. Important: When the clutch pressure plate bearing fails, it causes the clutch lever to over-travel, allowing the transfer case encoder motor (actuator) to rotate to an invalid position. Engineering has developed a tool and procedure to reindex the transfer case encoder motor (actuator) so it can be reused. Use the specific procedure listed below. NVG 126 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (2) J-356165 Terminal Test Adapter (Test Probe) Page 10127 Ignition Switch Lock Cylinder: Service and Repair Ignition Lock Cylinder Replacement IGNITION LOCK CYLINDER REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the negative battery cable. CAUTION: Refer to SIR Caution. 2. Disable the SIR system. Refer to SIR Disabling and Enabling. 3. Lower the hush and knee bolster. Refer to Knee Bolster Replacement. 4. Remove the steering column trim covers. 5. With the key installed, turn the key to the RUN position. 6. Install an allen wrench into the hole on top of the lock cylinder housing. Push down on the allen wrench to release the tab on the lock cylinder inside the lock cylinder housing. 7. Slide the lock cylinder out of the lock cylinder housing. INSTALLATION PROCEDURE 1. Install the key into the lock cylinder. IMPORTANT: The gears between the ignition switch and the lock cylinder housing must be in the correct position. Failure to do so will cause a misalignment of the gears in the ignition switch and the lock cylinder housing, which may result in a NO START or BATTERY DRAIN. Page 807 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 9199 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 3138 Brake Bleeding: Service and Repair Hydraulic Brake System Bleeding Manual Hydraulic Brake System Bleeding (Manual) Caution: Refer to Brake Fluid Irritant Caution. Notice: Refer to Brake Fluid Effects on Paint and Electrical Components Notice. Notice: When adding fluid to the brake master cylinder reservoir, use only Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. The use of any type of fluid other than the recommended type of brake fluid, may cause contamination which could result in damage to the internal rubber seals and/or rubber linings of hydraulic brake system components. 1. Place a clean shop cloth beneath the brake master cylinder to prevent brake fluid spills. 2. With the ignition OFF and the brakes cool, apply the brakes 3-5 times, or until the brake pedal effort increases significantly, in order to deplete the brake booster power reserve. 3. If you have performed a brake master cylinder bench bleeding on this vehicle, or if you disconnected the brake pipes from the master cylinder, you must perform the following steps: 1. Ensure that the brake master cylinder reservoir is full to the maximum-fill level. If necessary add Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. If removal of the reservoir cap and diaphragm is necessary, clean the outside of the reservoir on and around the cap prior to removal. 2. With the rear brake pipe installed securely to the master cylinder, loosen and separate the front brake pipe from the front port of the brake master cylinder. 3. Allow a small amount of brake fluid to gravity bleed from the open port of the master cylinder. 4. Reconnect the brake pipe to the master cylinder port and tighten securely. 5. Have an assistant slowly depress the brake pedal fully and maintain steady pressure on the pedal. 6. Loosen the same brake pipe to purge air from the open port of the master cylinder. 7. Tighten the brake pipe, then have the assistant slowly release the brake pedal. 8. Wait 15 seconds, then repeat steps 3.3-3.7 until all air is purged from the same port of the master cylinder. 9. With the front brake pipe installed securely to the master cylinder, after all air has been purged from the front port of the master cylinder, loosen and separate the rear brake pipe from the master cylinder, then repeat steps 3.3-3.8. 10. After completing the final master cylinder port bleeding procedure, ensure that both of the brake pipe-to-master cylinder fittings are properly tightened. 4. Fill the brake master cylinder reservoir with Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. Ensure that the brake master cylinder reservoir remains at least half-full during this bleeding procedure. Add fluid as needed to maintain the proper level. Clean the outside of the reservoir on and around the reservoir cap prior to removing the cap and diaphragm. 5. Install a proper box-end wrench onto the RIGHT REAR wheel hydraulic circuit bleeder valve. 6. Install a transparent hose over the end of the bleeder valve. 7. Submerge the open end of the transparent hose into a transparent container partially filled with Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 8. Have an assistant slowly depress the brake pedal fully and maintain steady pressure on the pedal. 9. Loosen the bleeder valve to purge air from the wheel hydraulic circuit. 10. Tighten the bleeder valve, then have the assistant slowly release the brake pedal. 11. Wait 15 seconds, then repeat steps 8-10 until all air is purged from the same wheel hydraulic circuit. 12. With the right rear wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the right rear hydraulic circuit install a proper box-end wrench onto the LEFT REAR wheel hydraulic circuit bleeder valve. 13. Install a transparent hose over the end of the bleeder valve, then repeat steps 7-11. 14. With the left rear wheel hydraulic circuit bleeder valve tightened securely, after all air purged from the left rear hydraulic circuit, install a proper box-end wrench onto the RIGHT FRONT wheel hydraulic circuit bleeder valve. 15. Install a transparent hose over the end of the bleeder valve, then repeat steps 7-11. 16. With the right front wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the right front hydraulic circuit, install a proper box-end wrench onto the LEFT FRONT wheel hydraulic circuit bleeder valve. 17. Install a transparent hose over the end of the bleeder valve, then repeat steps 7-11. 18. After completing the final wheel hydraulic circuit bleeding procedure, ensure that each of the 4 wheel hydraulic circuit bleeder valves are properly tightened. 19. Fill the brake master cylinder reservoir to the maximum-fill level with Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 20. Slowly depress and release the brake pedal. Observe the feel of the brake pedal. 21. If the brake pedal feels spongy, repeat the bleeding procedure again. If the brake pedal still feels spongy after repeating the bleeding procedure, perform the following steps: 1. Inspect the brake system for external leaks. Refer to Brake System External Leak Inspection. Page 884 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7219 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 4300 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 8137 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2364 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5304 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 3878 12. Disconnect the vacuum brake booster hose at the intake manifold. 13. Remove the generator. Refer to Generator Replacement (4.2L Engine) Generator Replacement (5.3L and 6.0L Engines). Important: The intake manifold bolts are captured within the intake manifold. Do not attempt to remove the bolts from the intake manifold. 14. Loosen the intake manifold bolts. 15. Remove the intake manifold. Installation Procedure 1. Install a new intake manifold gasket to the intake manifold. Notice: Refer to Fastener Notice. 2. Install the intake manifold onto the engine and secure the manifold with the bolts. Locations Fuel Pump Relay: Locations Fuse Block - Underhood (4.2L), Label Page 6284 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1154 Discharge Air Temperature Sensor / Switch: Diagrams HVAC Connector End Views Air Temperature Sensor - Lower Left Air Temperature Sensor - Lower Right Air Temperature Sensor - Upper Left Page 6262 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 191 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9853 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1618 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 8061 Page 6906 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6903 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6461 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 7724 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 7761 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 2170 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4863 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 510 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10480 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8297 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 7578 Notice: Refer to Fastener Notice. 1. Install the PCM mounting studs (5) to the intake manifold, if removed. Tighten the studs to 6 N.m (53 lb in). 2. Install the PCM (1) onto the studs (5). 3. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). 4. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 5. Install the PCM harness connectors (2) to the PCM body. 6. Tighten the PCM harness connector retaining bolts (4). Tighten the bolts to 8 N.m (71 lb in). 7. If a new PCM is being installed, the PCM must be programmed. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 2485 Page 9716 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7244 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9274 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 493 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 423 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 2442 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Description and Operation Variable Valve Timing Actuator: Description and Operation Camshaft Actuator System Description Camshaft Position (CMP) Actuator System The camshaft position actuator (CMP) system is used for a variety of engine performance enhancements. These enhancements include lower emission output through exhaust gas recirculation control, a wider engine torque range, improved gas millage, and improved engine idle stability. The CMP actuator system accomplishes this by controlling the amount of intake and exhaust valve overlap. CMP Actuator System Operation The camshaft position CMP actuator system is controlled by the powertrain control module (PCM). The PCM sends a pulse width modulated 12 volt signal to a (CMP) actuator solenoid in order to control the amount of engine oil flow to a cam phaser passage. There are 2 different passages for oil to flow through, a passage for cam advance and a passage for cam retard. The cam phaser is attached to a camshaft and is hydraulically operated in order to change the angle of the camshaft relative to crankshaft position. Engine oil pressure, viscosity, temperature and engine oil level can have an adverse affect on cam phaser performance. The PCM calculates the optimum cam position through the following inputs: * Engine speed * Manifold absolute pressure (MAP) * Throttle position (TP) indicated angle * Crankshaft position (CKP) * Camshaft position (CMP) * Engine load * Barometric (BARO) pressure The cam phaser default position is 0 degrees. The PCM uses the following inputs before assuming control of the cam phaser: * Engine coolant temperature (ECT) * Closed loop fuel control * Engine oil temperature * Engine oil pressure * Engine oil level * CMP actuator solenoid circuit state * Ignition 1 signal voltage * Barometric (BARO) pressure CMP Actuator Solenoid Circuit Diagnostics The powertrain control module (PCM) monitors the control circuits of the camshaft position (CMP) actuator solenoid for electrical faults. The PCM has the ability to determine if a control circuit is open, shorted high, and shorted low. If the PCM detects a fault with a CMP actuator solenoid circuit a diagnostic trouble code (DTC) will set. CMP Actuator System Performance Diagnostics The powertrain control module (PCM) monitors the performance of the CMP actuator system by monitoring the actual and desired positions of a cam phaser. If the difference between the actual and desired position is more than a calibrated angle for more than a calibrated amount of time, a DTC will set. Page 10431 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 6275 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 1788 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 9357 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 1046 Power Door Lock Switch: Service and Repair Door Lock and Side Window Switch Replacement Passenger Side DOOR LOCK AND SIDE WINDOW SWITCH REPLACEMENT - PASSENGER REMOVAL PROCEDURE 1. Lift up on the front edge of the switch panel in order to release the front retaining clip. 2. Lift up on the rear edge of the switch panel in order to release the 2 rear retaining clips. 3. If equipped, disconnect the electrical connectors from the passenger door module (1). 4. If replacing only the passenger door module, remove the module from the door trim panel. 5. Disconnect the remaining electrical connectors from the switch panel. 6. If replacing only the switch panel, retain the passenger door module for transfer. 7. Remove the switch panel assembly from the vehicle. INSTALLATION PROCEDURE 1. Install the passenger door module (1) to the door trim panel. 2. Connect the electrical connector to the passenger door module. 3. If replacing the switch panel, connect the remaining electrical connectors. 4. IMPORTANT: When replacing the passenger door module, the set up procedure must be performed. If replacing the passenger door module, program the passenger door module. Refer to LINK. 5. Install the switch panel to the door trim panel, ensuring the front and rear retaining clips are fully seated. Page 8343 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Drivetrain - Transfer Case Grinds In 4WD/AWD Transfer Case Actuator: Customer Interest Drivetrain - Transfer Case Grinds In 4WD/AWD TECHNICAL Bulletin No.: 08-04-21-001B Date: August 25, 2008 Subject: NVG 126/226 Transfer Case Grating/Grinding Noise When 4WD is Engaged, Service 4WD Lamp On, DTC C0327 Set (Replace Clutch Pressure Plate Bearing Assembly and Clutch Lever) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (NP8) Transfer Case Built Prior to September 18, 2007 (NVG 126) or September 21, 2007 (NVG 226) Supercede: This bulletin is being revised to update the correction information to include a procedure to reindex the transfer case encoder motor (actuator). This procedure is being provided to help reduce unnecessary warranty expenses. Please discard Corporate Bulletin Number 08-04-21-001A (Section 04 - Transmission/Transaxle). Condition Some customers may comment on a grinding type noise in the transfer case when 4WD is engaged in either AUTO or 4WD mode. This noise may also be accompanied by the SERVICE 4WD lamp being illuminated and DTC C0327 set. This condition is more prevalent on vehicles where 4WD is continuously used. Cause This noise may be caused by a faulty clutch pressure plate bearing. Correction A more robust clutch pressure plate bearing, inner plate and clutch lever has been released for service. Replace the clutch pressure plate bearing, inner plate and clutch lever. Refer to the Transfer Case Disassemble and Transfer Case Assemble procedures in SI. Former and new parts should not be intermixed during transfer case overhaul and they are to be used in sets only. DO NOT replace the transfer case assembly unless extensive internal damage has occurred. Important: When the clutch pressure plate bearing fails, it causes the clutch lever to over-travel, allowing the transfer case encoder motor (actuator) to rotate to an invalid position. Engineering has developed a tool and procedure to reindex the transfer case encoder motor (actuator) so it can be reused. Use the specific procedure listed below. NVG 126 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (2) J-356165 Terminal Test Adapter (Test Probe) Page 5533 Utility/Van Zoning UTILITY/VAN ZONING Page 9592 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 7785 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1434 View of the connector when released from the component. View of another type of Micro 64 connector. Page 8460 5. Connect both the air inlet and air outlet pipe to the AIR pump. 6. Lower the vehicle. Page 4282 Page 9085 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9237 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 11082 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Wheels - Chrome Wheel Staining/Pitting/Corrosion Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Staining/Pitting/Corrosion INFORMATION Bulletin No.: 00-03-10-002F Date: April 21, 2011 Subject: Chemical Staining, Pitting, Corrosion and/or Spotted Appearance of Chromed Aluminum Wheels Models: 2012 and Prior GM Cars and Trucks Supercede: This bulletin is being revised to update model years, suggest additional restorative products and add additional corrosion information. Please discard Corporate Bulletin Number 00-03-10-002E (Section 03 - Suspension). Important You may give a copy of this bulletin to the customer. What is Chemical Staining of Chrome Wheels? Figure 1 Chemical staining in most cases results from acid based cleaners (refer to Figure 1 for an example). These stains are frequently milky, black, or greenish in appearance. They result from using cleaning solutions that contain acids on chrome wheels. Soap and water is usually sufficient to clean wheels. If the customer insists on using a wheel cleaner they should only use one that specifically states that it is safe for chromed wheels and does not contain anything in the following list. (Dealers should also survey any products they use during prep or normal cleaning of stock units for these chemicals.) - Ammonium Bifluoride (fluoride source for dissolution of chrome) - Hydrofluoric Acid (directly dissolves chrome) - Hydrochloric Acid (directly dissolves chrome) - Sodium Dodecylbenzenesulfonic Acid - Sulfamic Acid - Phosphoric Acid - Hydroxyacetic Acid Notice Many wheel cleaner instructions advise to take care to avoid contact with painted surfaces. Most customers think of painted surfaces as the fenders, quarter panels and other exterior sheet metal. Many vehicles have painted brake calipers. Acidic wheel cleaners may craze, crack, or discolor the paint on the brake calipers. Damage from wheel cleaners is not covered under the vehicle new car warranty. Soap and water applied with a soft brush is usually all that is required to clean the calipers. Whenever any wheel cleaner is used, it must be THOROUGHLY rinsed off of the wheel with clean, clear water. Special care must be taken to rinse under the hub cap, balance weights, wheel nuts, lug nut caps, between the wheel cladding and off the back side of the wheel. Wheels returned to the Warranty Parts Center (WPC) that exhibit damage from wheel cleaners most often have the damage around and under the wheel weight where the cleaner was incompletely flushed away. Notice Drivetrain - Updated Transfer Case Speed Sensor Conn. Speed Sensor: All Technical Service Bulletins Drivetrain - Updated Transfer Case Speed Sensor Conn. Bulletin No.: 06-04-21-001 Date: May 17, 2006 INFORMATION Subject: Updated Transfer Case Connector Service Kit Now Available For Transfer Case Speed Sensor Wire Harness Connector that Comes Loose Or Connector Retainer Clip Breaks Models: 2007 and Prior GM Light Duty Trucks 2007 and Prior HUMMER H2, H3 2005-2007 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive Technicians may find that when the transfer case speed sensor wire harness connector is removed, the connector lock flexes/bends and does not return to the original position. The transfer case speed sensor wire harness connector then has no locking device. On older vehicles, the plastic connector retainer becomes brittle and the clip may break as soon as it is flexed. In the past, the only service fix was to install a wire harness connector service pack, P/N 88987183. This repair procedure involved splicing a new service connector with an integral connector lock. This connector service kit is of the same design and was still prone to failure over time. A new connector service repair kit is now available, P/N 15306187, that is an updated design. This new kit should be used whenever the speed sensor wire harness connector requires replacement. Parts Information Disclaimer Page 4095 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 157 For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to refer to the table above. Disclaimer Page 7846 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 3220 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8002 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 4994 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7920 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 9778 Utility/Van Zoning UTILITY/VAN ZONING Page 3192 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10789 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4272 Page 5385 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. Page 6303 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5074 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4789 Utility/Van Zoning UTILITY/VAN ZONING Page 6204 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4629 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 1557 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 852 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 2312 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 9548 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 8059 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 2289 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3372 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9330 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5064 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 7916 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8973 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 6589 Page 5558 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4475 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7067 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5297 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4171 Page 10188 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9788 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4251 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Page 1307 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9253 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 744 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 5665 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 9855 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2444 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3397 Fuse Block - Underhood C2 Page 6473 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Service and Repair Oil Change Reminder Lamp: Service and Repair ENGINE OIL LIFE SYSTEM WHEN TO CHANGE ENGINE OIL Your vehicle has a computer system that lets you know when to change the engine oil and filter. This is based on engine revolutions and engine temperature, and not on mileage. Based on driving conditions, the mileage at which an oil change will be indicated can vary considerably. For the oil life system to work properly, you must reset the system every time the oil is changed. When the system has calculated that oil life has been diminished, it will indicate that an oil change is necessary. A change engine oil light will come on, and if your vehicle has a Driver Information Center (DIC) a "CHANGE ENGINE OIL" message will come. Change your oil as soon as possible within the next 600 miles (1 000 km). It is possible that, if you are driving under the best conditions, the oil life system may not indicate that an oil change is necessary for over a year. However, the engine oil and filter must be changed at least once a year and at this time the system must be reset. It is also important to check the oil regularly and keep it at the proper level. If the system is ever reset accidentally, you must change your oil at 3,000 miles (5 000 km) since the last oil change. Remember to reset the oil life system whenever the oil is changed. HOW TO RESET THE ENGINE OIL LIFE SYSTEM The Engine Oil Life System calculates when to change your engine oil and filter based on vehicle use. Anytime your oil is changed, reset the system so it can calculate when the next oil change is required. If a situation occurs where you change your oil prior to a "CHANGE ENGINE OIL" message being turned on, reset the system. To reset the Engine Oil Life System, do the following: If your vehicle does not have the optional Driver Information Center (DIC), do the following: 1. Turn the ignition key to "RUN" with the engine off. 2. Fully press and release the accelerator pedal slowly three times within five seconds. 3. Turn the key to "LOCK". If the message comes back on when you start the vehicle, the engine oil life system has not reset. Repeat the procedure. WHAT TO DO WITH USED OIL Used engine oil contains certain elements that may be unhealthy for your skin and could even cause cancer. Do not let used oil stay on your skin for very long. Clean your skin and nails with soap and water, or a good hand cleaner. Wash or properly dispose of clothing or rags containing used engine oil. See the manufacturer's warnings about the use and disposal of oil products. Used oil can be a threat to the environment. If you change your own oil, be sure to drain all the oil from the filter before disposal. Never dispose of oil by putting it in the trash, pouring it on the ground, into sewers, or into streams or bodies of water. Instead, recycle it by taking it to a place that collects used oil. If you have a problem properly disposing of your used oil, ask your dealer, a service station, or a local recycling center for help. Page 1822 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 300 Memory Seat Module - Driver C2 (w/Memory) Page 6886 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5067 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5800 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6325 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 6320 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 5732 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 10963 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 9615 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 10554 Notice: Refer to Fastener Notice 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 8803 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 6933 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 855 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7207 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9868 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels Wheels: Customer Interest Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels TECHNICAL Bulletin No.: 05-03-10-003F Date: April 27, 2010 Subject: Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Cast Aluminum Wheels Supercede: This bulletin is being revised to update the model years and the bulletin reference information. Please discard Corporate Bulletin Number 05-03-10-003E (Section 03 - Suspension). Condition Some customers may comment on a low tire pressure condition. Diagnosis of the low tire pressure condition indicates an air leak through the cast aluminum wheel. Cause Porosity in the cast aluminum wheel may be the cause. Notice This bulletin specifically addresses issues related to the wheel casting that may result in an air leak. For issues related to corrosion of the wheel in service, please refer to Corporate Bulletin Number 08-03-10-006C - Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat). Correction 1. Remove the tire and wheel assembly from the vehicle. Refer to the appropriate service procedure in SI. 2. Locate the leaking area by inflating the tire to 276 kPa (40 psi) and dipping the tire/wheel assembly in a water bath, or use a spray bottle with soap and water to locate the specific leak location. Important - If the porosity leak is located in the bead area of the aluminum rim (where the tire meets the rim), the wheel should be replaced. - If two or more leaks are located on one wheel, the wheel should be replaced. 3. If air bubbles are observed, mark the location. - If the leak location is on the tire/rubber area, refer to Corporate Bulletin Number 04-03-10-001F Tire Puncture Repair Procedures for All Cars and Light Duty Trucks. - If the leak is located on the aluminum wheel area, continue with the next step. 4. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 5. Dismount the tire from the wheel. Refer to Tire Mounting and Dismounting. 6. Remove the tire pressure sensor. Refer to Tire Pressure Sensor removal procedure in SI. 7. Scuff the INSIDE rim surface at the leak area with #80 grit paper and clean the area with general purpose cleaner, such as 3M(R) General Purpose Adhesive Cleaner, P/N 08984, or equivalent. 8. Apply a 3 mm (0.12 in) thick layer of Silicone - Adhesive/Sealant, P/N 12378478 (in Canada, use 88900041), or equivalent, to the leak area. 9. Allow for the adhesive/sealant to dry. Notice Caution must be used when mounting the tire so as not to damage the sealer. Damaging the repair area may result in an air leak. Page 9334 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 1515 Page 9611 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6611 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7093 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 366 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 8268 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8581 Page 2385 View of the connector when released from the component. View of another type of Micro 64 connector. Page 10096 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 11218 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6591 Utility/Van Zoning UTILITY/VAN ZONING Page 2388 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 4004 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 9108 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8267 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6809 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 3089 Fluid - Differential: Removal and Replacement Front Drive Axle Front Axle Lubricant Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine protection shield. Refer to Engine Protection Shield Replacement. 3. Remove the fill plug. 4. Remove the drain plug and the washer. 5. Drain the fluid from the differential carrier assembly. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the drain plug and the washer. Tighten the drain plug to 32 N.m (24 lb ft). 2. Fill the differential carrier assembly with lubricant. Use the proper fluid. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. Page 7602 Page 9612 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 7727 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9610 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8276 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 10240 Page 4142 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5050 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Crankshaft Rear Oil Seal and Housing Replacement Crankshaft Main Bearing Seal: Service and Repair Crankshaft Rear Oil Seal and Housing Replacement Crankshaft Rear Oil Seal and Housing Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 44219 Cover Alignment Pins ^ J 44227 Rear Seal Installer Removal Procedure 1. Remove the transmission. Refer to Transmission Replacement (LL8) Transmission Replacement (LM4, LS2). 2. Remove the flywheel bolts and remove the flywheel. 3. Remove the crankshaft rear oil seal housing bolts. 4. Install 2 bolts into the jackscrew holes (1) to release the cover from the block. 5. Remove the crankshaft and rear oil seal housing. 6. Remove the oil seal from the crankshaft snout. Installation Procedure 1. Use the J 44227 to install the crankshaft rear oil seal. 2. Remove the J 44227. Page 3206 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 8663 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 11157 8. Remove the 3-2 control solenoid retainer. 9. Remove the 3-2 control solenoid. Installation Procedure 1. Install the 3-2 control solenoid. 2. Install the 3-2 control solenoid retainer. 3. Install the 1-2 and 2-3 shift solenoids. 4. Install the 1-2 and 2-3 shift solenoid retainers. 5. Install the pressure control solenoid. Page 9260 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1483 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10457 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 4334 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 7887 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10919 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 156 Important The following information MUST be documented on the repair order. Failure to do so may result in a chargeback. - Customer vehicle condition. - Was a Service Lamp or Service Message illuminated? If yes, specify which Service Lamp or Service Message. - Was a DTC(s) set? If yes, specify which DTC(s) were set. - After following the procedure contained within this bulletin, could the condition be duplicated? ‹› If the condition was not duplicated, then document the affected module/component connector name and number on the repair order. - If the condition was duplicated after the procedure contained within this bulletin was followed, and additional diagnosis led to the replacement of a module or component, the SI Document ID Number MUST be written on the repair order. Parts Information Alternate Distributor For All of North America Note NyoGel(R) 760G Lubricant* is equivalent to GMSPO P/N 12377900, and P/N 10953529 (Canada), specified for use to correct the condition in this bulletin. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to: Warranty Information (Saab Models) Page 4177 Radiator Cooling Fan Motor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 7714 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Diagrams Solar Sensor: Diagrams HVAC Connector End Views Ambient Light/Sunload Sensor Assembly Page 5001 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1902 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10259 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 10084 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2421 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 10437 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10921 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 486 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4212 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 6359 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Page 4552 Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Cooling System - Inspecting Radiator/Heater Hose Clamps Heater Hose: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 9890 Page 4986 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7045 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5887 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 3305 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 3171 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 2871 Disclaimer Page 4310 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Specifications Connecting Rod: Specifications Connecting Rod Cap Bolt First Pass ............................................................................................................................................. ................................................... 25 N.m (18 lb ft) Final Pass ............................................................. ....................................................................................................................................... (110 degrees) Connecting Rod Connecting Rod Bore Diameter - Bearing End ..................................................................................................... 60.322-60.338 mm (2.3749-2.3755 in) Connecting Rod Bore Out-of-Round - Bearing End ........................................................................................................................ 0.005 mm (0.0002 in) Connecting Rod Side Clearance ................................................................................................................................... 0.05-0.35 mm (0.0019-0.0137 in) Page 10078 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4846 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 4551 US English/Metric Conversion US English/Metric Conversion Page 5045 Utility/Van Zoning UTILITY/VAN ZONING Page 9831 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7408 6. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 7. Install the rear electrical center cover. 8. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 9. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 10. Connect the negative battery cable. 11. If installing a replacement BCM, program the BCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 5466 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 1927 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 711 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Drivetrain - Service 4WD Light/DTC C0374 Set Speed Sensor: All Technical Service Bulletins Drivetrain - Service 4WD Light/DTC C0374 Set TECHNICAL Bulletin No.: 05-04-21-003C Date: April 15, 2008 Subject: Service 4WD Light Illuminated, DTC C0374 Set (Inspect Wiring Harness to Transfer Case Speed Sensors,, Replace Wiring Harness) Models: 2004-2007 Buick Rainier 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado Classic, TrailBlazer, TrailBlazer EXT 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Envoy, Envoy XL, Sierra Classic 2003-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X With Four Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (RPO NP8) Transfer Case Supercede: This bulletin is being revised to update the Model and Warranty Information. Please discard Corporate Bulletin Number 05-04-21-003B (Section 04 - Driveline/Axle). Condition Some customers may comment on intermittent illumination of the Service 4WD light. Upon investigation, the technician may find DTC C0374 set. The customer may also comment on intermittent erratic operation of the 4WD or AWD system after driving through rain/snow or simply going through a car wash. Cause The speed sensor signal may have become corrupted. Possible openings in the speed sensor wire insulation (twisted pairs) can allow water intrusion. Also wire connections contaminated by water may result in short circuits and erroneous speed sensor readings. This most often occurs on the rear speed sensor circuit. Correction Inspect the wiring harness to the transfer case speed sensors. On Rainier, TrailBlazer, Envoy and 9-7X models, fabricate a replacement speed sensor harness between the C101 connector and the speed sensors. Completely inspect and test all wiring. Refer to Speed Signal Front Axle Actuator and Indicators schematic in SI. Replace the affected twisted pairs. Do not over-twist the two wires in the replacement harness. Wires should be twisted at a rate of 9 revolutions per foot. Use service connector pack, P/N 88987993 at the speed sensor end and terminal, P/N 15326267, at C101. Terminal testing tools and service terminals can be found in Terminal Repair Kit J 38125. Terminals are available from SPX/Kent-Moore. The smaller transfer case harness splices into the larger chassis harness a few inches in front of the crossmember. The chassis harness routes along the left side of the frame under the driver door area. Use nylon tie straps to secure the fabricated harness to the main chassis harness between the transfer case and C101. On the full-size pickup and full-size utility models, replace the 2.2 m (88 in) pigtail harness that runs from the C151 connector under the hood to the transfer case. Use either harness P/N 15832722 or 15224663 depending on vehicle equipment. Refer to Propshaft Speed Sensors Front Axle Actuator and Transfer Case Shift Control Switch schematic in SI. Important: Technicians should verify the integrity of the splice joints after the repair. All splice joints and connections should seal properly against water or a repeat condition can occur. Page 1382 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 2350 Page 6088 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1700 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6074 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4354 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 608 Body Control Module: Diagrams Body Control Module (BCM) C2 Body Control Module (BCM) C2 Page 1248 repairs. 3. Remove the Inflatable Restraint Steering Wheel Module using the procedure found in Service Information. Remove the horn contacts from the steering wheel. Clean the brass contact on the end of the red wires with an abrasive pad. If possible, remove any contamination present on the mating contact on the cancel cam (inside the black tube). Also clean the four copper rivets embedded in the steering wheel frame. Apply GM Dielectric Lubricant to all the contacts to protect against reoccurrence of the corrosion. Refer to the graphic. 4. Reinstall the horn contacts and the Inflatable Restraint Steering Wheel Module and test for proper operation of the horn pad. Test for proper operation of the horn pad through the entire steering wheel rotation. Does the horn pad work properly? ^ Yes - repair is complete. ^ No - proceed with step 5. 5. Is the inoperative condition only present at certain steering wheel positions? ^ Yes - proceed with step 6. ^ No - proceed with step 9. 6. Remove the steering column trim covers. Position the steering wheel on a dead spot. Ground a test light to the steering column frame close to the steering wheel. Probe the surface of the turn signal cancel cam with the test light. Does grounding the cam activate the horn? ^ Yes - this may mean that the contact of the cancel cam that mates to the horn contact wiring harness contact, may not be clean enough or that the cancel cam may need to be replaced. Repair as necessary. Procedure complete. ^ No - proceed with step 7.Turn Signal Cancel Cam: 7. Disconnect the wiring harness that goes to the top of the multi-function switch (connector X1). Using the grounded test light, touch the harness connection for pin G. Does grounding the pin activate the horn? ^ Yes - proceed with step 8. ^ No - try grounding the test light on a known good ground. If this activates the horn, proceed to step 9. If not, investigate a possible condition with the wiring harness or BCM with appropriate SI documents. 8. The condition lies either in the multi-function switch or the interface between the multi-function switch and the cancel cam. In some cases, removing the multi-function switch and clearing the horn contact that mates with the cancel cam (refer to the graphic) of debris and reinstalling the switch will eliminate the condition. In other cases, the cancel cam may be losing contact with the multi-function switch contact. If distortion in the cancel cam is present, it may be necessary to replace the cancel cam. Repair as necessary. Procedure complete. 9. Remove the left side IP insulator (refer to Instrument Panel Insulator Panel Replacement found in SI) so it can be moved aside enough to see the Page 9817 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6752 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3621 Do NOT attach the positive jumper cable to the stud located under the engine compartment fuse block cover. Doing so may blow the fuse resulting in various interior electrical system conditions. Disclaimer Page 8435 Variable Valve Timing Solenoid: Diagrams Engine Controls Connector End Views Camshaft Actuator Solenoid Assembly Page 7788 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4630 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 1514 Page 1749 Page 9616 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8933 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 8766 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 693 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6194 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 3238 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 3241 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5577 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 4107 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 7923 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 7194 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 201 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4320 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 4232 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9434 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7525 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 3316 View of the connector when released from the component. View of another type of Micro 64 connector. Page 11194 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 816 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9318 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 4120 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Key and Lock Cylinder Coding Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Page 5897 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 4195 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9960 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Diagram Information and Instructions Torque Converter Clutch Solenoid: Diagram Information and Instructions Electrical Symbols Page 10897 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 2586 Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 1451 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5582 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6190 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1682 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5574 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9672 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 5943 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 10004 Page 1221 Turn Signal/Multifunction Switch C2 Page 8638 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7358 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 5739 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 9290 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 6352 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 5544 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 480 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 5725 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 5874 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 2991 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 1353 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 3174 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 7662 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7094 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 7401 Body Control Module (BCM) C3 Page 5679 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8300 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Relay Replacement (Attached to Wire Harness) Power Distribution Relay: Service and Repair Relay Replacement (Attached to Wire Harness) RELAY REPLACEMENT (ATTACHED TO WIRE HARNESS) REMOVAL PROCEDURE 1. Locate the relay. 2. Remove any fasteners which hold the relay in place. 3. Remove any connector position assurance (CPA) devices or secondary locks. 4. IMPORTANT: Use care when removing a relay in a wiring harness when the relay is secured by fasteners or tape. Separate the relay (1) from the wire harness connector (2). INSTALLATION PROCEDURE 1. Connect the relay (1) to the wire harness connector (2). 2. Install any connector position assurance (CPA) devices or secondary locks. 3. Install the relay using any fasteners or tape that originally held the relay in place. Page 3178 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10556 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow these additional steps. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps to install the sensor, otherwise proceed to installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 9702 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 1452 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 7529 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 2624 5. Install the seat cushion foam pad and cover to the frame. 6. Install the seat belt buckle assembly (1) through the seat cushion pad. 7. Install the seat belt buckle assembly (1) to the seat adjuster with the bolt (2). Tighten the seat belt buckle bolt to 55 N.m (41 lb ft). 8. Connect the seat belt buckle electrical connector (1). 9. Connect the wiring harness (2) to the seat position switch. 10. Position the seat back assembly on the seat cushion assembly. Page 10912 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 3254 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6115 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 9183 Page 11086 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 9759 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Locations Canister Vent Valve: Locations Engine Controls Component Views Fuel Tank 1 - Fuel Tank Pressue (FTP) Sensor 2 - Fuel Pump and Sender Assembly 3 - Chassis Harness 4 Fuel Tank 5 - Evaporative Emission (EVAP) Canister Vent Solenoid Page 8238 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 6052 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 3246 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 3017 Power Steering Line/Hose: Service and Repair Power Steering Gear Inlet and Outlet Hose Replacement (4.2L) Tools Required J 44586 Power Steering Gear Oil Seal Remover/Installer Removal Procedure 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine protection shield. Refer to Engine Protection Shield Replacement. Notice: Refer to Power Steering Hose Disconnected Notice. 3. Install the drain pan under the vehicle. 4. Remove the power steering hose assembly to the power steering gear retaining bolt. 5. Disconnect the power steering hose assembly from the power steering gear. 6. Disconnect the power steering return hose and power steering cooler hose from the power steering cooler. 7. Disconnect the power steering pressure hose (1) and power steering cooler hose (2) from the power steering pump. 8. Lower the vehicle. 9. Remove the power steering hose assembly to front crossmember bracket mounting bolt. 10. Remove the battery tray. Refer to Battery Tray Replacement. Page 11093 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Service and Repair Fuel Return Line: Service and Repair Fuel Hose/Pipes Replacement - Chassis Removal Procedure Caution: Refer to Fuel and Evaporative Emission Pipe Caution. Caution: Refer to Gasoline/Gasoline Vapors Caution. 1. Relieve the fuel pressure. Refer to Fuel Pressure Relief. 2. Remove the powertrain control module (PCM) retaining bolts (3) and nuts (6). 3. Slide the PCM (1) off of the studs (5) and position the PCM out of the way. 4. Disconnect the engine coolant temperature sensor electrical connector (1). Page 4930 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 5693 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 5618 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 3335 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2689 Fluid Pressure Sensor/Switch: Diagrams Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch, Wiring Harness Side Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch, Wiring Harness Side Page 348 Page 2777 Notice: Refer to Fastener Notice. 1. Install the transfer case left rear speed sensor into the transfer case. Tighten the speed sensor to 17 N.m (13 lb ft). 2. Connect the transfer case left rear speed sensor electrical connector. 3. Lower the vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the transfer case right rear speed sensor electrical connector. 3. Remove the transfer case speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case right rear speed sensor. Tighten the speed sensor to 17 N.m (13 lb ft). Page 675 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8288 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8658 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9698 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3374 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 5346 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 11052 Page 10832 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 10818 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8363 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 318 4. Install the ground, then the washer and then the bolt to the frame. Important: It is important to use the bolts, washers and nuts specified in this bulletin. These parts have been identified due to their conductive finish. 5. Install a washer and nut to the back side of the frame. Tighten Tighten the nut to 9 Nm (79 lb in). 6. Cover the front and back side of the repair area using Rubberized Undercoating. An additional check can be made to ensure a good connection for the battery cable to frame ground. It is possible for this ground to cause similar symptoms with the ABS as described above. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Disclaimer Page 329 4. Install the ground, then the washer and then the bolt to the frame. Important: It is important to use the bolts, washers and nuts specified in this bulletin. These parts have been identified due to their conductive finish. 5. Install a washer and nut to the back side of the frame. Tighten Tighten the nut to 9 Nm (79 lb in). 6. Cover the front and back side of the repair area using Rubberized Undercoating. An additional check can be made to ensure a good connection for the battery cable to frame ground. It is possible for this ground to cause similar symptoms with the ABS as described above. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Disclaimer Page 10406 Ensure that the electrical tabs are facing outboard. Notice: Refer to Fastener Notice. 6. Install the pressure control solenoid retainer and retaining bolt. Tighten the pressure control solenoid retaining bolt to 11 N.m (97 lb in). 7. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 8. Install the 1-2 accumulator. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 9. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 10. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 11. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 455 Page 9324 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 10949 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 2011 Page 7386 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Page 1285 A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: Customer Interest A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Page 9545 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8956 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9358 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8932 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 11075 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9015 16. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 17. Connect the negative battery cable. 18. Inspect for leaks using the following procedure: 1. Turn ON the ignition, with the engine OFF for 2 seconds. 2. Turn OFF the ignition, for 10 seconds. 3. Turn ON the ignition, with the engine OFF. 4. Inspect for fuel leaks. 19. Install the fuel tank shield, if equipped. Page 3805 Engine Mount: Testing and Inspection Engine Mount Inspection Front Engine Mount Notice: Broken or deteriorated mounts can cause misalignment and destruction of certain drive train components. When a single mount breaks, the remaining mounts are subjected to abnormally high stresses. 1. Install a pole jack underneath the oil pan. 2. Insert a block of wood between the engine oil pan and the pole jack. 3. Raise the jack until the wooden block contacts the engine oil pan. 4. Raise the engine in order to place a slight tension on the rubber cushion. Observe both mounts while raising the engine. 5. Replace the mounts if any of the following conditions exist: ^ Hard rubber surface covered with heat check cracks ^ The rubber cushion separated from the metal plate of the mount ^ The rubber cushion is split through the center ^ The mount is leaking 6. If there is movement between a metal plate of the mount and its attaching points, lower the engine and tighten the bolts or nuts attaching the mount to the engine, the frame or the bracket. Page 6509 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10954 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10501 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2726 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor, follow steps 6-10. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. 10. Disconnect the rotary position sensor (2) from the wiring harness. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps 1-5 to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to ensure the connector is fully installed. Page 1487 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 2397 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 2401 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7465 Service and Repair Engine Oil Dip Stick - Dip Stick Tube: Service and Repair Oil Level Indicator and Tube Replacement Removal Procedure 1. Remove the A/C line bracket nut. 2. Remove the A/C line bracket from the oil level indicator tube stud. 3. Disconnect the oxygen (O2) sensor electrical connector from the oil level indicator bracket. 4. Remove the oil level indicator tube stud. 5. Pull the indicator out of the tube. 6. Pull the tube out of the block. Installation Procedure 1. Install the oil level indicator tube into the engine block. 2. Add sealant to the oil level indicator tube stud threads. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice. 3. Install the oil level indicator tube stud. Tighten the oil level indicator tube stud to 10 N.m (89 lb in). Page 6785 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 538 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10202 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 10790 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 3406 Fuse Block - Underhood C8 Page 6054 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7488 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 10685 2. Connect the transfer case right rear speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 6548 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8812 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Locations Brake Fluid Level Sensor/Switch: Locations Hydraulic Brake Component Views Park Brake Switch 1 - Park Brake Lever Assembly 2 - Park Brake Switch Page 1594 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8376 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 2911 Spark Plug: Service and Repair Spark Plug Replacement Removal Procedure 1. Turn OFF the ignition switch. 2. Remove the ignition coils. Notice: Allow the engine to cool before removing the spark plugs. Attempting to remove the spark plugs from a hot engine may cause the plug threads to seize, causing damage to cylinder head threads. Notice: Clean the spark plug recess area before removing the spark plug. Failure to do so could result in engine damage because of dirt or foreign material entering the cylinder head, or by the contamination of the cylinder head threads. The contaminated threads may prevent the proper seating of the new plug. Use a thread chaser to clean the threads of any contamination. 3. Remove the spark plugs from the engine. Installation Procedure Notice: Use only the spark plugs specified for use in the vehicle. Do not install spark plugs that are either hotter or colder than those specified for the vehicle. Installing spark plugs of another type can severely damage the engine. Notice: Check the gap of all new and reconditioned spark plugs before installation. The pre-set gaps may have changed during handling. Use a round feeler gage to ensure an accurate check. Installing the spark plugs with the wrong gap can cause poor engine performance and may even damage the engine. 1. Measure the spark plug gap on the spark plugs to be installed. Compare the measurement to the gap specifications. Notice: Be sure that the spark plug threads smoothly into the cylinder head and the spark plug is fully seated. Use a thread chaser, if necessary, to clean threads in the cylinder head. Cross-threading or failing to fully seat the spark plug can cause overheating of the plug, exhaust blow-by, or thread damage. Notice: Refer to Fastener Notice. Page 8516 Step 1 - Step 6 Page 11012 Notice: Refer to Fastener Notice 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Diagrams Liftglass Ajar Switch Page 6132 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9100 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5924 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5918 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 2096 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 8167 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 1936 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Tire Pressure Monitor - TPM System Message/Service Tips Low Tire Pressure Indicator: Technical Service Bulletins Tire Pressure Monitor - TPM System Message/Service Tips # 09-03-16-002A: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information - (Apr 27, 2010) Subject: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information Models: 2006-2011 Cars and Light Duty Trucks (Including Saturn and Saab) 2006-2010 HUMMER H2, H3 ATTENTION The information found in this bulletin is to be used as a dealership service consultant procedures for customers coming into the service lane with an illuminated "low tire light" or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. Maintaining proper tire pressures is an Owner's Maintenance item and is not covered under warranty. This bulletin is being revised to add model years and update additional bulletin reference information. Please discard Corporate Bulletin Number 09-03-16-002 (Section 03 -- Suspension). Customer Concerns and Confusion with the Tire Pressure Monitoring (TPM) System The following procedure should be used by dealership service consultants when a customer comes into the service drive with a "low tire light" on or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. The service consultant should perform the following steps: Procedure Turn the key to ON, without starting the engine. ^ If the low tire light comes on and stays on solid with a check tire pressure/low tire pressure/add air to tire message (on vehicles equipped with DIC), advise the customer: - The system is working properly. - Properly adjusting all tire air pressures to the recommended levels and driving the vehicle will turn the light off (refer to the Tire and Loading Information label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". ^ If the Tire Pressure Monitor (TPM) light blinks for one minute then stays on solid with a service tire monitor system message (on vehicles equipped with DIC): - A TPM system problem exists. The vehicle should be written up accordingly and sent to your service department for further DTC diagnosis and service. - If dashes (--) are displayed in only one or two of the tire pressure readouts, it is likely caused by a previous TPM system relearn that was performed incorrectly due to interference from another vehicle's TPM system during the relearn process (refer to the Important statement later in this bulletin regarding TPM relearn with a Tech 2(R)). - If dashes (--) are displayed in all four of the tire pressure readouts, there is a system problem. Follow the appropriate SI service procedures. ^ If a customer indicates the low tire light comes on for a few minutes when the vehicle is started, then goes off after driving a while, advise the customer: - The system is working properly. - Most likely, air pressure in one or more of the tires is low enough to turn the light on when tires are cold. After driving for a while, tires will heat Page 4115 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6185 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2499 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 7683 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Page 5630 Page 2416 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Procedures Fluid - Differential: Procedures Front Drive Axle Front Axle Lubricant Level Inspection Front axle lubricant leaks can occur at the following locations: ^ Axle shaft oil seals ^ Differential carrier assembly mating surface ^ Drain plug ^ Fill plug ^ Inner axle tube assembly to differential carrier assembly mating surface ^ Pinion yoke oil seal ^ Vent tube Determining the Cause While most front axle leaks may be easy to find, determining the cause may not be. A thorough inspection of the area around the leak may assist in determining the cause of the leak. Oil Seals Lubricant leaks from a oil seal may be caused by any of the following: ^ An improperly installed seal ^ A distorted seal ^ A worn seal ^ A worn shaft ^ A brittle seal lip ^ A hardened seal lip To determine the actual cause of the leak, clean the area around the leak. Observe the area of the leak and determine the if the seal or another component is causing the leak. A worn seal surface will cause a leak at the sealing lip while a misaligned seal or a seal installed into a housing with an excessive bore will cause the seal to leak at the outside surface of the seal. Hardened or cracked seal lips usually indicate the axle is operating beyond the normal temperature limits for the axle. A seal whose sealing surface has been nicked or cut may indicate that the shaft has a rough, burred, or gouged surface and will need to be inspected before the seal can be replaced. Sealing Surfaces Front axles components are assembled using specific sealers. A leak at a surface sealed with sealant is usually caused by a poor fit of the components but can also be caused by the use of the wrong sealant. When correcting a sealant leak, inspect each component for distortion and for nicks or gouges that may prohibit the sealant from sealing properly and when re-assembling the component, use the proper sealant. Differential Carrier Assembly Lubricant leaks at the differential carrier assembly can occur at the following locations: ^ Drain Plug ^ Fill Plug ^ Vent tube Drain and fill plug leaks are usually caused by a loose plug. A vent tube leak can be cause by a loose fitting vent hose or by a vent tube assembly whose interior shield is stuck in the upside down position. Inspect the vent plug's interior shield for unrestricted movement, repair or replace the plug as necessary. Drain or fill plug leaks can be repaired by either tightening the plug or by using an approved sealer on the threads on the plug. Rear Axle Lubricant Level Inspection (9.5 LD Inch Axle) Rear Axle Lubricant Level Inspection (9.5 LD Inch Axle) Important: All axle assemblies are filled by volume of fluid during production. They are not filled to reach a certain level. When checking the fluid level on any axle, variations in the readings can be caused by factory fill differences between the minimum and the maximum fluid volume. Also, if a vehicle has just been driven before checking the fluid level, it may appear lower than normal because the fluid has traveled out along the axle tubes and has not drained back to the sump area. Therefore, a reading taken five minutes after the vehicle has been driven will appear Page 404 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9809 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Locations Torque Converter Clutch Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 11134 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11144 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4039 coolant system integrity and will no longer be considered a 5 yr/150,000 mile (240,000 km) coolant. Coolant Removal Services/Recycling The tables include all coolant recycling processes currently approved by GM. Also included is a primary phone number and demographic information. Used DEX-COOL(R) can be combined with used conventional coolant (green) for recycling. Depending on the recycling service and/or equipment, it is then designated as a conventional 2 yr/30,000 mile (50,000 km) coolant or DEX-COOL(R) 5 yr/150,000 mile (240,000 km) coolant. Recycled coolants as designated in this bulletin may be used during the vehicle(s) warranty period. DEX-COOL(R) Recycling The DEX-COOL(R) recycling service listed in Table 2 has been approved for recycling waste engine coolants (DEX-COOL) or conventional) to DEX-COOL(R) with 5 yr/150,000 mile (240,000 km) usability. Recycling Fluid Technologies is the only licensed provider of Recycled DEX-COOL(R) meeting GM6277M specifications and utilizes GM approved inhibitor packages. This is currently a limited program being monitored by GM Service Operations which will be expanded as demand increases. Conventional (Green) Recycling Page 9714 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2935 Step 8 - Step 17 Page 3726 Engine Block Heater: Service and Repair Coolant Heater Replacement (LL8) Coolant Heater Replacement (LL8) Removal Procedure 1. Drain the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the powertrain control module (PCM) retaining bolts (3) and nuts (6). 3. Remove the PCM mounting studs (5) and position the PCM out of the way. 4. Disconnect the engine coolant temperature (ECT) sensor electrical connector (1). Notice: Refer to Fuel and Evaporative Emission Hose/Pipe Connection Cleaning Notice. Page 10098 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 2545 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5099 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9634 Page 189 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6375 Step 7 - Step 13 Page 6594 Page 9651 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9603 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6916 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7550 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 3545 service operation. A simple distraction or time constraint that rushes the job may result in personal injury if the greatest of care is not exercised. Make it a habit to double check your work and to always side with caution when installing wheels. Disclaimer Page 504 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2328 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5612 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8743 Fuel Injector: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 10940 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9350 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 8531 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 5107 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 7355 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 492 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 1375 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8234 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6331 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 4990 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9388 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 2352 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 6862 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 2960 Disclaimer Page 7494 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5448 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 3282 Utility/Van Zoning UTILITY/VAN ZONING Page 879 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7210 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 208 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 6705 Page 10237 Page 9039 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Cooling System - Inspecting Radiator/Heater Hose Clamps Radiator Hose: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 6127 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9141 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2225 Page 4342 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 11203 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7260 Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Inoperative Malfunction Indicator Lamp (MIL) Inoperative Circuit Description Ignition voltage is supplied to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. There should be a steady MIL with the ignition ON and the engine OFF. MIL Operation The MIL is located on the instrument panel cluster (IPC). MIL Function * The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. * The MIL illuminates during a bulb test and a system test. * A DTC will be stored if a MIL is requested by the PCM. MIL Illumination * The MIL will illuminate with ignition switch ON and the engine not running. * The MIL will turn OFF when the engine is started. * The MIL will remain ON if the self-diagnostic system has detected a malfunction. * The MIL may turn OFF if the malfunction is not present. * If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. * If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. Test Description Page 6861 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 6670 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1827 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 10797 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 5033 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Engine - Drive Belt Misalignment Diagnostics Drive Belt: Technical Service Bulletins Engine - Drive Belt Misalignment Diagnostics INFORMATION Bulletin No.: 08-06-01-008A Date: July 27, 2009 Subject: Diagnosing Accessory Drive Belt / Serpentine Belt Noise and Availability and Use of Kent-Moore EN-49228 Laser Alignment Tool - Drive Belt Models: 2010 and Prior GM Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add a model year and update the Tool Information. Please discard Corporate Bulletin Number 08-06-01-008 (Section 06 - Engine). Background Several aftermarket companies offer laser alignment tools for accessory drive systems that can be very helpful in eliminating drive belt noise as a result of misaligned pulleys. Typically pricing ranges from $160 - $200. EN-49228 Laser Alignment Tool - Drive Belt The GM Tool program has now made available a competitive, simple to use and time-saving laser tool to assist in achieving precise alignment of the drive belt pulleys. This optional tool removes the guesswork from proper pulley alignment and may serve to reduce comebacks from: - Drive Belt Noise - Accelerated Drive Belt Wear - Drive Belt Slippage Instructions The instructions below are specific only to the truck Gen IV V-8 family of engines. These instructions are only for illustrative purposes to show how the tool may be used. Universal instructions are included in the box with the Laser Alignment Tool - Drive Belt. Caution - Do not look directly into the beam projected from the laser. - Use caution when shining the laser on highly polished or reflective surfaces. Laser safety glasses help reduce laser beam glare in many circumstances. - Always use laser safety glasses when using the laser. Laser safety glasses are not designed to protect eyes from direct laser exposure. 1. Observe and mark the serpentine belt orientation. Page 9889 Page 7594 Page 5275 Page 9869 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 5464 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5302 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7380 Page 8271 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9704 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6939 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 1363 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2124 Brakes - ABS Lamp ON/DTC C0040 Set Wheel Speed Sensor: Customer Interest Brakes - ABS Lamp ON/DTC C0040 Set Bulletin No.: 07-05-25-006 Date: December 05, 2007 TECHNICAL Subject: ABS Light On, DTC C0040 Stored (Inspect/Repair Wheel Speed Sensor Harness) Models: 2005-2007 Buick Rainier 2005-2008 Chevrolet TrailBlazer, TrailBlazer EXT 2005-2008 GMC Envoy, Envoy XL 2005-2008 Saab 9-7X with 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Condition Some customers may comment that the ABS light is illuminated. Cause This may be caused by the wiring harness coming in contact with the A/C compressor pulley. Correction Remove the engine protection shield. Inspect the wiring harness. If the harness is damaged, refer to Splicing Copper Wire Using Splice Clips in SI. The harness should have a slight loop downward under the A/C compressor. Warranty Information (excluding Saab U.S. Models) Page 11200 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9537 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 7466 Utility/Van Zoning UTILITY/VAN ZONING Page 5597 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9504 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6425 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 5590 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1560 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10432 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9145 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4450 Page 3717 Assemble the arbor, forcing screw, attaching bolts and socket. Refer to the illustration titled, Special Installation Tool Assembly Needed. Install the tool press assembly to the end of the crankshaft flange and position the socket and service cup plug into the bore of the crankshaft flange. Refer to the above illustration for proper tool set up before pressing the cup plug into the end of the crankshaft. The forcing screw will fit inside an 18 MM or 19 MM end of the impact style socket with the 1/2" drive side of the socket facing the service cup plug. The forcing screw should bottom on the 15 MM step inside the socket. Refer to the above illustrations on 1/2" drive impact style socket dimensions. Hand tighten the forcing screw into the socket, making sure that it is centered on the service cup plug. Mark the forcing screw and arbor for reference, then tighten the forcing screw two complete turns and an additional 90 degrees or 1/4 turn more. When completed, remove the installation tool assembly and confirm the installation depth of the service cup plug. Place a straight edge across the center of the crankshaft flange as the measurement point. Measure from the straight edge to the center of the installed cup plug. The depth of the installed cup plug should be 16-17 mm (0.63-0.67 in). Refer to the above illustration to confirm the installed depth. Parts Information Warranty Information (excluding Saab U.S. Models) Specifications Piston: Specifications Pistons and Pins Piston - Piston Diameter ....................................................................................................................................... 92.971-93.005 mm (3.6603-3.6616 in) Piston - Piston Pin Bore Diameter ........................................................................................................................ 23.502-23.508 mm (0.9259-0.9262 in) Piston - Piston to Bore Clearance ........................................................................................................................... -0.015-0.035 mm (-0.0006-0.0014 in) Pin - Piston Pin Clearance to Connecting Rod Bore ................................................................................................. 0.001-0.018 mm (0.0004-0.0007 in) Pin - Piston Pin Clearance to Piston Pin Bore ........................................................................................................ 0.003-0.012 mm (0.00012-0.0005 in) Pin - Piston Pin Diameter ...................................................................................................................................... 23.496-23.499 mm (0.9257-0.9258 in) Page 4928 Page 7211 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10350 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 10040 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1639 Intake Air Temperature Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 8335 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2526 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 399 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 190 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2931 Step 5 - Step 13 Page 5710 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7028 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 183 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Tire Monitor System - TPM Sensor Information Tire Pressure Monitor Receiver / Transponder: Technical Service Bulletins Tire Monitor System TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Page 6326 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 2069 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7803 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9166 US English/Metric Conversion US English/Metric Conversion Page 2437 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 266 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Diagrams Cabin Temperature Sensor / Switch: Diagrams HVAC Connector End Views Air Temperature Sensor Assembly - Inside Page 3383 Fuse Block - Rear C1 (Pin A1 To A10) Page 7978 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2767 Speed Sensor: Diagrams NVG 226-NP8 - Transfer Case Propshaft Speed Sensor - Front Propshaft Speed Sensor - Front Propshaft Speed Sensor - Front Propshaft Speed Sensor - Rear Propshaft Speed Sensor - Rear Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set Electronic Brake Control Module: Customer Interest Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set TECHNICAL Bulletin No.: 04-05-25-002E Date: March 11, 2009 Subject: ABS Light On, DTCs C0265, C0201, U1041 Set and/or Loss of Communication with Brake Module (Reground EBCM Ground) Models Supercede: This bulletin is being revised to add step 2 to the procedure and update the Parts and Warranty Information. Please discard Corporate Bulletin Number 04-05-25-002D (Section 05 - Brakes). Condition Some customers may comment that the ABS light is on. Upon further inspection, DTCs C0265 and C0201 may be set in the brake module. It is also possible for DTC U1041 to set in other modules. There may also be a loss of communication with the brake module. Cause A poor connection at the EBCM ground is causing unnecessary replacement of brake modules. Important: The EBCM ground is different for each application. Refer to the list below for the proper ground reference: ^ Midsize Utilities = Ground 304 ^ SSR = Ground 400 ^ Fullsize Trucks and Utilities = Ground 110 Correction Important: Do not replace the brake module to correct this condition. Perform the following repair before further diagnosis of the EBCM. Perform the following steps to improve the connection of the EBCM Ground: 1. Remove the EBCM Ground. The EBCM Ground is located on the frame beneath the driver's side door. If multiple grounds are found in this location, the EBCM ground can be identified as the heavy (12-gauge) wire. 2. If the original fastener has a welded on nut, remove the nut from the frame, and if required, enlarge the bolt hole to accommodate the new bolt and nut. 3. Clean the area, front and back, using a tool such as a *3M(TM) Scotch-Brite Roloc disc or equivalent. Page 9557 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5447 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 804 Page 5811 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 6019 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8822 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 3784 Drive Belt: Description and Operation Drive Belt System Description The drive belt system consists of the following components: ^ The drive belt ^ The drive belt tensioner ^ The drive belt idler pulley ^ The crankshaft balancer pulley ^ The accessory drive component mounting brackets ^ The accessory drive components The power steering pump, if belt driven - The generator - The A/C compressor, if equipped - The engine cooling fan, if belt driven - The water pump, if belt driven - The vacuum pump, if equipped - The air compressor, if equipped The drive belt system may use one belt or two belts. The drive belt is thin so that it can bend backwards and has several ribs to match the grooves in the pulleys. There also may be a V-belt style belt used to drive certain accessory drive components. The drive belts are made of different types of rubbers (chloroprene or EPDM) and have different layers or plys containing either fiber cloth or cords for reinforcement. Both sides of the drive belt may be used to drive the different accessory drive components. When the back side of the drive belt is used to drive a pulley, the pulley is smooth. The drive belt is pulled by the crankshaft balancer pulley across the accessory drive component pulleys. The spring loaded drive belt tensioner keeps constant tension on the drive belt to prevent the drive belt from slipping. The drive belt tensioner arm will move when loads are applied to the drive belt by the accessory drive components and the crankshaft. The drive belt system may have an idler pulley, which is used to add wrap to the adjacent pulleys. Some systems use an idler pulley in place of an accessory drive component when the vehicle is not equipped with the accessory. Page 2550 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 1068 Power Seat Switch: Diagrams Seat Adjuster Switch Seat Adjuster Switch - Driver (With RPO Code AR9) Page 10917 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9321 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 5420 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9506 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2690 Fluid Pressure Sensor/Switch: Service and Repair Valve Body and Pressure Switch Replacement Removal Procedure 1. Ensure that removal of the valve body is necessary before proceeding. The following components can be serviced without removing the valve body from the transmission: ^ The torque converter clutch solenoid (1) ^ The pressure control solenoid (2) ^ The internal wiring harness (3) ^ The 2-3 shift solenoid (4) ^ The 1-2 shift solenoid (5) ^ The transmission fluid pressure manual valve position switch (6) ^ The 3-2 shift solenoid (7) ^ The torque converter clutch (TCC) pulse width modulation (PWM) solenoid (8) 2. Remove the fluid level indicator. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the oil pan, gasket, and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 5. Disconnect the internal wiring harness electrical connectors from the following components: ^ The transmission fluid pressure manual valve position switch (1) ^ The 1-2 shift solenoid (2) ^ The 2-3 shift solenoid (3) ^ The pressure control solenoid (4) ^ The TCC PWM solenoid (5) ^ The 3-2 shift solenoid (6) ^ The input speed sensor, if equipped Page 10934 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 9693 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5700 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2090 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 4499 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Locations Torque Converter Clutch Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 437 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 3288 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 2013 Page 8911 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 7893 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 2398 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 6631 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 2822 What corrected the customer concern and was the repair verified? Please Explain: ............. Disclaimer Body Control Module (BCM) C1 Body Control Module (BCM) C1 Page 3770 Valve Spring: Service and Repair Valve Stem Oil Seal and Valve Spring Replacement Tools Required ^ J 38820 Valve Stem Seal Remover and Installer ^ J 44222 Camshaft Sprocket Holding Tool ^ J-44228-A Valve Spring Compressor ^ J 44226 Crankshaft Balancer Remover Removal Procedure Important: ^ Organize the valve train components when disassembling so they can be reassembled in the same location and matched up with the same components, as previously installed. ^ Regulate the air pressure to 50 psi before pressurizing the cylinder to help prevent the crankshaft from turning. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. ^ Remove the torque converter access plug. ^ Use the J 44226-3A 15 mm holding bar on a torque converter bolt to prevent the crankshaft from turning. ^ Lower the vehicle. ^ Remove and discard the timing gear bolts. ^ Install the J 44222 onto the cylinder head in order to keep from disturbing the timing chain components. ^ Adjust the 2 horizontal bolts into the camshaft sprockets to maintain chain tension. ^ Carefully move the sprockets with the timing chain, off of the camshafts. ^ Remove the camshaft cap bolts. Page 1416 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 434 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5894 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 8215 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 819 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6178 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9608 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4076 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10331 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 2432 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 3144 1. Place the ignition in the OFF position. 2. Install the fuse(s) supplying power to the SDM. 3. Turn the ignition switch to the ON position. The AIR BAG indicator will flash then turn OFF. 4. Perform the Diagnostic System Check - Vehicle if the AIR BAG warning indicator does not operate as described. Refer to Diagnostic System Check - Vehicle. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle Disabling Procedure - Negative Battery Cable 1. Turn the steering wheel so that the vehicles wheels are pointing straight ahead. 2. Place the ignition in the OFF position. 3. Disconnect the negative battery cable from the battery. 4. Wait 1 minute before working on system. Enabling Procedure - Negative Battery Cable 1. Place the ignition in the OFF position. 2. Connect the negative battery cable to the battery. 3. Turn the ignition switch to the ON position. The AIR BAG indicator will flash then turn OFF. 4. Perform the Diagnostic System Check - Vehicle if the AIR BAG warning indicator does not operate as described. Refer to Diagnostic System Check - Vehicle. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle Page 2283 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 4020 2. Install the spark plugs to the engine. Tighten the spark plugs to 18 N.m (13 lb ft). 3. Install the ignition coils. Page 6462 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2678 13. Use the tire changer in order to install the tire to the wheel. Caution: To avoid serious personal injury, do not stand over tire when inflating. The bead may break when the bead snaps over the safety hump. Do not exceed 275 kPa (40 psi) pressure when inflating any tire if beads are not seated. If 275 kPa (40 psi) pressure will not seat the beads, deflate, lubricate the beads and reinflate. Overinflating may cause the bead to break and cause serious personal injury. Important: Allowable bead seating pressure is 345 kPa (50 psi) on Extended Mobility Tires. 14. Inflate the tire until it passes the bead humps. Be sure that the valve core is not installed at this time. 15. Install the valve core to the valve core stem. 16. Inflate the tire to the proper air pressure. 17. Ensure that the locating rings are visible on both sides of the tire in order to verify that the tire bead is fully seated on the wheel. Parts Information The product shown above is available from GM SPO. Disclaimer Page 10684 Notice: Refer to Fastener Notice. 1. Install the transfer case left rear speed sensor into the transfer case. Tighten the speed sensor to 17 N.m (13 lb ft). 2. Connect the transfer case left rear speed sensor electrical connector. 3. Lower the vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the transfer case right rear speed sensor electrical connector. 3. Remove the transfer case speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case right rear speed sensor. Tighten the speed sensor to 17 N.m (13 lb ft). Page 4085 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 5629 US English/Metric Conversion US English/Metric Conversion Page 9696 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7991 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 9069 Page 3750 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 7979 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 4795 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1275 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 9382 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 5536 Page 10400 Page 1745 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Specifications Engine Oil Pressure: Specifications Oil Pressure - Minimum .......................................................................................................................................................... 85 kPa (12 psi) @ 1200 RPM Page 7653 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5271 Page 1922 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 9188 Page 4267 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1562 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5682 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 6162 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4956 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10517 Torque Converter Clutch Solenoid: Connector Views Torque Converter Clutch Pulse Width Modulated (TCC PWM) Solenoid Valve, Wiring Harness Side Torque Converter Clutch Pulse Width Modulated (TCC PWM) Solenoid Valve, Wiring Harness Side Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Page 4215 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8134 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 8524 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 9436 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 922 For vehicles repaired under warranty, use the table. Disclaimer Page 7826 Page 4598 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4474 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8902 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4975 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8785 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5048 Page 8316 Page 8398 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5600 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6873 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Body Wiring Harness Extension Replacement Body Control Module: Service and Repair Body Wiring Harness Extension Replacement BODY WIRING HARNESS EXTENSION REPLACEMENT - BCM REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the body wiring harness extension on a Chevrolet Trail Blazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the body wiring extension (1) from the BCM. Page 3411 3. Install the fuse relay center bolts (3). Tighten the relay center bolts to 6 N.m (53 lb in). 4. Install the harness end bolts (2). 5. Install the fuse relay center cover (1) over the relay center bolts. Press downward to engage the tabs. 6. Install the junction block cover. Press downward to engage the tabs. Page 6298 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Tire Pressure Monitor - TPM System Message/Service Tips Low Tire Pressure Indicator: Technical Service Bulletins Tire Pressure Monitor - TPM System Message/Service Tips # 09-03-16-002A: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information - (Apr 27, 2010) Subject: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information Models: 2006-2011 Cars and Light Duty Trucks (Including Saturn and Saab) 2006-2010 HUMMER H2, H3 ATTENTION The information found in this bulletin is to be used as a dealership service consultant procedures for customers coming into the service lane with an illuminated "low tire light" or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. Maintaining proper tire pressures is an Owner's Maintenance item and is not covered under warranty. This bulletin is being revised to add model years and update additional bulletin reference information. Please discard Corporate Bulletin Number 09-03-16-002 (Section 03 -- Suspension). Customer Concerns and Confusion with the Tire Pressure Monitoring (TPM) System The following procedure should be used by dealership service consultants when a customer comes into the service drive with a "low tire light" on or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. The service consultant should perform the following steps: Procedure Turn the key to ON, without starting the engine. ^ If the low tire light comes on and stays on solid with a check tire pressure/low tire pressure/add air to tire message (on vehicles equipped with DIC), advise the customer: - The system is working properly. - Properly adjusting all tire air pressures to the recommended levels and driving the vehicle will turn the light off (refer to the Tire and Loading Information label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". ^ If the Tire Pressure Monitor (TPM) light blinks for one minute then stays on solid with a service tire monitor system message (on vehicles equipped with DIC): - A TPM system problem exists. The vehicle should be written up accordingly and sent to your service department for further DTC diagnosis and service. - If dashes (--) are displayed in only one or two of the tire pressure readouts, it is likely caused by a previous TPM system relearn that was performed incorrectly due to interference from another vehicle's TPM system during the relearn process (refer to the Important statement later in this bulletin regarding TPM relearn with a Tech 2(R)). - If dashes (--) are displayed in all four of the tire pressure readouts, there is a system problem. Follow the appropriate SI service procedures. ^ If a customer indicates the low tire light comes on for a few minutes when the vehicle is started, then goes off after driving a while, advise the customer: - The system is working properly. - Most likely, air pressure in one or more of the tires is low enough to turn the light on when tires are cold. After driving for a while, tires will heat Page 10305 Shift Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 10737 Pressure Regulating Solenoid: Diagrams Pressure Control (PC) Solenoid Valve, Wiring Harness Side Pressure Control (PC) Solenoid Valve, Wiring Harness Side Service and Repair Fan Clutch: Service and Repair Fan Clutch Replacement Removal Procedure 1. Remove the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. 2. Remove the push-pin and release the fan clutch electrical connector from the fan shroud. 3. Remove the fan clutch from the fan shroud. 4. Remove the bolts retaining the fan blade to the fan clutch. 5. Separate the fan blade from the fan clutch. Installation Procedure 1. Assemble the fan blade to the fan clutch. Notice: Refer to Fastener Notice. 2. Install the 4 bolts to the fan blade. Tighten the bolts to 27 N.m (20 lb ft). 3. Install the fan clutch to the fan shroud. 4. Install the push-pin to the fan clutch electrical connector. 5. Install the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. Page 9317 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 1287 Utility/Van Zoning UTILITY/VAN ZONING Page 4607 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1633 Fuel Tank Pressure Sensor: Diagrams Engine Controls Connector End Views Fuel Tank Pressure (FTP) Sensor Page 9453 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7793 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1420 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9731 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 11155 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side Page 10464 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Locations Four Wheel Drive Selector Switch: Locations Transfer Case Control Component Views Behind the Center of the I/P (Z88/Z89) Behind the Center of the I/P (Z88/Z89) 1- Rear Window Wiper/Washer Switch 2- Auxiliary Power Outlet - Front 3- Cigar Lighter 4- Transfer Case Shift Control Switch (NP8) 5- Instrument Panel Harness Page 7891 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7162 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 6072 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1546 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 6749 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 10509 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 6046 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10846 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7018 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 3188 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 3728 Notice: Refer to Component Fastener Tightening Notice. 3. Install the coolant heater to the engine block. Tighten the coolant heater to 50 N.m (37 lb ft). 4. Install the coolant heater cord to the heater (2). 5. Properly position the engine electrical harness bracket to the intake manifold. Notice: Refer to Fastener Notice. 6. Install the engine electrical harness bracket bolt. Tighten the bolt to 10 N.m (89 lb in). Page 1602 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 4348 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 13 4. Install the remaining electrical connectors to the VCIM. 5. Install the VCIM (1) to the bracket. 6. Ensure the retaining tab (1) is fully seated. 7. Install the protective cover (1) to the module. 8. Position the right second row seat to a passenger position. Important: After replacing the vehicle communication interface module, you must reconfigure the OnStar(R) system. Failure to reconfigure the system will result in an additional customer visit for repair. In addition, pressing and holding the white dot button on the keypad will NOT reset this version of the OnStar(R) system. This action will cause a DTC to set. 9. Install the scan tool. Use the special functions menu in order to perform the OnStar(R) setup procedure for this vehicle. 10. Move the vehicle to an open area that is away from tall buildings and with a clear view of unobstructed sky. Allow the vehicle to run for 10 minutes. 11. Use the ID information menu on the scan tool to access the new station ID (STID) and the electronic serial number (ESN) from the new VCIM. 12. Press the blue OnStar(R) button to connect to the OnStar(R) Call Center and perform the following procedure: 1. Tell the advisor that this vehicle has received a new VCIM. 2. Ask the advisor to add the new STID and the ESN to update the customer's account. 3. Follow any additional instructions from the OnStar(R) advisor. 4. Ask the advisor to activate the OnStar(R) Personal Calling feature, if available. Page 4119 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11140 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4465 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10169 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 559 Page 3598 Wheels: Service and Repair Aluminum Wheel Refinishing Aluminum Wheel Refinishing Finish Damage Evaluation Procedure Important: ^ If the wheels are chrome-plated, do not re-plate or refinish the wheels. ^ If the wheels are polished aluminum, do not refinish the wheels in the dealer environment. Utilize a refinisher that meets manufacturer guidelines. Inspect the wheels for damage from uncoated wheel balance weights or from automatic car wash facilities. 1. Inspect the wheels for the following conditions: ^ Corrosion ^ Scrapes ^ Gouges 2. Verify the damage is not deeper than what sanding can remove. 3. Inspect the wheels for cracks. If a wheel has cracks, discard the wheel. 4. Inspect the wheels for bent rim flanges. If a rim flange is bent, discard the wheel. Refinishing Procedure Caution: To avoid serious personal injury when applying any two part component paint system, follow the specific precautions provided by the paint manufacturer. Failure to follow these precautions may cause lung irritation and allergic respiratory reaction. 1. Remove the tire and wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. 2. Remove the balance weights from the wheel. 3. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. 4. Use a suitable cleaner in order to remove the following contaminants from the wheel: ^ Lubricants ^ Wax ^ Dirt Important: ^ Do not re-machine the wheel. ^ Do not use chemicals in order to strip the paint from the wheel. Use plastic media blasting in order to remove the paint from the wheel. 5. If the wheel had a machined aluminum finish, spin the wheel and use sand paper in order to restore the circular machined appearance. Important: The wheel mounting surface and the wheel nut contact surface must remain free of paint. 6. Mask the wheel mounting surface and the wheel nut contact surface. 7. Follow the paint manufacturer's instructions for painting the wheel. 8. Unmask the wheel. 9. Install a new valve stem. Important: Use new coated balance weights in order to balance the wheel. 10. Install the tire to the wheel. Refer to Tire Mounting and Dismounting. 11. Use a suitable cleaner in order to remove the following contaminants from the wheel mounting surface: ^ Corrosion ^ Overspray ^ Dirt 12. Install the tire and wheel assembly to the vehicle. Refer to Tire and Wheel Removal and Installation. Page 4592 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 9395 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 7726 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 3420 up, allowing tire air pressure to increase above the threshold causing the light to go off. Properly adjusting all tire air pressures to the recommended levels will correct this (Refer to the Tire and Loading Information Label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". For more detailed information, refer to Corporate Bulletin Number 07-03-16-004C and TPMS Training Course 13044.12T2. Tire Pressure Light At key on, without starting the vehicle: Steady Solid Glowing TPM Indicator If the TPM indicator appears as a steady glowing yellow lamp (as above), the system is functioning properly and you should add air to the tires to correct this condition. Blinking TPM Indicator If the TPM indicator appears as a BLINKING yellow lamp for one minute and then stays on solid, diagnostic service is needed. The Effect of Outside Temperature on Tire Pressures Important: As a rule of thumb, tire pressure will change about 7kPa (1 psi) for every 6°C (10°F) decrease in temperature - Tire pressure will drop when it gets colder outside, and rise when it gets warmer. Under certain situations such as extreme outside temperature changes, the system may bring on a solid light with a check tire pressure message. This should be considered normal and the system is working properly. The light will turn off upon adding the proper amount of air to the tires (refer to the Tire & Loading Information label in the driver's door opening). When properly adjusting tire air pressure, the following steps are important to help optimize the system and prolong bringing a tire pressure light on: ^ Use an accurate, high quality tire pressure gauge. ^ Never set the tire pressure below the specified placard value regardless of tire temperature or ambient temperature. ^ Tire pressure should be set to the specified placard pressure at the lowest seasonal temperature the vehicle will encounter during operation. Page 6925 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1281 Page 8195 Oxygen Sensor: Service and Repair Heated Oxygen Sensor 2 Replacement Heated Oxygen Sensor 2 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 3. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New or service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must reinstall the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). 4. Lower the vehicle. Page 7530 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5183 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3032 Radiator Hose: Service and Repair Radiator Outlet Hose Replacement Radiator Outlet Hose Replacement (LL8) Tools Required J 38185 Hose Clamp Pliers Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Using J 38185 reposition the radiator outlet hose clamp. 3. Remove the radiator outlet hose from the radiator. 4. Using J 38185 reposition the radiator outlet hose clamp. 5. Remove the radiator outlet hose from the engine (1). 6. Remove the radiator outlet hose. Installation Procedure 1. Install the radiator outlet hose to the engine (1). 2. Using J 38185 reposition the radiator outlet hose clamp. 3. Install the radiator outlet hose to the radiator. 4. Using J 38185 reposition the radiator outlet hose clamp. 5. Lower the vehicle. 6. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 6688 Page 5197 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 1956 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 5281 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1706 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1606 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4810 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5949 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 5361 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 6629 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 4383 Page 7291 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10149 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9342 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 3249 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7558 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 11164 Page 5507 Page 1898 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 3524 Important Other forms of slow air leaks are possible. If the body of the tire, valve stem and wheel flange show no signs of air seepage, refer to Corporate Bulletin Number 05-03-10-003D for additional information on possible wheel porosity issues. 3. Bead seat corrosion is identified by what appears like blistering of the wheel finish, causing a rough or uneven surface that is difficult for the tire to maintain a proper seal on. Below is a close-up photo of bead seat corrosion on an aluminum wheel that was sufficient to cause slow air loss. Close-Up of Bead Seat Corrosion 4. If corrosion is found on the wheel bead seat, measure the affected area as shown below. - For vehicles with 32,186 km (20,000 mi) or less, the total allowable combined linear area of repairable corrosion is 100 mm (4 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. - For vehicles that have exceeded 32,186 km (20,000 mi), the total allowable combined linear area of repairable corrosion is 200 mm (8 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. 5. In order to correct the wheel leak, use a clean-up (fine cut) sanding disc or biscuit to remove the corrosion and any flaking paint. You should remove the corrosion back far enough until you reach material that is stable and firmly bonded to the wheel. Try to taper the edge of any flaking paint as best you can in order to avoid sharp edges that may increase the chance of a leak reoccurring. The photo below shows an acceptable repaired surface. Notice Corrosion that extends up the lip of the wheel, where after the clean-up process it would be visible with the tire mounted, is only acceptable on the inboard flange. The inboard flange is not visible with the wheel assembly in the mounted position. If any loose coatings or corrosion extend to the visible surfaces on the FACE of the wheel, that wheel must be replaced. Important Remove ONLY the material required to eliminate the corrosion from the bead seating surface. DO NOT remove excessive amounts of material. ALWAYS keep the sealing surface as smooth and level as possible. Page 8136 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 2355 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 4295 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5370 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 2834 If the thrust angle is not set properly the vehicle may "dog track";, the steering wheel may not be centered or it could be perceived as a bent axle. Thrust angle can be checked during a wheel alignment. Positive thrust angle means the thrust line is pointing to the right hand side (RHS) of the vehicle. Negative thrust angle means the thrust line is pointing to the left hand side (LHS) of the vehicle. If the thrust angle is out of specification, moving the axle to body relationship will change the thrust angle reading. If the vehicle is out in the Positive (+) direction-moving the RHS forward and/or LHS rearward will move the thrust angle towards zero degrees. If the vehicle is out in the Negative (-) direction-moving the RHS rearward and/or LHS forward will move the thrust angle towards zero degrees. Lead/Pull Description Lead/Pull Description At a constant highway speed on a typical straight road, lead/pull is the amount of effort required at the steering wheel to maintain the vehicle's straight path. Important: Vehicles will tend to lead/pull in the direction of the road slope as part of normal operation. Lead/pull is usually caused by the following factors: ^ Road slope ^ Variability in tire construction ^ Wheel alignment (front cross caster and camber) ^ Unbalanced steering gear ^ Electronic Power Steering (EPS) steering position and torque sensors not calibrated correctly, if equipped. Memory Steer Description Memory Steer Description Memory steer is when the vehicle wants to lead or pull in the direction the driver previously turned the vehicle. Additionally, after turning in the opposite direction, the vehicle will want to lead or pull in that direction. Wander Description Wander Description Wander is the undesired drifting or deviation of a vehicle to either side from a straight path with hand pressure on the steering wheel. Wander is a symptom of the vehicle's sensitivity to external disturbances, such as road crown and crosswind, and accentuated by poor on-center steering feel. Scrub Radius Description Scrub Radius Description Ideally, the scrub radius is as small as possible. Normally, the SAI angle and the centerline of the tire and the wheel intersect below the road surface, causing a positive scrub radius. With struts, the SAI angle is much larger than the long arm/short arm type of suspension. This allows the SAI angle to intersect the camber angle above the road surface, forming a negative scrub radius. The smaller the scrub radius, the better the directional stability. Installing aftermarket wheels that have additional offset will dramatically increase the scrub radius. The newly installed wheels may cause the centerline of the tires to move further away from the spindle. This will increase the scrub radius. A large amount of scrub radius can cause severe shimmy after hitting a bump. Four-wheel drive vehicles with large tires use a steering damper to compensate for an increased scrub radius. Scrub radius is not directly measurable by the conventional methods. Scrub radius is projected geometrically by engineers during the design phase of the suspension. Page 5115 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 10396 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt: Testing and Inspection Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt Chirping, Squeal, and Whine Diagnosis Diagnostic Aids ^ A chirping or squeal noise may be intermittent due to moisture on the drive belts or the pulleys. It may be necessary to spray a small amount of water on the drive belts in order to duplicate the customers concern. If spraying water on the drive belt duplicates the symptom, cleaning the belt pulleys may be the probable solution. ^ If the noise is intermittent, verify the accessory drive components by varying their loads making sure they are operated to their maximum capacity. An overcharged A/C system, power steering system with a pinched hose or wrong fluid, or a generator failing are suggested items to inspect. ^ A chirping, squeal or whine noise may be caused by a loose or improper installation of a body or suspension component. Other items of the vehicle may also cause the noise. ^ The drive belts will not cause a whine noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. The noise may not be engine related. This step is to verify that the engine is making the noise. If the engine is not making the noise do not proceed further with this table. 3. The noise may be an internal engine noise. Removing the drive belts one at a time and operating the engine for a brief period will verify the noise is related to the drive belt. When removing the drive belt the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspect all drive belt pulleys for pilling. Pilling is the small balls or pills or it can be strings in the drive belt grooves from the accumulation of rubber dust. 6. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found, refer to that accessory drive component for the proper installation procedure for that pulley. 10. Inspecting of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. 12. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 14. This test is to verify that the drive belt tensioner operates properly. If the drive belt tensioner is not operating properly, proper belt tension may not be achieved to keep the drive belt from slipping which could cause a squeal noise. 15. This test is to verify that the drive belt is not too long, which would prevent the drive belt tensioner from working properly. Also if an incorrect length drive belt was installed, it may not be routed properly and may be turning an accessory drive component in the wrong direction. 16. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure for that pulley. 17. This test is to verify that the pulleys are the correct diameter or width. Using a known good vehicle compare the pulley sizes. 19. Replacing the drive belt when it is not damaged or there is not excessive pilling will only be a temporary repair. Page 11217 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1823 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4804 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 6648 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9363 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4920 Page 7240 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2730 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow these additional steps. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps to install the sensor, otherwise proceed to installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. Page 546 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6763 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4425 Flushing Procedures using DEX-COOL(R) Important: The following procedure recommends refilling the system with DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. This coolant is orange in color and has a service interval of 5 years or 240,000 km (150,000 mi). However, when used on vehicles built prior to the introduction of DEX-COOL(R), maintenance intervals will remain the same as specified in the Owner's Manual. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling system flush and fill machine is not available, drain the coolant and dispose of properly following the draining procedures in the appropriate Service Manual. Refill the system using clear, drinkable water and run the vehicle until the thermostat opens. Repeat and run the vehicle three (3) times to totally remove the old coolant or until the drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with DEX‐COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. Then slowly add clear, drinkable water (preferably distilled) to the system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and reverify the coolant level. If necessary, add clean water to restore the coolant to the appropriate level. Once the system is refilled, reverify the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. The concentration levels should be between 50% and 65%. Flushing Procedures using Conventional Silicated (Green Colored) Coolant Important: 2004-2005 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX‐COOL(R). The Aveo and Wave are filled with conventional, silicated engine coolant that is blue in color. Silicated coolants are typically green in color and are required to be drained, flushed and refilled every 30,000 miles (48,000 km). The Aveo and Wave are to be serviced with conventional, silicated coolant. Use P/N 12378560 (1 gal) (in Canada, use P/N 88862159 (1 L). Refer to the Owner's Manual or Service Information (SI) for further information on OEM coolant. Important: Do not mix the OEM orange colored DEX-COOL(R) coolant with green colored coolant when adding coolant to the system or when servicing the vehicle's cooling system. Mixing the orange and green colored coolants will produce a brown coolant which may be a customer dissatisfier and will not extend the service interval to that of DEX-COOL(R). Conventional silicated coolants offered by GM Service and Parts Operations are green in color. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling systems flush and fill machine is not available, drain coolant and dispose of properly following the draining procedures in appropriate Service Manual. Refill the system using clear, drinkable water and run vehicle until thermostat opens. Repeat and run vehicle three (3) times to totally remove old coolant or until drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with a good quality ethylene glycol base engine coolant, P/N 12378560, 1 gal (in Canada, use P/N 88862159 1 L), conforming to GM specification 1825M, or recycled coolant conforming to GM specification 1825M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% good quality ethylene glycol base (green colored) engine coolant, P/N 12378560 1 gal., (in Canada, use P/N 88862159 1 L) conforming to GM specification 1825M. Then slowly add clear, drinkable water (preferably distilled) to system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and recheck coolant level. If necessary, add clean water to restore coolant to the appropriate level. Once the system is refilled, recheck the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. Concentration levels should be between 50% and 65%. Parts Information Warranty Information Page 4327 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10006 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7080 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 8192 Oxygen Sensor: Service Precautions Heated Oxygen Sensor Resistance Learn Reset Notice Heated Oxygen Sensor Resistance Learn Reset Notice Notice: When replacing the HO2S perform the following: * A code clear with a scan tool, regardless of whether or not a DTC is set * HO2S heater resistance learn reset with a scan tool, where available Perform the above in order to reset the HO2S resistance learned value and avoid possible HO2S failure. Page 9455 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 7250 Page 6022 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5322 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 1470 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 2481 Page 1778 Page 10502 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Heater Inlet Hose Replacement (LL8) Heater Hose: Service and Repair Heater Inlet Hose Replacement (LL8) Heater Inlet Hose Replacement (LL8) Tools Required * J43181 Heater Line Quick Connect Release Tool * GE-47622 Hose Clamp Pliers Removal Procedure 1. Drain the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Using the J43181, disconnect the inlet heater hose (2) from the heater core inlet tube. 1. Install the J43181 to the quick connect on the outlet heater core hose (2). 2. Close the tool around the inlet heater core hose. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose (2). Pull the heater hose forward in order to disengage the hose from the heater core. 3. Position the inlet heater hose clamp (1) at the engine block using GE-47622. 4. Remove the heater inlet hose (2) from the inlet hose fitting at the engine block. 5. Remove the heater inlet hose. Installation Procedure 1. Apply coolant to the end of the heater inlet hose. Important: When installing a new heater inlet hose, place the clamps on the hose before installing the hose to the inlet hose fitting at the engine block. 2. Install the heater inlet hose (2) to the inlet hose fitting at the engine block. 3. Position the inlet heater hose clamp (1) at the engine block using GE-47622. 4. Install the quick connect end of the outlet heater core hose (2) to the heater core. 5. Fill the engine cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 351 Utility/Van Zoning UTILITY/VAN ZONING Locations Fog/Driving Lamp Relay: Locations Fuse Block - Underhood (4.2L), Label Page 1446 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Coolant: Technical Service Bulletins Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Bulletin No.: 05-06-02-002B Date: January 18, 2008 INFORMATION Subject: DEX-COOL(R) Coolant - New Leak Detection Dye J 46366 - Replaces J 29545-6 Models: 1996-2008 GM Passenger Cars and Light/Medium Duty Trucks* (including Saturn) 1997-2008 Isuzu T-Series Medium Duty Tilt Cab Models Built in Janesville and Flint 1999-2008 Isuzu N-Series Medium Duty Commercial Models with 5.7L or 6.0L Gas Engine 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X *EXCLUDING 2006 and Prior Chevrolet Aveo, Epica, Optra, Vivant and Pontiac Matiz, Wave Supercede: This bulletin is being revised to include additional model years. Please discard Corporate Bulletin Number 05-06-02-002A (Section 06 - Engine/Propulsion System). Leak detection dye P/N 12378563 (J 29545-6) (in Canada P/N 88900915) may cause DEX-COOL(R) coolant to appear green in a black vessel making it appear to be conventional (green) coolant. This may cause a technician to add conventional coolant to a low DEX-COOL(R) system thus contaminating it. The green DEX-COOL(R) appearance is caused by the color of the leak detection dye which alters the color of the DEX-COOL(R) coolant. A new leak detection dye P/N 89022219 (J 46366) (in Canada P/N 89022220) has been released that does not alter the appearance of the DEX-COOL(R) coolant. When adding the new leak detection dye the color of the DEX-COOL(R) coolant will not change. For detecting leaks on any system that uses DEX-COOL(R) leak detection dye P/N 89022219 (in Canada P/N 89022220) should be used. The new leak detection dye can be used with both conventional and DEX-COOL(R) coolant. Disclaimer Page 4466 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Locations Air Injection Control Valve Relay: Locations Fuse Block - Underhood (4.2L), Label Page 4948 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9607 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1059 Seat Position Sensor - Recline (w/Memory) Page 7531 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Horn - Inoperative When Pressing Horn Pad Horn Switch: All Technical Service Bulletins Horn - Inoperative When Pressing Horn Pad TECHNICAL Bulletin No.: 07-08-54-001C Date: October 17, 2008 Subject: EI07279 - Horn Inoperative from Steering Wheel Horn Pad (Ground Path Repair Procedure) Models: 2006-2007 Buick Rainier 2006 Chevrolet TrailBlazer EXT 2006-2009 Chevrolet TrailBlazer 2006 GMC Envoy XL, Envoy XUV 2006-2009 GMC Envoy, Envoy Denali Supercede: This bulletin is being revised to provide field fix information. Please discard Corporate Bulletin Number 07-08-54-001B (Section 08 - Body and Accessories). Condition Important: If the horn does NOT work from the key fob horn button, disregard this bulletin and proceed with diagnosis/repair according to SI. Some customers may comment that the horn is inoperative from the horn pad on the steering wheel. Cause The general cause of this condition is high resistance in the ground path through the steering column that energizes the horn relay. The key fob panic button uses a different ground path and is not affected. A number of locations in the circuit have been identified as sources of the high resistance. It is often difficult to pinpoint the specific location of the high resistance because the condition is usually intermittent. Attempting to discover the location can be frustrating because as circuit components are moved, the condition will often disappear. A few locations have been identified as frequent contributors to the problem. Correction Complete the following steps to diagnose and repair this condition: 1. Does the horn work by depressing the button(s) on the key fob? ^ Yes - proceed with step 2. ^ No - do not proceed with this bulletin. Diagnose and repair using information found in SI. 2. To aid in the diagnosis and to avoid disturbing others, disconnect the wiring harness from the horn assembly and insert appropriate connectors to monitor the voltage with a multi-meter or a test light. If the horn pad is currently working, rotate the steering wheel lock to lock while depressing the horn pad to determine if there are any spots in the rotation where the horn pad quits working. Caution: When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Refer to SIR Disabling and Enabling. Failure to observe the correct procedure could cause deployment of the SIR components, personal injury, or unnecessary SIR system Page 828 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5904 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2365 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7697 Page 1673 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5907 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 1538 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 2506 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8379 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5626 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3375 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 6248 2. Use a screwdriver to rotate the lock cylinder housing gear clockwise to the start position allowing it to spring return into the RUN position. 3. Align the lock cylinder and install into the lock cylinder housing. 4. Install the steering column trim covers. 5. Install the hush and knee bolster. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. 7. Connect the negative battery cable. Page 2487 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 4600 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 8648 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6954 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9262 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4656 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9757 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 10640 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow steps (6-10). The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. Page 377 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 10100 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 5156 Page 8206 Utility/Van Zoning UTILITY/VAN ZONING Page 3680 Notice: The camshaft actuator must be fully advanced during installation. Engine damage may occur if the camshaft actuator is not fully advanced. Notice: Refer to Fastener Notice. Important: Ensure the camshaft actuator is rotated clockwise relative to the camshaft prior to tightening the bolt. Do not force the camshaft actuator to rotate clockwise. If it does not move easily, it is already fully advanced. New camshaft actuators are already packaged in the fully advanced (clockwise) position. 4. Install the exhaust camshaft actuator bolt. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt the final pass an additional 135 degrees. 5. Remove the J-44217. 6. Install the top chain guide. 7. Add threadlocker to the top chain guide bolt threads. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 8. Install the top chain guide bolts. Tighten the top chain guide bolts to 10 N.m (89 lb in). 9. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 9568 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2285 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5677 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 821 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 346 Page 10763 Shift Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8123 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7294 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 3341 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4660 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4497 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8671 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1895 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10200 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8130 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9156 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Locations Transmission Speed Sensor: Locations Vehicle Speed Sensor (VSS) Vehicle Speed Sensor (VSS) 1 - VSS Sensor 2 - Transfer Case Electronic Components Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Page 7610 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Engine - Broken Bolt Extraction Information Cylinder Head Bolts: Technical Service Bulletins Engine - Broken Bolt Extraction Information INFORMATION Bulletin No.: 05-06-01-026B Date: October 21, 2008 Subject: Information On Torque to Yield Bolt Breakage and Use of Bolt Extractor Tool Kit Part Number EN-47702 for Removing Broken Cylinder Head or Main Bearing Cap Bolts on Inline Truck Engines Models: 2004-2007 Buick Rainier 2002-2009 Chevrolet TrailBlazer 2004-2009 Chevrolet Colorado 2002-2009 GMC Envoy 2004-2009 GMC Canyon 2002-2004 Oldsmobile Bravada 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with 2.8L, 2.9L, 3.5L, 3.7L or 4.2L Vortec Inline Engine (VINs 8, 9, 6, E, S - RPOs LK5, LLV, L52, LLR, LL8) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 05-06-01-026A (Section 06 - Engine/Propulsion System). A Torque To Yield (TTY) bolt, like a cylinder head bolt or main bearing cap bolt, may break during repair procedures. Interaction between a TTY bolt and threads may cause the bolt to bind or break on removal. Prior to removing the cylinder head or main cap bolts, perform the following procedure: Using an appropriately sized punch and hammer, rap on the head of each bolt. The vibration produced by this procedure will assist in successful removal. If a head bolt or main bolt breaks during engine disassembly, a broken bolt extractor kit (EN-47702) has been released to assist in removal of the remaining bolt segment. Many times the remaining bolt segment will back out easily with a pick tool or a reverse twist drill bit. Bolt Replacement & Tightening Important: Never reuse TTY main bearing or cylinder head bolts. Always make sure that the engine block threaded holes are clean and do not place oil or threadlocker on the bolts. Utilize a thread chase tool followed by cleaning with dry compressed air to insure threads are clean and dry prior to installation of new TTY bolts. Bolts that creak and snap while tightening will fail due to excessive torque caused by threads contaminated with debris, antifreeze or oil. Trace amounts of oil or antifreeze will cause this condition. In extreme cases the threads may need additional cleaning with a non-residue cleaner like a brake clean product followed by drying with clean & dry compressed air. Page 865 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 1743 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8936 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5606 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 5846 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 10756 Page 8634 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 2296 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7383 Page 2175 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5208 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1735 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8024 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 263 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4540 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 71 Disclaimer Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair Air Cleaner Outlet Resonator Replacement Removal Procedure 1. Loosen the air cleaner outlet duct and air cleaner outlet resonator clamps (2). 2. Disconnect the air cleaner outlet duct from the air cleaner outlet resonator (3). 3. Remove the 2 air cleaner outlet resonator to engine bolts (4). 4. Disconnect the crankcase ventilation hose (1) from the valve cover port (2). 5. Disconnect the electrical connector to the intake air temperature (IAT) sensor. 6. Remove the air cleaner outlet resonator assembly (5) from the engine. Installation Procedure 1. Connect the electrical connector to the IAT sensor. 2. Install the air cleaner outlet resonator assembly (5) to the engine making sure of the following: * The crankcase ventilation hose (1) is connected to the valve cover port (2). * The air cleaner outlet resonator (5) is properly fit to the throttle body assembly. Notice: Refer to Fastener Notice. 3. Install the 2 air cleaner outlet resonator to engine bolts (4). Page 831 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 9398 Page 2563 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7900 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7200 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5942 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4118 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4197 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8309 Transmission Position Switch/Sensor: Service and Repair Park/Neutral Position Switch Replacement Tools Required J 41364-A Park/Neutral Switch Aligner Removal Procedure 1. Apply the parking brake. 2. Shift the transmission into neutral. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the nut securing the transmission control lever to the manual shaft. 5. Remove the transmission control lever from the manual shaft. 6. Disconnect the electrical connectors from the switch. 7. Remove the bolts securing the park/neutral position switch to the transmission. 8. Remove the park/neutral position switch from the manual shaft. If the park/neutral position switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. Important: If a new switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in it proper position for installation and the use of neutral position adjustment tool will not be necessary. 3. Install the switch to the transmission with 2 bolts finger tight. Page 1500 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 1875 Page 247 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 10197 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8755 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5473 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9432 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7106 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 1463 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6471 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 5303 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 2825 Alignment: Specifications Trim Height Specifications Trim Height Specifications Trim Height Specifications Page 10048 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1117 Wheel Speed Sensor: Locations Antilock Brake System Component Views Front Hubs And Rotors 1 - LH Steering Knuckle 2 - Wheel Speed Sensor - LF 3 - Wheel Speed Sensor - RF 4 - RH Steering Knuckle Page 8360 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Locations Power Seat Switch: Locations Driver Seat Switches (With RPO Code AR9) Page 5465 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 3169 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7789 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Locations Manifold Pressure/Vacuum Sensor: Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 11007 Front Axle Actuator Page 646 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 6432 Spark Plug: Service and Repair Spark Plug Replacement Removal Procedure 1. Turn OFF the ignition switch. 2. Remove the ignition coils. Notice: Allow the engine to cool before removing the spark plugs. Attempting to remove the spark plugs from a hot engine may cause the plug threads to seize, causing damage to cylinder head threads. Notice: Clean the spark plug recess area before removing the spark plug. Failure to do so could result in engine damage because of dirt or foreign material entering the cylinder head, or by the contamination of the cylinder head threads. The contaminated threads may prevent the proper seating of the new plug. Use a thread chaser to clean the threads of any contamination. 3. Remove the spark plugs from the engine. Installation Procedure Notice: Use only the spark plugs specified for use in the vehicle. Do not install spark plugs that are either hotter or colder than those specified for the vehicle. Installing spark plugs of another type can severely damage the engine. Notice: Check the gap of all new and reconditioned spark plugs before installation. The pre-set gaps may have changed during handling. Use a round feeler gage to ensure an accurate check. Installing the spark plugs with the wrong gap can cause poor engine performance and may even damage the engine. 1. Measure the spark plug gap on the spark plugs to be installed. Compare the measurement to the gap specifications. Notice: Be sure that the spark plug threads smoothly into the cylinder head and the spark plug is fully seated. Use a thread chaser, if necessary, to clean threads in the cylinder head. Cross-threading or failing to fully seat the spark plug can cause overheating of the plug, exhaust blow-by, or thread damage. Notice: Refer to Fastener Notice. Page 6306 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1253 3. Install the horn plunger to the steering column. 4. Install the inflator module. 5. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 4711 Heat Shield: Service and Repair Exhaust Manifold Heat Shield Replacement - Left Side Exhaust Manifold Heat Shield Replacement - Left Side Removal Procedure 1. Remove the spark plugs. Refer to Spark Plug Replacement for the 5.3L engine or Spark Plug Replacement for the 6.0L engine. 2. Remove the heat shield bolts and the shield from the exhaust manifold. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the heat shield and the bolts to the exhaust manifold. Tighten the bolts to 9 N.m (80 lb in). 2. Install the spark plugs. Refer to Spark Plug Replacement for the 5.3L engine or Spark Plug Replacement for the 6.0L engine. Page 6505 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5510 Page 8183 US English/Metric Conversion US English/Metric Conversion Page 4575 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5374 Drivetrain - Updated Transfer Case Speed Sensor Conn. Speed Sensor: All Technical Service Bulletins Drivetrain - Updated Transfer Case Speed Sensor Conn. Bulletin No.: 06-04-21-001 Date: May 17, 2006 INFORMATION Subject: Updated Transfer Case Connector Service Kit Now Available For Transfer Case Speed Sensor Wire Harness Connector that Comes Loose Or Connector Retainer Clip Breaks Models: 2007 and Prior GM Light Duty Trucks 2007 and Prior HUMMER H2, H3 2005-2007 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive Technicians may find that when the transfer case speed sensor wire harness connector is removed, the connector lock flexes/bends and does not return to the original position. The transfer case speed sensor wire harness connector then has no locking device. On older vehicles, the plastic connector retainer becomes brittle and the clip may break as soon as it is flexed. In the past, the only service fix was to install a wire harness connector service pack, P/N 88987183. This repair procedure involved splicing a new service connector with an integral connector lock. This connector service kit is of the same design and was still prone to failure over time. A new connector service repair kit is now available, P/N 15306187, that is an updated design. This new kit should be used whenever the speed sensor wire harness connector requires replacement. Parts Information Disclaimer Page 694 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10371 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9728 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8187 Page 1839 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 10891 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 1328 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 11186 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 391 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 11220 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11006 Transfer Case Actuator: Diagrams NVG 226-NP8 - Transfer Case Transfer Case Encoder Motor Transfer Case Encoder Motor Transfer Case Encoder Notor Front Axle Actuator Front Axle Actuator Page 7777 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 10361 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2093 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8396 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4798 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used NVG 126-NP4 - Transfer Case Transfer Case Actuator: Diagrams NVG 126-NP4 - Transfer Case Transfer Case Encoder Motor Transfer Case Encoder Motor Transfer Case Encoder Motor Page 2303 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 1601 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1730 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10951 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 3944 Notice: The camshaft actuator must be fully advanced during installation. Engine damage may occur if the camshaft actuator is not fully advanced. Notice: Refer to Fastener Notice. Important: Ensure the camshaft actuator is rotated clockwise relative to the camshaft prior to tightening the bolt. Do not force the camshaft actuator to rotate clockwise. If it does not move easily, it is already fully advanced. New camshaft actuators are already packaged in the fully advanced (clockwise) position. 4. Install the exhaust camshaft actuator bolt. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt the final pass an additional 135 degrees. 5. Remove the J-44217. 6. Install the top chain guide. 7. Add threadlocker to the top chain guide bolt threads. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 8. Install the top chain guide bolts. Tighten the top chain guide bolts to 10 N.m (89 lb in). 9. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 7534 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5813 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 9715 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10052 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 2103 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1193 Fuel Gauge Sender: Diagrams Displays and Gages Connector End Views Fuel Pump and Sender Assembly Page 3283 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 11193 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 7027 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4585 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 5242 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 9091 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9112 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2279 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4138 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 8121 View of the connector when released from the component. View of another type of Micro 64 connector. Page 3221 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 418 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 10888 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 3276 Page 11197 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8101 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1309 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 4671 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 5386 4. Clean the fuel sender sealing surfaces (4). Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Page 8591 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 3651 Variable Valve Timing Solenoid: Diagrams Engine Controls Connector End Views Camshaft Actuator Solenoid Assembly Page 10421 Page 5804 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 199 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10634 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 5906 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 5532 Page 8353 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 3392 Fuse Block - Rear C4 (Pin A17 To B20) Underhood Fuse Block Page 10483 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 6637 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Locations Information Bus: Locations Lower Left Of The I/P Page 9827 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6950 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10429 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 6645 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7760 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2930 Step 1 - Step 4 Page 6011 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Locations Four Wheel Drive Selector Switch: Locations Transfer Case Control Component Views Behind the Center of the I/P (Z88/Z89) Behind the Center of the I/P (Z88/Z89) 1- Rear Window Wiper/Washer Switch 2- Auxiliary Power Outlet - Front 3- Cigar Lighter 4- Transfer Case Shift Control Switch (NP8) 5- Instrument Panel Harness Page 10908 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5040 Page 8413 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 11122 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 7798 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4957 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Locations Suspension Mode Switch: Locations Air Suspension Component Views Rear Frame and Underbody Rear Frame and Underbody - Short Wheelbase (SWB) 1 - Air Suspension Sensor - LR 2 - Air Suspension Sensor - RR 3 - Air Suspension Compressor Assembly 4 - Air Suspension Inflator Switch 5 - Frame Page 3012 3. Install the 0.471" (11.96 mm) screen in the middle of the reduced diameter point of the fitting. 4. Place the suction hose fitting or suction hose side of the manifold into the installation tool fixture J-44551-5 (3) so it is supported by the tools legs. Important: Correct placement of the J-44551-5 is critical. 5. Lubricate the A/C suction screen with the applicable refrigerant oil. 6. Align the screen (2), basket first; into the suction hose bore then hand tighten the bolt until contact is made between the hose, screen and tool. 7. Turn the bolt of the installation tool clockwise pressing the screen into the bore until the mandrel shoulder contacts the end of the hose fitting. 8. Unscrew the bolt and remove the installation tool from the hose or manifold. Important: Clean the surface to be used for attaching the label. 9. Install the J-44551-1 Suction Screen Notification Label. Page 8945 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6650 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 3219 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4791 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 713 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Locations Timing Component Alignment Marks: Locations Timing Chain Alignment Diagram 1 - Timing Marks 1 - Timing Marks 1 - Timing Marks Page 2909 Spark Plug: Testing and Inspection Spark Plug Inspection Spark Plug Usage 1. Ensure that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. 2. Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: * Spark plug fouling-Colder plug * Pre-ignition causing spark plug and/or engine damage-Hotter plug Spark Plug Inspection 1. Inspect the terminal post (1) for damage. * Inspect for a bent or broken terminal post (1). * Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should NOT move. 2. Inspect the insulator (2) for flashover or carbon tracking, soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: * Inspect the spark plug boot for damage. * Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated causes arcing to ground. 3. Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). Page 6668 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2934 Step 1 - Step 7 Page 11238 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8840 Fuel Injector: Connector Views Engine Controls Connector End Views Fuel Injector 1 Fuel Injector 2 Page 7048 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10362 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4560 Page 4693 Important: Do NOT reuse the old exhaust seal. ALWAYS replace the exhaust seal to prevent exhaust leaks. 6. Install the converter pipe to the exhaust manifold with a NEW exhaust seal. 7. Hand thread the nuts evenly against the exhaust flange until the pipe is secure. Tighten the nuts to 50 N.m (37 lb ft). 8. Install the H2OS. Refer to Heated Oxygen Sensor 2 Replacement. 9. Lower the vehicle. Page 8151 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5684 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 1326 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 4888 Engine Control Module: Connector Views Powertrain Control Module Connector End Views Powertrain Control Module (PCM) C1 Locations Windshield Washer Relay: Locations Fuse Block - Underhood (4.2L), Label Page 4182 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 3670 4. Install the camshaft caps and bolts. Tighten the camshaft cap bolts to 12 N.m (106 lb in). 5. Remove the J 44221. 6. Carefully move the sprockets back onto the camshafts and remove the J 44222. 7. Install the intake camshaft sprocket washer and bolt, and the exhaust camshaft actuator bolt. ^ Tighten the intake camshaft sprocket bolt the first pass to 20 N.m (15 lb ft). ^ Use the J 36660-A to tighten the intake camshaft sprocket bolt the final pass an additional 100 degrees. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt a final pass an additional 135 degrees. 8. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 4959 View of the connector when released from the component. View of another type of Micro 64 connector. Page 394 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 11165 Page 9816 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 7109 US English/Metric Conversion US English/Metric Conversion Page 4654 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7354 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 6278 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2714 Transmission Speed Sensor: Service and Repair Vehicle Speed Sensor Replacement Removal Procedure 1. Remove the harness connector. 2. Remove the bolt (2). 3. Remove the vehicle speed sensor (1). 4. Remove the O-ring seal (3). Installation Procedure 1. Install the O-ring seal (3) on the vehicle speed sensor (1). 2. Coat the O-ring seal (3) with a thin film of transmission fluid. 3. Install the vehicle speed sensor (1) into the transmission case. Notice: Refer to Fastener Notice. 4. Install the bolt (2). Tighten the bolt to 11 N.m (97 lb in). 5. Connect the wiring harness electrical connector to the vehicle speed sensor. 6. Refill the fluid as required. Page 3244 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7 Alarm Module: Diagrams Immobilizer Connector End Views Theft Deterrent Control Module (BAE) Page 2405 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4109 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6491 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 8915 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. NVG 120-NR9 - Transfer Case Speed Sensor: Service and Repair NVG 120-NR9 - Transfer Case Transfer Case Speed Sensor Replacement Preliminary Procedures Raise the vehicle. Refer to Lifting and Jacking the Vehicle. Specifications Idle Speed: Specifications Information not supplied by Manufacturer. Page 3385 Fuse Block - Rear C1 (Pin E8 To F12) Page 265 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 445 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 11104 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6012 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 270 Page 7127 Step 1 - Step 9 Page 7500 View of the connector when released from the component. View of another type of Micro 64 connector. Page 3936 Timing Cover: Service and Repair Engine Front Cover Replacement Tools Required J 44219 Cover Alignment Pins Removal Procedure 1. Drain the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the cooling fan and the shroud. Refer to Cooling Fan and Shroud Replacement. 3. Remove the drive belt. Refer to Drive Belt Replacement. 4. Remove the water pump. Refer to Water Pump Replacement (LH6 and LS2). 5. Remove the crankshaft balancer. Refer to Crankshaft Balancer Replacement. 6. Remove the power steering pump. Refer to Power Steering Pump Replacement (4.2L) Power Steering Pump Replacement (Except 4.2L). 7. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 8. Remove the oil pan. Refer to Oil Pan Replacement. 9. Lower the vehicle. 10. Remove the 7 mm center bolt (1). 11. Loosen and remove the remaining engine front cover bolts. 12. Place 2 of the front cover bolts in the jack screw holes on the front cover and tighten the bolts evenly to release the front cover from the engine. 13. Remove the 2 bolts from the front cover. 14. Remove the oil pump. Refer to Oil Pump Replacement. 15. Clean and inspect the front cover. Refer to Engine Front Cover Cleaning and Inspection. Installation Procedure 1. Install the J 44219 onto the engine. Page 7641 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2436 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 9195 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4402 Heater Core: Service and Repair Heater Core Replacement Removal Procedure 1. Remove the HVAC module assembly. 2. Remove the heater core access cover screws. 3. Remove the heater core access cover. 4. Remove the heater core (2) from the HVAC module assembly (1). Installation Procedure 1. Install the heater core (2) to the HVAC module assembly (1). 2. Install the heater core access cover. Notice: Refer to Fastener Notice. 3. Install the heater core access cover screws. Tighten the screws to 1.9 N.m (17 lb in). 4. Install the HVAC module assembly. Page 7347 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4477 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5754 Transmission Position Switch/Sensor: Adjustments Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the parking brake. ^ The engine must start in the P (Park) or N (Neutral) positions only. ^ Check the switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the N (Neutral) position. 2. With an assistant in the drivers seat, raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Loosen the park/neutral position switch mounting bolts. 4. With the vehicle in the N (Neutral) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. Notice: Refer to Fastener Notice. 6. Tighten the bolts securing the switch to the transmission. Tighten the bolts to 25 N.m (18 lb ft). 7. Lower the vehicle. 8. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. 9. Replace the park/neutral position switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Page 11176 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4323 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1456 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10238 Page 7496 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Sensor: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Page 4207 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4038 Coolant: Technical Service Bulletins Cooling System - Coolant Recycling Information Bulletin No.: 00-06-02-006D Date: August 15, 2006 INFORMATION Subject: Engine Coolant Recycling and Warranty Information Models: 2007 and Prior GM Passenger Cars and Trucks (Including Saturn) 2007 and Prior HUMMER Vehicles 2005-2007 Saab 9-7X Attention: Please address this bulletin to the Warranty Claims Administrator and the Service Manager. Supercede: This bulletin is being revised to adjust the title and Include Warranty Information. Please discard Corporate Bulletin Number 00-06-02-006C (Section 06 - Engine/Propulsion System). Coolant Reimbursement Policy General Motors supports the use of recycled engine coolant for warranty repairs/service, providing a GM approved engine coolant recycling system is used. Recycled coolant will be reimbursed at the GMSPO dealer price for new coolant plus the appropriate mark-up. When coolant replacement is required during a warranty repair, it is crucial that only the relative amount of engine coolant concentrate be charged, not the total diluted volume. In other words: if you are using two gallons of pre-diluted (50:50) recycled engine coolant to service a vehicle, you may request reimbursement for one gallon of GM Goodwrench engine coolant concentrate at the dealer price plus the appropriate warranty parts handling allowance. Licensed Approved DEX-COOL(R) Providers Important: USE OF NON-APPROVED VIRGIN OR RECYCLED DEX-COOL(R) OR DEVIATIONS IN THE FORM OF ALTERNATE CHEMICALS OR ALTERATION OF EQUIPMENT, WILL VOID THE GM ENDORSEMENT, MAY DEGRADE COOLANT SYSTEM INTEGRITY AND PLACE THE COOLING SYSTEM WARRANTY UNDER JEOPARDY. Shown in Table 1 are the only current licensed and approved providers of DEX-COOL(R). Products that are advertised as "COMPATIBLE" or "RECOMMENDED" for use with DEX-COOL(R) have not been tested or approved by General Motors. Non-approved coolants may degrade the Page 8319 Page 4426 For vehicles repaired under warranty, use the table. Disclaimer Page 7909 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 80 networks, and will not require an upgrade in connection with the cellular industry's transition to the digital network. In order to verify the type of OnStar(R) Hardware in a vehicle, type the VIN into the VIN look-up tool, which is available at the OnStar(R) Online Enrollment website within GM GlobalConnect (for U.S. dealers) or InfoNet (for Canadian dealers). Disclaimer Page 7014 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 4161 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 2697 16. Install the TCC PWM solenoid (1) to the control valve body. 17. Install the TCC PWM solenoid retainer (2). 18. Connect the internal wiring harness electrical connectors to the following components: ^ The transmission fluid pressure manual valve position switch (1) ^ The 1-2 shift solenoid (2) ^ The 2-3 shift solenoid (3) ^ The pressure control solenoid (4) ^ The TCC PWM solenoid (5) ^ The 3-2 shift solenoid (6) 19. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 20. Lower the vehicle. 21. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 22. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 1648 Page 4358 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 5648 Page 1824 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9910 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6308 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6689 Page 5113 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5723 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 4883 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Memory Seat Module - Driver C1 Memory Seat Module - Driver C1 (w/Memory) Page 5564 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10772 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7674 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9246 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7666 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 5787 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 7586 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 4315 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10679 2. Install the transfer case front speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case left rear speed sensor electrical connector. 3. Remove the transfer case left rear speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case left rear speed sensor. Tighten the sensor to 17 N.m (13 lb ft). 2. Install the transfer case left rear speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Page 8392 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7638 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 857 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 8139 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5737 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2106 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 8582 Utility/Van Zoning UTILITY/VAN ZONING Page 5567 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6726 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4250 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9707 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8900 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5962 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6458 Page 10970 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 2047 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 8980 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5676 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2241 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 10023 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7503 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10674 Speed Sensor: Diagrams NVG 226-NP8 - Transfer Case Propshaft Speed Sensor - Front Propshaft Speed Sensor - Front Propshaft Speed Sensor - Front Propshaft Speed Sensor - Rear Propshaft Speed Sensor - Rear Page 5221 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 5858 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 5017 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9386 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 1504 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 10545 Transfer Case Actuator: Locations NVG 226-NP8 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Drivetrain - Service 4WD Light/DTC C0374 Set Speed Sensor: All Technical Service Bulletins Drivetrain - Service 4WD Light/DTC C0374 Set TECHNICAL Bulletin No.: 05-04-21-003C Date: April 15, 2008 Subject: Service 4WD Light Illuminated, DTC C0374 Set (Inspect Wiring Harness to Transfer Case Speed Sensors,, Replace Wiring Harness) Models: 2004-2007 Buick Rainier 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado Classic, TrailBlazer, TrailBlazer EXT 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Envoy, Envoy XL, Sierra Classic 2003-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X With Four Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (RPO NP8) Transfer Case Supercede: This bulletin is being revised to update the Model and Warranty Information. Please discard Corporate Bulletin Number 05-04-21-003B (Section 04 - Driveline/Axle). Condition Some customers may comment on intermittent illumination of the Service 4WD light. Upon investigation, the technician may find DTC C0374 set. The customer may also comment on intermittent erratic operation of the 4WD or AWD system after driving through rain/snow or simply going through a car wash. Cause The speed sensor signal may have become corrupted. Possible openings in the speed sensor wire insulation (twisted pairs) can allow water intrusion. Also wire connections contaminated by water may result in short circuits and erroneous speed sensor readings. This most often occurs on the rear speed sensor circuit. Correction Inspect the wiring harness to the transfer case speed sensors. On Rainier, TrailBlazer, Envoy and 9-7X models, fabricate a replacement speed sensor harness between the C101 connector and the speed sensors. Completely inspect and test all wiring. Refer to Speed Signal Front Axle Actuator and Indicators schematic in SI. Replace the affected twisted pairs. Do not over-twist the two wires in the replacement harness. Wires should be twisted at a rate of 9 revolutions per foot. Use service connector pack, P/N 88987993 at the speed sensor end and terminal, P/N 15326267, at C101. Terminal testing tools and service terminals can be found in Terminal Repair Kit J 38125. Terminals are available from SPX/Kent-Moore. The smaller transfer case harness splices into the larger chassis harness a few inches in front of the crossmember. The chassis harness routes along the left side of the frame under the driver door area. Use nylon tie straps to secure the fabricated harness to the main chassis harness between the transfer case and C101. On the full-size pickup and full-size utility models, replace the 2.2 m (88 in) pigtail harness that runs from the C151 connector under the hood to the transfer case. Use either harness P/N 15832722 or 15224663 depending on vehicle equipment. Refer to Propshaft Speed Sensors Front Axle Actuator and Transfer Case Shift Control Switch schematic in SI. Important: Technicians should verify the integrity of the splice joints after the repair. All splice joints and connections should seal properly against water or a repeat condition can occur. Page 398 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 4567 Radiator Cooling Fan Motor Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 4931 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 7555 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2415 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 3790 Drive Belt: Testing and Inspection Drive Belt Falls Off and Excessive Wear Diagnosis Drive Belt Falls Off and Excessive Wear Diagnosis Diagnostic Aids If the drive belt repeatedly falls off the drive belt pulleys, this is because of pulley misalignment. An extra load that is quickly applied on released by an accessory drive component may cause the drive belt to fall off the pulleys. Verify the accessory drive components operate properly. If the drive belt is the incorrect length, the drive belt tensioner may not keep the proper tension on the drive belt. Excessive wear on a drive belt is usually caused by an incorrect installation or the wrong drive belt for the application. Minor misalignment of the drive belt pulleys will not cause excessive wear, but will probably cause the drive belt to make a noise or to fall off. Excessive misalignment of the drive belt pulleys will cause excessive wear but may also make the drive belt fall off. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This inspection is to verify the condition of the drive belt. Damage may of occurred to the drive belt when the drive belt fell off. The drive belt may of been damaged, which caused the drive belt to fall off. Inspect the belt for cuts, tears, sections of ribs missing, or damaged belt plys. 4. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure of that pulley. 5. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 6. Accessory drive component brackets that are bent or cracked will let the drive belt fall off. 7. Inspecting of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. Missing. loose, or the wrong fasteners may cause pulley misalignment from the bracket moving under load. Over tightening of the fasteners may cause misalignment of the accessory component bracket. 13. The inspection is to verify the drive belt is correctly installed on all of the drive belt pulleys. Wear on the drive belt may be caused by mis-positioning the drive belt by one groove on a pulley. 14. The installation of a drive belt that is two wide or two narrow will cause wear on the drive belt. The drive belt ribs should match all of the grooves on all of the pulleys. 15. This inspection is to verify the drive belt is not contacting any parts of the engine or body while the engine is operating. There should be sufficient clearance when the drive belt accessory drive components load varies. The drive belt should not come in contact with an engine or a body component when snapping the throttle. Page 4760 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 2354 Page 8327 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1741 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 3810 14. Connect the cooling fan hub nut to the water pump shaft. 15. Install the cooling fan. Refer to Cooling Fan and Shroud Replacement. 16. Connect the battery negative cable. Refer to Battery Negative Cable Disconnection and Connection. Page 7011 Page 6304 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Specifications Exhaust Manifold: Specifications Exhaust Manifold. With threadlock GM P/N 12345493 (Canadian P/N 10953488) on the manifold bolts, install the bolts onto the manifold. Exhaust Manifold Bolts (4.2L) First Pass ............................................................................................................................................. .................................................... 25 N.m (18 lb ft) Second Pass ........................................................ ..................................................................................................................................... 25 N.m (18 lb ft) Final Pass ........................................................................................................................................ ........................................................ 25 N.m (18 lb ft) Exhaust Manifold Heat Shield Nut ............................................................................................................................................................. 10 N.m (89 lb in) Exhaust Manifold Heat Shield Stud ............................................................................................................................................................ 10 N.m (89 lb in) Exhaust Pipe Bolt ..................................................................................................... ................................................................................... 50 N.m (37 lb ft) Page 7880 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 1536 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 131 Built After and Including the VIN Breakpoints shown. The Generation (Gen) 6.1 OnStar(R) system found in these vehicles has the capability to change the default English voice recognition to French or Spanish. Changing the language of the OnStar(R) system will change the following features to the language you select: Voice recognition command prompts will be played in the language selected. The voice recognition system will only recognize commands given in the selected language. Once completed, this process completely changes all voice recognition and voice commands of the OnStar(R) system. The process will need to be repeated in its entirety to change to a different language, including English. Page 9197 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 6270 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 1813 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 11069 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5240 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5222 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8070 Manifold Pressure/Vacuum Sensor: Diagrams Engine Controls Connector End Views Manifold Absolute Pressure (MAP) Sensor Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 4378 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 10138 Page 11156 Shift Solenoid: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. Important: Do not remove the valve body for the following procedures. Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. 2. Remove the 1-2 accumulator if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ Torque converter clutch (TCC) pulse width modulation (PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer. 5. Remove the pressure control solenoid. 6. Remove the 1-2 and 2-3 shift solenoid retainers. 7. Remove the 1-2 and 2-3 shift solenoids. Page 9201 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 6741 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7976 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10108 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 2037 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5468 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 9797 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 3513 onto the subject vehicle. - After match mounting, the tire/wheel assembly must be rebalanced. If match mounting tires to in-spec wheels produces assembly values higher than these, tire replacement may be necessary. Replacing tires at lower values will probably mean good tires are being condemned. Because tires can sometimes become temporarily flat-spotted, which will affect force variation, it is important that the vehicle be driven at least 16 km (10 mi) prior to measuring. Tire pressure must also be adjusted to the usage pressure on the vehicle's tire placard prior to measuring. Most GM vehicles will tolerate radial force variation up to these levels. However, some vehicles are more sensitive, and may require lower levels. Also, there are other tire parameters that equipment such as the Hunter GSP9700 cannot measure that may be a factor. In such cases, TAC should be contacted for further instructions. Important - When mounting a GM wheel to a wheel balancer/force variation machine, always use the wheel's center pilot hole. This is the primary centering mechanism on all GM wheels; the bolt holes are secondary. Usually a back cone method to the machine should be used. For added accuracy and repeatability, a flange plate should be used to clamp the wheel onto the cone and machine. This system is offered by all balancer manufacturers in GM's dealer program. - Any type of service equipment that removes tread rubber by grinding, buffing or truing is NOT recommended, and may void the tire warranty. However, tires may have been ground by the tire company as part of their tire manufacturing process. This is a legitimate procedure. Steering Wheel Shake Worksheet When diagnosing vibration concerns, use the following worksheet in conjunction with the appropriate Vibration Analysis-Road testing procedure in the Vibration Correction sub-section in SI. Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 3808 12. Remove the left engine mount from the bracket. 13. Remove the left engine mount bracket bolts (1). 14. Remove the left engine mount bracket. 15. Remove the left frame engine mount bracket bolts. 16. Remove the left frame engine mount bracket, if required. Installation Procedure 1. Install the left frame engine mount bracket, if removed. Notice: Refer to Fastener Notice. 2. Install the left frame engine mount bracket bolts, if removed. Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 2694 4. Install one bolt (M6 X 1.0 X 47.5) hand tight in the center (1) of the valve body to hold it in place. Important: When installing bolts throughout this procedure, be sure to use the correct bolt size and length in the correct location as specified. 5. Do not install the transmission fluid indicator stop bracket and bolt at this time. Install but do not tighten the control valve body bolts which retain only the valve body directly. Each numbered bolt location corresponds to a specific bolt size and length, as indicated by the following: ^ M6 X 1.0 X 65.0 (1) ^ M6 X 1.0 X 54.4 (2) ^ M6 X 1.0 X 47.5 (3) ^ M6 X 1.0 X 35.0 (4) ^ M8 X 1.0 X 20.0 (5) ^ M6 X 1.0 X 12.0 (6) ^ M6 X 1.0 X 18.0 (7) 6. Install the manual detent spring. 7. Install but do not tighten the manual detent spring retaining bolt. Page 6143 View of the connector when released from the component. View of another type of Micro 64 connector. Page 1753 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 4899 since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Page 7614 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 10976 Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Page 4805 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 7340 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2242 Page 840 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 5128 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7835 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 10820 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5820 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Drivetrain - Service 4WD Light/DTC C0374 Set Speed Sensor: Customer Interest Drivetrain - Service 4WD Light/DTC C0374 Set TECHNICAL Bulletin No.: 05-04-21-003C Date: April 15, 2008 Subject: Service 4WD Light Illuminated, DTC C0374 Set (Inspect Wiring Harness to Transfer Case Speed Sensors,, Replace Wiring Harness) Models: 2004-2007 Buick Rainier 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado Classic, TrailBlazer, TrailBlazer EXT 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Envoy, Envoy XL, Sierra Classic 2003-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X With Four Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (RPO NP8) Transfer Case Supercede: This bulletin is being revised to update the Model and Warranty Information. Please discard Corporate Bulletin Number 05-04-21-003B (Section 04 - Driveline/Axle). Condition Some customers may comment on intermittent illumination of the Service 4WD light. Upon investigation, the technician may find DTC C0374 set. The customer may also comment on intermittent erratic operation of the 4WD or AWD system after driving through rain/snow or simply going through a car wash. Cause The speed sensor signal may have become corrupted. Possible openings in the speed sensor wire insulation (twisted pairs) can allow water intrusion. Also wire connections contaminated by water may result in short circuits and erroneous speed sensor readings. This most often occurs on the rear speed sensor circuit. Correction Inspect the wiring harness to the transfer case speed sensors. On Rainier, TrailBlazer, Envoy and 9-7X models, fabricate a replacement speed sensor harness between the C101 connector and the speed sensors. Completely inspect and test all wiring. Refer to Speed Signal Front Axle Actuator and Indicators schematic in SI. Replace the affected twisted pairs. Do not over-twist the two wires in the replacement harness. Wires should be twisted at a rate of 9 revolutions per foot. Use service connector pack, P/N 88987993 at the speed sensor end and terminal, P/N 15326267, at C101. Terminal testing tools and service terminals can be found in Terminal Repair Kit J 38125. Terminals are available from SPX/Kent-Moore. The smaller transfer case harness splices into the larger chassis harness a few inches in front of the crossmember. The chassis harness routes along the left side of the frame under the driver door area. Use nylon tie straps to secure the fabricated harness to the main chassis harness between the transfer case and C101. On the full-size pickup and full-size utility models, replace the 2.2 m (88 in) pigtail harness that runs from the C151 connector under the hood to the transfer case. Use either harness P/N 15832722 or 15224663 depending on vehicle equipment. Refer to Propshaft Speed Sensors Front Axle Actuator and Transfer Case Shift Control Switch schematic in SI. Important: Technicians should verify the integrity of the splice joints after the repair. All splice joints and connections should seal properly against water or a repeat condition can occur. Page 1702 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10203 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 2366 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9474 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 10627 Four Wheel Drive Selector Switch: Service and Repair Transfer Case Shift Control Switch Replacement (Chevrolet) Removal Procedure 1. Remove the bezel cover. Refer to Instrument Panel Cluster Trim Plate Bezel Replacement (Chevrolet) Instrument Panel Cluster Trim Plate Bezel Replacement (GMC, Buick). 2. Push in on the two tabs on the side of the control switch. 3. Move the control switch toward the front of the trim plate. 4. Disconnect the electrical connector. 5. Remove the control switch. Installation Procedure 1. Install the electrical connector to the control switch. Important: When installing control switch in the trim bezel, a snap should be felt or heard. 2. Install the control switch in the bezel cover. Page 10157 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 4996 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 5724 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 1344 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 684 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 4670 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 4817 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Locations Yaw Rate Sensor: Locations Antilock Brake System Component Views Under Front Passenger Seat 1 - Yaw Rate and Lateral Acceleration Sensor Page 772 Powertrain Control Module (PCM) C2 (Pin 15 To 54) Page 2218 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6760 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 476 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 8109 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7301 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8093 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 9974 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 10855 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 6601 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10170 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9876 Page 5163 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4963 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5358 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 2134 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 7284 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7216 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6339 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3003 4. Install the heater outlet hose (3) to the heater core (1). 5. Firmly push the quick connect onto the heater core hose until you hear an audible click. 6. Install the transmission. 7. Install the generator. 8. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 9122 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5504 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Mechanical Specifications Engine Oil: Mechanical Specifications Lubrication System Oil Capacity - with Filter ....................................................................................................................... ....................................................... 6.6L (7.0 qts) Oil Capacity - without Filter ................................... ...................................................................................................................................... 6.1L (6.5 qts) Page 9726 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8995 package instructions. Do not soak the fuel rail in liquid cleaning solvent. Remove the fuel rail assembly (1). 8. Remove the injector lower O-ring seal from the spray tip end of each injector. 9. Discard the O-ring seals. 10. If the fuel rail is not being replaced, go to the Installation Procedure. Disassembly Procedure 1. Remove the fuel injector wire harness (2) from the fuel rail (1). 2. Remove the fuel injectors (4) from the fuel rail (4). Assembly Procedure Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 6148 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 9730 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3330 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10021 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 196 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4381 US English/Metric Conversion US English/Metric Conversion Page 4307 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9865 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 5329 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3630 Use extra care whenever towing another vehicle. Do not exceed the towing vehicle's gross combination weight (GCW) by adding the weight of the dinghy towed vehicle or vehicle damage may result. 6. When the vehicle being towed is firmly attached to the tow vehicle, release the parking brake. 7. Replace the fuse(s) in the fuse panel when finished towing. Tracker Models Note: Locking the steering column when towing your vehicle may damage the steering column. Always unlock the steering column before towing. Important: ^ Two-wheel drive Trackers cannot be dinghy towed. Two-wheel drive models MUST be towed with the rear drive wheels on a dolly. ^ The towing speed must not exceed 90 km/h (55 mph). In order to properly dinghy tow a 4WD Tracker, follow these steps: 1. Set the parking brake. 2. Shift the transmission into Park (AT) or second gear (MT). 3. With the ignition key in the ON position, move the transfer case to Neutral. Make sure the 4WD indicator on the instrument panel cluster is Off. 4. Turn the ignition key to ACC in order to unlock the steering wheel. 5. Release the parking brake. Stop towing the vehicle every 300 km (200 mi) and do the following steps: 1. Start the engine of the towed vehicle. 2. Leave the transfer case shift lever in Neutral. 3. Shift the transmission to Drive (AT). For vehicles with (MT), leave the transmission in second gear with the clutch engaged. 4. Run the engine at medium speed for one minute to circulate the oil through the transfer case. 2003-2007 Pontiac Vibe Only the front wheel drive vehicles with manual transmission are designed to be dinghy towed. Use the following procedure to properly dinghy tow these models: 1. Place the shift lever in Neutral. 2. Turn the ignition switch to the ACC position to avoid locking the steering wheel. Make sure that the audio system is turned off and that nothing is plugged into the power outlets. 3. Release the parking brake. 4. After dinghy towing the vehicle, let the engine idle for more than three minutes before driving the vehicle. Four Wheel Drive and All Wheel Drive Light Duty Trucks Page 6890 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7741 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5814 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8030 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 4066 Utility/Van Zoning UTILITY/VAN ZONING Page 6177 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10880 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 3279 Page 1814 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6212 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 3071 Fluid - A/T: Testing and Inspection Transmission Fluid Checking This procedure checks the transmission fluid level, as well as the condition of the fluid itself. Notice: Always use the proper automatic transmission fluid listed. Using incorrect automatic transmission fluid may damage the vehicle. Before checking the fluid level, perform the following: 1. Start the engine and park the vehicle on a level surface. Keep the engine running. 2. Apply the parking brake and place the shift lever in PARK (P). 3. Depress the brake pedal and move the shift lever through each gear range, pausing for about 3 seconds in each range. Then, move the shift lever back to PARK (P). 4. Allow the engine to idle 500-800 rpm for at least 1 minute. Slowly release the brake pedal. 5. Keep the engine running and observe the transmission fluid temperature (TFT) using the Driver Information Center (DIC) or a scan tool. 6. Using the TFT reading, determine and perform the appropriate check procedure. If the TFT reading is not within the required temperature ranges, allow the vehicle to cool, or operate the vehicle until the appropriate TFT is reached. Cold Check Procedure Important: Use the cold check procedure only as a reference to determine if the transmission has enough fluid to be operated safely until a hot check procedure can be made. The hot check procedure is the most accurate method to check the fluid level. Perform the hot check procedure at the first opportunity. Use this cold check procedure to check fluid level when the TFT is between 80° F and 90° F (27° C and 32° C). 1. Start the engine and locate the transmission dipstick at the rear of the engine compartment, on the passenger's side of the vehicle. 2. Flip the handle up, and then pull out the dipstick and wipe the dipstick end with a clean rag or paper towel. 3. Install the dipstick by pushing it back in the dipstick tube all the way, wait three seconds and then pull it back out again. Important: Always check the fluid level at least twice. Consistent readings are important to maintaining proper fluid level. If inconsistent readings are noted, inspect the transmission vent assembly to ensure it is clean and unclogged. 4. Keep the dipstick pointing down and check both sides of the dipstick, and read the lower level. Repeat the check procedure to verify the reading. 5. Inspect the color of the fluid on the dipstick. Refer to Fluid Condition Inspection. 6. If the fluid level is below the COLD check line, add only enough fluid as necessary to bring the level into the COLD line. It does not take much fluid, generally less than one pint (0.5L). Do not overfill. 7. If the fluid level is in the acceptable range, push the dipstick back in all the way, then flip the handle down to lock the dipstick in place. 8. Perform a hot check at the first opportunity after the transmission reaches a normal operating temperature between 180° F to 200° F (82° C to 93° C). Hot Check Procedure Important: Use this procedure to check the transmission fluid level when the TFT is between 180° F and 200° F (82° C and 93° C). The hot check procedure is the most accurate method to check the fluid level. The hot check should be performed at the first opportunity in order to verify the cold check. The fluid level rises as fluid temperature increases, so it is important to ensure the transmission temperature is within range. 1. Start the engine and locate the transmission dipstick at the rear of the engine compartment, on the passenger's's side of the vehicle. 2. Flip the handle up, and then pull out the dipstick and wipe the dipstick end with a clean rag or paper towel. 3. Install the dipstick by pushing it back in the dipstick tube all the way, wait three seconds and then pull it back out. Important: Always check the fluid level at least twice. Consistent readings are important to maintaining proper fluid level. If inconsistent readings are noted, inspect the transmission vent assembly to ensure it is clean and unclogged. 4. Keep the dipstick tip pointing down and check both sides of the dipstick. Read the lower level. Repeat the check procedure to verify the reading. 5. Inspect the color of the fluid on the dipstick. Refer to Fluid Condition Inspection. 6. A safe operating fluid level is within the HOT crosshatch band on the dipstick. If the fluid level is not within the HOT band, and the transmission temperature is between 180° F and 200° F (82° C and 93° C), add or drain fluid as necessary to bring the level into the HOT band. If the fluid level is low, add only enough fluid to bring the level into the HOT band. Important: To assist in reaching the correct temperature range of 180° F to 200° F (82° C and 93° C), drive the vehicle in second gear at no more than 65 MPH until the desired temperature is reached. Page 9038 Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Page 4114 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3216 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 7730 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7913 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3291 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Engine - Noise/Damage Oil Filter Application Importance Oil Filter: Technical Service Bulletins Engine - Noise/Damage Oil Filter Application Importance INFORMATION Bulletin No.: 07-06-01-016B Date: July 27, 2009 Subject: Information on Internal Engine Noise or Damage After Oil Filter Replacement Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being updated to add model years. Please discard Corporate Bulletin Number 07-06-01-016A (Section 06 - Engine/Propulsion System). Important Engine damage that is the result of an incorrect or improperly installed engine oil filter is not a warrantable claim. The best way to avoid oil filter quality concerns is to purchase ACDelco(R) oil filters directly from GMSPO. Oil filter misapplication may cause abnormal engine noise or internal damage. Always utilize the most recent parts information to ensure the correct part number filter is installed when replacing oil filters. Do not rely on physical dimensions alone. Counterfeit copies of name brand parts have been discovered in some aftermarket parts systems. Always ensure the parts you install are from a trusted source. Improper oil filter installation may result in catastrophic engine damage. Refer to the appropriate Service Information (SI) installation instructions when replacing any oil filter and pay particular attention to procedures for proper cartridge filter element alignment. If the diagnostics in SI (Engine Mechanical) lead to the oil filter as the cause of the internal engine noise or damage, dealers should submit a field product report. Refer to Corporate Bulletin Number 02-00-89-002I (Information for Dealers on How to Submit a Field Product Report). Disclaimer Page 8918 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 3826 Engine Oil Pressure: Testing and Inspection Oil Pressure Diagnosis and Testing Tools Required ^ J 21867 Pressure Gage and Hose Assembly ^ J 42907 Oil Pressure Tester 1. With the vehicle on a level surface, run the vehicle for a few minutes, allow adequate drain down time (2-3 minutes) and measure for a low oil level. 2. If required, add the recommended grade engine oil and fill the crankcase until the oil level measures full on the oil level indicator. 3. Run the engine briefly (10-15 seconds) and verify low or no oil pressure on the vehicle gage or light. 4. Listen for a noisy valve train or a knocking noise. 5. Inspect for the following: ^ Oil diluted by water or glycol (anti freeze) ^ Foamy oil 6. Remove the oil filter and install the J 42907 7. Install J 21867 or equivalent to the J 42907 8. Run the engine and measure the engine oil pressure. 9. Compare the readings to Engine Mechanical Specifications. 10. If the engine oil pressure is below specifications, inspect the engine for one or more of the following: ^ Oil pump worn or dirty Refer to Oil Pump Cleaning and Inspection. ^ Oil pump screen loose, plugged, or damaged ^ Oil pump screen O-ring seal missing or damaged ^ Malfunctioning oil pump pressure regulator valve ^ Excessive bearing clearance ^ Cracked, porous, or restricted oil galleries ^ Oil gallery plugs missing or incorrectly installed Refer to Engine Block Plug Installation. ^ Broken valve lash adjusters Repair as necessary 11. If the reading on J 21867 or equivalent is within specifications, inspect for the following: ^ Plugged or incorrect oil filter and/or malfunctioning oil bypass valve ^ Malfunctioning vehicle oil pressure gage or sensor Repair as necessary Page 1153 1 - Air Temperature Sensor - Lower Right Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 5010 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6960 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8837 US English/Metric Conversion US English/Metric Conversion Page 3360 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6913 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 1314 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 3127 Refrigerant: Fluid Type Specifications Air Conditioning Refrigerant ....................................................................................................................... R134a P/N 12356150 U.S. (10953485 Canada) Page 5861 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8108 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5571 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 3402 Page 3292 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 2729 Gear Sensor/Switch: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 778 * The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. * The MIL turns OFF after the engine is started if a diagnostic fault is not present. * The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. * The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. * When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. * When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. Trip A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). Warm-Up Cycle The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. Diagnostic Trouble Codes (DTCs) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC Status When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) - Indicates that this DTC failed during the present ignition cycle. Last Test Fail - Indicates that this DTC failed the last time the test ran. MIL Request - Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) - Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History - Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) - DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display Page 7198 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6644 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11136 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 6549 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 2396 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 9309 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. OnStar(R) - Number Incorrect/Incorrectly Assigned Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Number Incorrect/Incorrectly Assigned INFORMATION Bulletin No.: 05-08-46-004C Date: December 23, 2010 Subject: OnStar(R) Phone Number Concerns (Phone Number Incorrect/Assigned to Another Vehicle/Phone) That Occur During Diagnosis of OnStar(R) System Models: 2000-2011 GM Passenger Cars and Trucks Equipped with OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to update model years up to 2011. Please discard Corporate Bulletin Number 05-08-46-004B (Section 08 - Body and Accessories). During diagnosis of an OnStar(R) concern, the technician may be told that the OnStar(R) phone number is incorrect or tied to another vehicle and/or phone of some kind. To resolve these concerns, the Tech 2(R) with software version 22.005 (or higher), has the capability to change the OnStar(R) phone number. Service Procedure 1. With the Tech 2(R), build the vehicle to specifications within the Diagnostics area of the Tech 2(R). 2. For vehicles with physical-based diagnostics - under Body, go to the OnStar(R) section. Then select the Special Functions menu. For vehicles with functional-based diagnostics - under Body and Accessories, go to the Cellular Communication section. Select Module Setup and then Vehicle Communication Interface Module. 3. Locate the Program Phone Number prompt and select it. The original phone number will be displayed on the Tech 2(R) screen. 4. Contact the OnStar(R) team at the GM Technical Assistance Center (TAC) to obtain a new phone number. 5. Highlight the digits of the phone number one at a time and enter the new phone number using the number keys on the Tech 2(R). 6. Press the Soft key at the base of the screen for Done once these numbers have been changed on the screen. 7. Press the Soft key for Done again. The area code or new phone number has now been programmed into the phone. 8. Cycle the ignition to Off and open the driver's door. 9. Press the blue OnStar(R) button to make sure that a normal connection can be made to the OnStar(R) call center. If applicable, make sure the Hands-Free Calling (HFC) works properly by making a phone call. 10. If the system is working properly, fax or voicemail a case closing into the OnStar(R) team at TAC with the results. Dealers in Canada should submit case closing information through the GM infoNET. Please follow this diagnostic process thoroughly and complete each step. If the condition exhibited is resolved WITHOUT completing every step, the remaining steps do not need to be performed. If the procedure above does not resolve the condition, you must contact TAC for further assistance. This diagnostic approach was developed specifically for this condition and should not automatically be used for other vehicles with similar symptoms. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Page 9847 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 3889 Crankshaft Main Bearing Seal: Service and Repair Crankshaft Rear Oil Seal Replacement Crankshaft Rear Oil Seal Replacement Tools Required J 44227 Rear Seal Installer Removal Procedure 1. Remove the transmission. Refer to Transmission Replacement (LL8) Transmission Replacement (LM4, LS2). 2. Remove the flywheel. Refer to Engine Flywheel Replacement. Important: Do not damage the crankshaft or seal bore. 3. Pry the crankshaft rear oil seal out of the rear oil seal housing using a suitable tool. Installation Procedure Important: Use the plastic installation sleeve supplied with the new seal when installing a new seal. 1. Use J 44227 to install the crankshaft rear oil seal. 2. Remove the J 44227. 3. Remove the seal installation sleeve after the seal is installed. Discard the sleeve. 4. Install the flywheel. Refer to Engine Flywheel Replacement. 5. Install the transmission. Refer to Transmission Replacement (LL8) Transmission Replacement (LM4, LS2). Locations Alarm Module: Locations Immobilizer Component Views Steering Column 1 - Ignition Lock Cylinder Case 2 - Theft Deterrent Control Module Page 436 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10927 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2223 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 686 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 3207 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4283 Page 10561 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). Page 4101 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 3345 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 878 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10241 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 9749 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 4882 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3312 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 7201 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 1836 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3887 3. Apply a 3 mm (0.12 in) bead of sealant to the rear oil seal housing (1). Refer to Sealers, Adhesives, and Lubricants for the correct part number. 4. Install the J 44219 guide pins (1) into the block. Important: ^ When installing a new seal, use the plastic installation sleeve supplied with the new seal. ^ The seal installation sleeve should come off after the seal is installed. Discard the sleeve. Slide the crankshaft rear oil seal housing over the alignment pins J 44219 and crankshaft. 5. Install the crankshaft rear oil seal housing bolts, except the 2 in place of the guide pins. 6. Remove the J 44219 guide pins. Notice: Refer to Fastener Notice. 7. Install the remaining 2 crankshaft rear oil seal housing bolts. Tighten all the oil seal housing bolts to 10 N.m (89 lb in). Page 4206 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10999 5. Using the J-35616-5, attach the RED lead from the other jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 6. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 7. Touch the battery terminals of the second 9-volt battery to the battery terminals of the second jumper harness. This will rotate the encoder motor ( actuator) shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 8. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the reference lines as shown in the picture. This orientates the encoder motor (actuator) to NETURAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 9. Wiggle the control actuator lever shaft of the transfer case by hand to find the low point of the cam. 10. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. 11. After installation, the transfer case will perform a learn procedure upon a requested MODE change. Parts Information For warranty claims, submit batteries as parts. Page 2076 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 5817 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7497 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 803 Page 3494 13. Use the tire changer in order to install the tire to the wheel. Caution: To avoid serious personal injury, do not stand over tire when inflating. The bead may break when the bead snaps over the safety hump. Do not exceed 275 kPa (40 psi) pressure when inflating any tire if beads are not seated. If 275 kPa (40 psi) pressure will not seat the beads, deflate, lubricate the beads and reinflate. Overinflating may cause the bead to break and cause serious personal injury. Important: Allowable bead seating pressure is 345 kPa (50 psi) on Extended Mobility Tires. 14. Inflate the tire until it passes the bead humps. Be sure that the valve core is not installed at this time. 15. Install the valve core to the valve core stem. 16. Inflate the tire to the proper air pressure. 17. Ensure that the locating rings are visible on both sides of the tire in order to verify that the tire bead is fully seated on the wheel. Parts Information The product shown above is available from GM SPO. Disclaimer Page 2059 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Audio - Inadvertent Steering Wheel Button Activation Remote Switch: Technical Service Bulletins Audio - Inadvertent Steering Wheel Button Activation INFORMATION Bulletin No.: 08-08-44-028 Date: August 28, 2008 Subject: Information On Inadvertent Steering Wheel Control (SWC) Button Press Causing Radio Anomalies Models: 2009 and Prior GM Passenger Cars and Trucks (Including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X All Vehicles with Steering Wheel Controls This bulletin is being issued to provide a recommendation for vehicles with a customer concern of the radio station tuning changing by itself, volume changing by itself, radio changing by itself, or radio muting or going silent when driving and turning the steering wheel. The switches on the right hand side of the steering wheel are easily pressed and may inadvertently be pressed when turning the steering wheel. These concerns may be affected by the location of the steering wheel controls. Recommendation Do Not Replace The Radio 1. Please determine that the switch controls on the steering wheel are functioning correctly. 2. Ask the customer if their hand was in close proximity to the steering wheel controls when the condition happened. Explain to the customer that bumping the controls would have caused this undesired action. Explain to the customer the proper use and function of the steering wheel controls. Disclaimer Page 11040 Shift Interlock Solenoid: Service and Repair Automatic Transmission Shift Lock Actuator Replacement Important: After assembling the shift lock actuator, turn the ignition forward but do not start (auxiliary position) and attempt to pull the lever from PARK with and without the brake pedal depressed to verify there is no gear access without the brake pedal depressed. Important: Ensure the key cannot be removed from the ignition unless both the shiftier is in PARK and the shift knob button has been depressed. Removal Procedure 1. Remove the console. Refer to Console Replacement. 2. Disconnect the shift lock actuator (3) electrical connector. Page 9132 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4260 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2502 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4261 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 7812 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 2378 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Service and Repair Muffler: Service and Repair Muffler Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. Important: Do not reuse any component of the exhaust system that is corroded or damaged. Important: When replacing the muffler in a vehicle with the LL8 engine, the resonator and tailpipe must also be ordered. The 2 pieces may be attached with a clamp. 2. Inspect the exhaust system components to determine if they can be reused. 3. Remove the frame brace. Refer to Frame Brace Replacement (TrailBlazer EXT, Envoy XL) Frame Brace Replacement (TrailBlazer, Envoy, Bravada). 4. Remove the nuts that secure the muffler to the catalytic converter pipe. 5. Separate the muffler and the tail pipe assembly from the hanger insulators. 6. Lower the muffler and tail pipe assembly. 7. Suitably support the exhaust system. 8. Cut the exhaust pipe at the dashed line (1). 9. Remove the muffler from the tail pipe. Installation Procedure Page 1549 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9842 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7855 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5801 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 7748 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 9729 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 5387 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Page 10251 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 6869 Page 9203 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1866 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 6679 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8275 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7849 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. NVG 126-NP4 - Transfer Case Transfer Case Actuator: Locations NVG 126-NP4 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 4141 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 10943 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 10496 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6006 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5409 Page 4345 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9442 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 8813 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 7453 Refer to the above graphic illustration (1) (dish side out) for the installation of the service cup plug. Do Not use the impact socket with hammer to drive the service cup plug into place. Damage to the crankshaft thrust bearing may occur. Refer to above illustration (1), showing the 15 MM. step inside the 18 MM. 1/2" drive impact style socket. Refer to the above illustration (1), showing the 38 MM (1-1/2") overall height of an 18 MM or 19 MM 1/2" drive impact style socket. It is best to use a thicker wall socket to equalize installation force with the following approximate dimensions. Page 9551 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 9099 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4997 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3186 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 6898 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 4569 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7097 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2210 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5560 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8816 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9261 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 7047 View of the connector when released from the component. View of another type of Micro 64 connector. Page 272 Driver Door Module (DDM) C2 Page 8095 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5288 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 706 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 4413 4. Install the heater outlet hose (3) to the heater core (1). 5. Firmly push the quick connect onto the heater core hose until you hear an audible click. 6. Install the transmission. 7. Install the generator. 8. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 195 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 10425 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2449 Page 10000 Page 4972 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5541 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10317 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6488 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9654 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10851 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9583 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2058 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3956 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Page 1547 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4155 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5929 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9225 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 9596 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 4855 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1854 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6764 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8395 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Description and Operation Variable Valve Timing Actuator: Description and Operation Camshaft Actuator System Description Camshaft Position (CMP) Actuator System The camshaft position actuator (CMP) system is used for a variety of engine performance enhancements. These enhancements include lower emission output through exhaust gas recirculation control, a wider engine torque range, improved gas millage, and improved engine idle stability. The CMP actuator system accomplishes this by controlling the amount of intake and exhaust valve overlap. CMP Actuator System Operation The camshaft position CMP actuator system is controlled by the powertrain control module (PCM). The PCM sends a pulse width modulated 12 volt signal to a (CMP) actuator solenoid in order to control the amount of engine oil flow to a cam phaser passage. There are 2 different passages for oil to flow through, a passage for cam advance and a passage for cam retard. The cam phaser is attached to a camshaft and is hydraulically operated in order to change the angle of the camshaft relative to crankshaft position. Engine oil pressure, viscosity, temperature and engine oil level can have an adverse affect on cam phaser performance. The PCM calculates the optimum cam position through the following inputs: * Engine speed * Manifold absolute pressure (MAP) * Throttle position (TP) indicated angle * Crankshaft position (CKP) * Camshaft position (CMP) * Engine load * Barometric (BARO) pressure The cam phaser default position is 0 degrees. The PCM uses the following inputs before assuming control of the cam phaser: * Engine coolant temperature (ECT) * Closed loop fuel control * Engine oil temperature * Engine oil pressure * Engine oil level * CMP actuator solenoid circuit state * Ignition 1 signal voltage * Barometric (BARO) pressure CMP Actuator Solenoid Circuit Diagnostics The powertrain control module (PCM) monitors the control circuits of the camshaft position (CMP) actuator solenoid for electrical faults. The PCM has the ability to determine if a control circuit is open, shorted high, and shorted low. If the PCM detects a fault with a CMP actuator solenoid circuit a diagnostic trouble code (DTC) will set. CMP Actuator System Performance Diagnostics The powertrain control module (PCM) monitors the performance of the CMP actuator system by monitoring the actual and desired positions of a cam phaser. If the difference between the actual and desired position is more than a calibrated angle for more than a calibrated amount of time, a DTC will set. Page 3987 1. Install the air cleaner element (6) onto the air outlet duct (3) with a twisting and pushing motion. 2. Install the air cleaner element (6) and air outlet duct (3) into the lower air cleaner housing/washer solvent tank assembly (4). Notice: Refer to Fastener Notice. Important: Ensure the air inlet duct (5) is properly positioned in the lower air cleaner housing/washer solvent tank assembly (4) before installing the air cleaner housing (2). 3. Install the air cleaner housing (2). Tighten the 3 air cleaner housing retaining screws (1) to 4 N.m (35 lb in). 4. Connect the AIR pump inlet hose to the air cleaner air outlet duct. 5. Install the radiator support diagonal brace if applicable. Page 5003 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10082 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1910 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9675 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 6460 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10939 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 8111 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3334 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 11119 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Engine - Intake Manifold Inspection/Replacement Intake Manifold: Technical Service Bulletins Engine - Intake Manifold Inspection/Replacement INFORMATION Bulletin No.: 00-06-01-026C Date: February 03, 2010 Subject: Intake Manifold Inspection/Replacement After Severe Internal Engine Damage Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to include additional model years. Please discard Corporate Bulletin Number 00-06-01-026B (Section 06 - Engine). When replacing an engine due to internal damage, extreme care should be taken when transferring the intake manifold to the new Goodwrench service engine long block. Internal damage may result in the potential discharge of internal engine component debris in the intake manifold via broken pistons and/or bent, broken, or missing intake valves. After removing the intake manifold from the engine, the technician should carefully inspect all of the cylinder head intake ports to see if the valve heads are still present and not bent. Usually when the valve heads are missing or sufficiently bent, internal engine component debris will be present to varying degrees in the intake port of the cylinder head. If this debris is present in any of the cylinder head intake ports, the intake manifold should be replaced. This replacement is required due to the complex inlet runner and plenum configuration of most of the intake manifolds, making thorough and complete component cleaning difficult and nearly impossible to verify complete removal of debris. Re-installation of an intake manifold removed from an engine with deposits of internal engine component debris may result in the ingestion of any remaining debris into the new Goodwrench service engine. This may cause damage or potential failure of the new service engine. Disclaimer Page 2912 2. Install the spark plugs to the engine. Tighten the spark plugs to 18 N.m (13 lb ft). 3. Install the ignition coils. Page 6731 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 6357 Diagram Information and Instructions Fuel Injector: Diagram Information and Instructions Electrical Symbols Diagrams Oil Pressure Sender: Diagrams Displays and Gages Connector End Views Engine Oil Pressure (EOP) Switch (4.2L) Page 2997 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 5404 Page 5771 Page 3355 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 3615 6. Lower the vehicle. Page 6135 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8389 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 6061 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 1283 Page 7686 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Specifications Camshaft Bearing: Specifications Install the camshaft cap bolts. Tighten the camshaft cap bolts to ........................................................................................................................................................ 12 N.m (106 lb in). Page 8110 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1932 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 2196 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4257 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5588 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 6474 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8282 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6676 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6651 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 10323 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Page 6698 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 6807 Page 8560 Disclaimer Page 9897 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 227 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5046 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 1567 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5977 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8171 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7114 Body Control System Diagram 1 (2 Of 3) Page 4518 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 170 Page 8921 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10044 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 2357 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4369 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7781 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 580 Blower Motor Control Processor Replacement Removal Procedure 1. Remove the right closeout panel. 2. Disconnect the electrical connector from the blower motor. 3. Disconnect the electrical connector (3) from the blower motor control processor (1). 4. Remove the blower motor control processor mounting screws (2). 5. Remove the blower motor control processor (1). Installation Procedure 1. Install the blower motor control processor (1). Notice: Refer to Fastener Notice. 2. Install the blower motor control processor mounting screws (2). Tighten the screws to 1.9 N.m (17 lb in). 3. Connect the electrical connector (3) to the blower motor control processor (1). 4. Connect the electrical connector to the blower motor. 5. Install the right closeout panel. Page 4591 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 3474 ^ When adding proper tire air pressure, it is important to remember fluctuations in outside air temperatures and tire temperatures effect tire air pressures. ^ After you have added the proper tire pressure, if the vehicle has a DIC (after the system has updated), check to see if DIC displays are the same readings as the tire pressure gauge used (adjust as necessary). ^ Only perform a TPM sensor re-learn after a tire rotation or system part replacements and use the Tech 2(R) to initiate the relearn whenever possible to avoid invalid sensor I.D. learns. Important: Always take outside temperature and tire temperature into consideration to properly set tire pressures. Foe example, on colder days (20°F/-7°C), if setting tire pressure when the vehicle has been indoors (60°F/16°C) or the tires are warm from being driven, it will be necessary to compensate for the low outside temperature by adding 21-27 kPa (3-4 psi) more then the placecard pressure. At some later time, when the vehicle has been parked outside for a while, the tires will cool off and the pressures will drop back into the placecard range. Important: Recently, nitrogen gas (for use in inflating tires) has become available to the general customer through some retailers. The use of nitrogen gas to inflate tires is a technology used in automobile racing. Tires inflated with nitrogen gas may exhibit less of a pressure change in response to outside temperature changes. Nitrogen gas inflation is compatible with GM TPM sensors. For additional information, refer to Corporate Service Bulletin 05-03-10-020C. Important: All Models (Except the Pontiac Vibe): Do not perform a TPM relearn at PDI, the system has already been set at the Assembly Plant. Do not perform a TPM relearn after adding air to the tires. The low tire light is similar to the low fuel indicator and adding something (fuel, air) to the vehicle makes that light turn back off again. Note that because of system behavior, some vehicles must be driven a short distance before the sensors recognize the increase in pressure and turns the light off again. Pontiac Vibe Only: Do not use the TPMS reset button to turn off the light. The system will update and light will turn off when all tire pressures have been adjusted followed by short distance drive. Important: All models (except the Pontiac Vibe): Each tire monitor sensor is learned to a specific vehicle corner. When performing a TPM relearn (only after a tire rotation or replacement of a TPM sensor or Module), always use the Tech2(R) to initiate the J 46079 relearned process. Tech 2(R) - initiated relearns lock out other vehicle TPM signals that may be broadcasting in the area. Only signals initiated by the J 46079 tool will be accepted. This method avoids storing false TPM I.D.s and will prevent customers from returning with dashes (--) displayed in tire pressure readouts and/or a flashing tire pressure monitor (TPM) light. Checking the four TPM I.D.s with the Tech 2(R) prior to and following relearn to verify they are the same can prevent invalid I.D. learns. Pontiac Vibe Only: Tire Monitor Sensors are not learned to a specific vehicle corner. Do not perform a TPM Reset after tire rotation. The TPMS Reset button must only be used during pre-delivery inspection by the dealer to initialize the system (after all tire pressures have been adjusted properly) or when a Tire Pressure Monitor System component is replaced. The J 46079 tool does not work on Vibe TPM sensors. A TPMS relearn on Vibe must be preformed with a Tech 2(R) to set the TPMS Module in learn mode. The TPMS sensor IDs are entered through the Tech 2(R). Refer to SI for further Vibe TPMS information. Labor Operation and Repair Order/Warranty System Claim Required Documentation Important: The ONLY time labor operation E0726 or E0722 should be used is to diagnose for a system issue. That should ONLY occur if, at key ON, without starting the engine, the Tire Pressure Monitor (TPM) blinks for one minute and then stays on solid with a Service Tire Monitor System message (on vehicles equipped with a DIC) If that occurs, a TPM system problem exists and the system will have set a DTC. If one of these operastions is used, the following Repair Order and Warranty System documentation are required: ^ Document the customer complaint on the Repair Order. ^ Document the TPMS DTC that has set on the Repair Order. ^ Enter the TPMS DTC in the Warranty System (WINS) in the Failure Code/DTC field on the claim submission (refer to the Claims Processing Manual, Section IV, Warranty claim Data, Page 6, Item G). If the above information is not documented on the Repair Order and Warranty System, the claim may be rejected. If the Warranty Parts Center (WPC) generates a request, this repair order documentation must be sent back. Specifications Idle Speed: Specifications Information not supplied by Manufacturer. Page 9600 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1649 Page 1903 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2790 Power Window Switch: Service and Repair Rear Side Door Window Switch Replacement REAR SIDE DOOR WINDOW SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Using a flat-bladed tool, remove the window switch bezel from the door trim panel. 2. Disconnect the electrical connector from the window switch. 3. Release the retaining clips that attach the power window switch to the bezel. 4. Remove the switch from the bezel. INSTALLATION PROCEDURE 1. Install the switch to the bezel. Ensure that the retainers are fully seated. 2. Connect the electrical connector to the window switch. 3. Install the window switch bezel to the door trim panel. 4. Ensure that the window switch bezel retaining clips are fully seated. Page 2161 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4482 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 3993 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 11114 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Instruments - Erratic Speedometer Operation Engine Control Module: All Technical Service Bulletins Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 9347 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 7668 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 665 Page 10518 Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Page 895 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4223 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit NVG 126-NP4 - Transfer Case Control Module: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Shift Control Module Replacement Removal Procedure Important: The access panel is removed in order to visually see the electrical connectors and the location of the transfer case control module. It will also be easier to see the mounting and alignment slots for the transfer case control module mounting bracket. 1. Remove the access panel. 2. Remove the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 3. Remove the transfer case control module (1) and mounting bracket from the instrument panel mag beam. 4. Disconnect the 3 electrical connectors from the transfer case control module. 5. Remove the transfer case control module from the mounting bracket. Installation Procedure Page 505 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2111 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7004 Liftgate Page 2252 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 7554 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Fuel Level Sensor Replacement Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement Fuel Level Sensor Replacement Removal Procedure 1. Remove the fuel sender assembly. 2. Disconnect the fuel pump electrical connector. 3. Remove the retaining clip from the fuel level sensor connector. 4. Disconnect the electrical connector from under the fuel sender cover. 5. Remove the sensor retaining clip. 6. Squeeze the locking tangs and remove the fuel level sensor (3). Installation Procedure 1. Install the fuel level sensor (3). 2. Install the sensor retaining clip. 3. Connect the electrical connector to the fuel level sensor. 4. Install the retaining clip to the fuel level sensor electrical connector. 5. Connect the fuel pump electrical connector. 6. Install the fuel sender assembly. Page 6892 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9570 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 2682 Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Replacement Tire Pressure Sensor Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire/wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting. ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ When separating the tire bead from the wheel, position the bead breaking fixture 90 degrees from the valve stem. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: If any tire sealant is noted upon tire dismounting, remove all residual liquid sealant from the inside of the tire and wheel surfaces. 3. Remove the tire pressure sensor nut. 4. Remove the tire pressure sensor. Installation Procedure 1. Clean any dirt or debris from the grommet sealing area. 2. Insert the sensor in the wheel hole with the air passage facing away from the wheel. Page 5702 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 974 Control Module: Locations NVG 226-NP8 - Transfer Case Transfer Case Control Component Views Instrument Carrier Support, Lower Left Instrument Carrier Support, Lower Left 1- Transfer Case Shift Control Module 2- Instrument Carrier Support, Left Side Electrical Specifications Fuel Injector: Electrical Specifications Fuel Injector Resistance....................................................................................................................... ..................................................................11-14 ohms Page 1553 View of the connector when released from the component. View of another type of Micro 64 connector. Page 4284 Page 8333 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 1942 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9045 Fuel Tank Shield: Service and Repair Fuel Tank Shield Replacement (TrailBlazer, Envoy) Fuel Tank Shield Replacement (TrailBlazer, Envoy) Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Remove the frame brace mounting bolts. 3. Remove the frame brace. 4. Remove the fuel tank shield to the frame retaining bolts and nut. 5. Remove the fuel tank shield from the frame. Installation Procedure 1. Install the fuel tank shield to the frame. Notice: Refer to Fastener Notice. 2. Install the fuel tank shield to the frame retaining bolts and nut. Tighten the fuel tank shield to the frame retaining bolts and nut to 32 N.m (24 lb ft). Page 6486 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 2800 Behind The Center Of The I/P (With RPO Code Z88 & Z89) Page 4189 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1703 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 4663 Page 10002 Page 8262 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10495 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2515 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7676 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8361 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 5517 Manifold Pressure/Vacuum Sensor: Service and Repair Manifold Absolute Pressure Sensor Replacement Removal Procedure 1. Turn OFF the ignition. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector. 3. Press the retainer locking tabs inward, then pull the retainer (1) up to remove it. 4. Remove the MAP sensor (2). 5. Inspect the MAP sensor seal for damage, and replace as necessary. Installation Procedure 1. Install the MAP sensor (2). 2. Install the MAP sensor retainer (1). Page 9823 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 9572 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 6176 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9362 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10916 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4468 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 2054 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 4243 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7840 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Locations Door Lock Relay: Locations Fuse Block - Rear, Label Page 302 Memory Seat Module - Driver C3 (w/Memory) Page 6315 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 10468 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5204 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 10886 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9415 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9829 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5082 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7213 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 5311 View of the connector when released from the component. View of another type of Micro 64 connector. Page 1205 Parking Brake Warning Switch: Diagrams Hydraulic Brake Connector End Views Park Brake Switch Page 9384 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5305 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7172 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9327 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 9870 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 5077 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7251 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 8614 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 217 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 1461 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5607 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 10639 Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). Page 5496 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 7117 Data Communication Diagram 1 Page 1986 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2089 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 5553 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8250 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 6070 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 64 monitor the Tech2(R) for the current time and date. REMINDER - Keep in mind that the time displayed on the Tech2(R) is in Greenwich Mean Time (GMT) and the offset is based on the time zones relationship to GMT. If replacement of the VIU/VCIM is necessary, you MUST reconfigure the OnStar® system. Failure to reconfigure the system will result in an additional customer visit for repair. OnStar® VIU, Generations 2 and 3, will require the technician to press the blue OnStar® button to reconfigure the vehicle with an OnStar® advisor. OnStar(R) VCIM, Generations 4-7 will require the technician to reconfigure the vehicle with the use of the TIS2WEB and SPS applications (pass thru only), along with the Tech2(R). The configuration and set-up procedure is a two-step process that must be completed step-by-step without interruption or delay in between each step. This procedure enables an automated activation without a button press by the technician to the OnStar(R) Call Center. Following this procedure, it may take up to 24 hours for all OnStar(R) services to be fully activated. How to Order Parts If the OnStar(R) GPS date/time stamp is non-recoverable and the unit needs to be replaced, dealers in the U.S. should contact Autocraft Electronics select the catalog item that contains this bulletin number. Canadian dealers should contact MASS Electronics. Dealers DO NOT need to call the GM Technical Assistance Center (TAC) for replacement approval. Autocraft Electronics and MASS Electronics will be responsible for verifying that the subject vehicle is a candidate for a replacement VIU/VCIM. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Page 11120 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5212 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 747 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6155 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 9410 Page 560 Radiator Cooling Fan Motor Relay: Service and Repair Cooling Fan Relay Replacement Tools Required J 43244 Relay Puller Pliers Removal Procedure 1. Remove the underhood electrical center cover. 2. Using the J 43244, remove the cooling fan relay (3). Installation Procedure Notice: Installation of the proper relay is critical. If an enhanced relay - equipped with a diode - is installed into a position requiring a standard relay - equipped without a diode - excessive current will damage any components associated with the relay or its associated circuits. 1. Install the cooling fan relay (3). 2. Install the underhood electrical center cover. Page 7908 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 268 US English/Metric Conversion US English/Metric Conversion Service and Repair Clutch Control Solenoid Valve: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. Important: Do not remove the valve body for the following procedures. Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. 2. Remove the 1-2 accumulator if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ Torque converter clutch (TCC) pulse width modulation (PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer. 5. Remove the pressure control solenoid. 6. Remove the 1-2 and 2-3 shift solenoid retainers. 7. Remove the 1-2 and 2-3 shift solenoids. Page 9873 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1773 Page 5678 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6286 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8436 Variable Valve Timing Solenoid: Service and Repair Camshaft Position Actuator Solenoid Valve Replacement Removal Procedure 1. Remove the drive belt. 2. Remove the 3 power steering pump bolts and move the pump out of the way. 3. Disconnect the camshaft position actuator solenoid electrical connector. 4. Remove the camshaft position actuator solenoid retaining bolt (3). 5. Remove the camshaft position actuator solenoid (2) from the engine block. 6. Clean debris from the hole (1). Installation Procedure 1. Lubricate the hole (1) with engine oil. Notice: Refer to Fastener Notice. 2. Install the camshaft position actuator solenoid (2) and bolt (3). Tighten the bolt to 10 N.m (89 lb in). 3. Connect the camshaft position actuator solenoid electrical connector. 4. Install the power steering pump and bolts. 5. Install the drive belt. Page 5598 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9564 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 2375 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5834 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 388 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 6096 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 6255 Page 8891 Page 6161 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 373 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 4438 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 1419 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 166 Page 6767 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 4121 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1299 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 8605 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5145 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 7102 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7157 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Diagram Information and Instructions Shift Solenoid: Diagram Information and Instructions Electrical Symbols Page 11068 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 1785 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7206 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Specifications Compression Check: Specifications Engine Compression Test ................................................................................................................... ..................................................... 1482 kPa (215 psi) Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. Page 1263 Important: The turn signal switch housing must be pressed firmly against the steering column tilt head in order for the screws from the turn signal and multifunction switch assembly screws to line up. 1. Slide the turn signal switch housing onto the steering column shaft assembly. 2. Install the turn signal and multifunction switch assembly. Refer to Turn Signal Multifunction Switch Replacement. 3. Install the ignition lock cylinder case. Refer to Ignition Lock Cylinder Case Replacement. 4. Install the steering wheel onto the column. Refer to Steering Wheel Replacement. 5. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 10012 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 3706 Refer to the above graphic illustration (1) (dish side out) for the installation of the service cup plug. Do Not use the impact socket with hammer to drive the service cup plug into place. Damage to the crankshaft thrust bearing may occur. Refer to above illustration (1), showing the 15 MM. step inside the 18 MM. 1/2" drive impact style socket. Refer to the above illustration (1), showing the 38 MM (1-1/2") overall height of an 18 MM or 19 MM 1/2" drive impact style socket. It is best to use a thicker wall socket to equalize installation force with the following approximate dimensions. Page 8774 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 6978 Powertrain Control Module (PCM) C3 (Pin 21 To 56) Page 10896 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 5004 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10071 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1424 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6562 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Service and Repair Thermostat Housing: Service and Repair Water Outlet Housing Replacement Removal Procedure 1. Disconnect the radiator inlet hose from the water outlet housing. Refer to Radiator Outlet Hose Replacement (LH6, LS2) Radiator Outlet Hose Replacement (LL8). 2. Remove the power steering pump bracket. Refer to Power Steering Pump Bracket Replacement. 3. Remove the water outlet housing bolts. 4. Remove the water outlet housing and seal. Discard the old seal. Installation Procedure 1. Remove any burrs or foreign material from the sealing surface of the engine cylinder head and the water outlet housing. 2. Install a NEW seal and the water outlet housing. Notice: Refer to Fastener Notice. 3. Install the water outlet housing bolts. Tighten the water outlet bolts to 10 N.m (89 lb in). 4. Connect the radiator inlet hose to the water outlet housing. Refer to Radiator Outlet Hose Replacement (LH6, LS2) Radiator Outlet Hose Replacement (LL8). 5. Install the power steering pump bracket. Refer to Power Steering Pump Bracket Replacement. Page 10879 Page 10435 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Specifications Timing Chain Tensioner: Specifications Timing Chain Tensioner Important: Every seventh link of the timing chain is darkened to aid in aligning the timing marks. Install the timing chain tensioner and secure the tensioner. Tighten the timing chain tensioner bolts to ............................................................................................................................................ 25 N.m (18 lb ft). Install the timing chain tensioner guide and secure the guide with bolts. Tighten the timing chain tensioner guide to ........................................................................................................................................... 10 N.m (89 lb in). Page 2211 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10322 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8802 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5601 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7277 Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 6709 Page 1737 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7338 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 6073 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1093 Brake Fluid Level Sensor/Switch: Diagrams Hydraulic Brake Connector End Views Brake Fluid Level Switch Page 1407 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 260 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10418 Utility/Van Zoning UTILITY/VAN ZONING Page 3876 Intake Manifold: Service and Repair Intake Manifold Replacement Removal Procedure 1. Disconnect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 2. Relieve the fuel pressure. Refer to Fuel Pressure Relief. 3. Remove the throttle body. Refer to Throttle Body Assembly Replacement. 4. Remove the powertrain control module (PCM) retaining bolts (3) and nuts (6). 5. Remove the PCM. Refer to Powertrain Control Module Replacement. Notice: Refer to Fuel and Evaporative Emission Hose/Pipe Connection Cleaning Notice. 6. Disconnect the fuel feed pipe (1) from the fuel rail. Refer to Metal Collar Quick Connect Fitting Service. 7. Disconnect the integral clip (3) from the wire harness bracket. Page 874 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1356 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 11115 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 1381 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 7493 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8984 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 11032 Pressure Regulating Solenoid: Service and Repair Pressure Regulator Replacement (with Light Grey Case Connector) Removal Procedure Important: If the transmission has a black case connector, the transmission has an input speed sensor. Oil pump removal will be required. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 3. Compress the reverse boost valve sleeve into the bore of the oil pump to release tension on the reverse boost valve retaining ring. 4. Remove the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 5. Remove the reverse boost valve sleeve (5) and the reverse boost valve (4). 6. Remove the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 7. Remove the pressure regulator valve (1). Installation Procedure 1. Install the pressure regulator valve (1). 2. Install the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 3. Install the reverse boost valve (4) in the reverse boost valve sleeve (5). 4. Install the reverse boost valve (4) and sleeve (5) in the oil pump cover. Page 6723 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 1064 Driver Door Module (DDM) Page 10190 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8004 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4504 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 1210 Ambient Light Sensor (With RPO Code CJ3) Page 8978 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6173 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Locations Oxygen Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Right Side of the Transmission 1 - Heated Oxygen Sensor (HO2S) Sensor 2 Page 5581 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8678 US English/Metric Conversion US English/Metric Conversion Page 8380 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7985 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5706 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5653 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 5459 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5686 View of the connector when released from the component. View of another type of Micro 64 connector. Page 193 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3783 Drive Belt: Service Precautions Belt Dressing Notice Notice: Do not use belt dressing on the drive belt. Belt dressing causes the breakdown of the composition of the drive belt. Failure to follow this recommendation will damage the drive belt. Page 6467 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4521 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1516 Page 416 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 11074 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 197 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9194 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 8099 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 7134 Step 1 - Step 10 Page 4566 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 2214 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9815 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10922 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 8243 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7229 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1665 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 8625 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2301 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8431 Notice: The camshaft actuator must be fully advanced during installation. Engine damage may occur if the camshaft actuator is not fully advanced. Notice: Refer to Fastener Notice. Important: Ensure the camshaft actuator is rotated clockwise relative to the camshaft prior to tightening the bolt. Do not force the camshaft actuator to rotate clockwise. If it does not move easily, it is already fully advanced. New camshaft actuators are already packaged in the fully advanced (clockwise) position. 4. Install the exhaust camshaft actuator bolt. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt the final pass an additional 135 degrees. 5. Remove the J-44217. 6. Install the top chain guide. 7. Add threadlocker to the top chain guide bolt threads. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 8. Install the top chain guide bolts. Tighten the top chain guide bolts to 10 N.m (89 lb in). 9. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 1915 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5959 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 9887 Page 4622 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1478 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5528 Page 240 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4393 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 2258 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8014 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4312 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8135 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7357 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8258 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 1697 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 5608 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 10723 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 10489 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7282 Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON Wheels: All Technical Service Bulletins Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON TECHNICAL Bulletin No.: 08-03-10-006C Date: April 27, 2010 Subject: Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat) Models: 2000-2011 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2010 HUMMER H3 2005-2009 Saab 9-7X Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 08-03-10-006B (Section 03 - Suspension). Condition Some customers may comment on a tire that slowly loses air pressure over a period of days or weeks. Cause Abrasive elements in the environment may intrude between the tire and wheel at the bead seat. There is always some relative motion between the tire and wheel (when the vehicle is driven) and this motion may cause the abrasive particles to wear the wheel and tire materials. As the wear continues, there may also be intrusion at the tire/wheel interface by corrosive media from the environment. Eventually a path for air develops and a 'slow' leak may ensue. This corrosion may appear on the inboard or outboard bead seating surface of the wheel. This corrosion will not be visible until the tire is dismounted from the wheel. Notice This bulletin specifically addresses issues related to wheel bead seat corrosion that may result in an air leak. For issues related to porosity of the wheel casting that may result in an air leak, please refer to Corporate Bulletin Number 05-03-10-006F - Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Correction In most cases, this type of air loss can be corrected by following the procedure below. Important DO NOT replace a wheel for slow air loss unless you have evaluated and/or tried to repair the wheel with the procedure below. Notice The repair is no longer advised or applicable for chromed aluminum wheels. 1. Remove the wheel and tire assembly for diagnosis. Refer to Tire and Wheel Removal and Installation in SI. 2. After a water dunk tank leak test, if you determine the source of the air leak to be around the bead seat of the wheel, dismount the tire to examine the bead seat. Shown below is a typical area of bead seat corrosion.Typical Location of Bead Seat Corrosion Page 9843 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9252 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10135 Page 8832 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1750 Page 4069 Page 5539 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Exhaust System - Catalytic Converter Precautions Catalytic Converter: Technical Service Bulletins Exhaust System - Catalytic Converter Precautions Bulletin No.: 06-06-01-010A Date: February 04, 2008 INFORMATION Subject: Information on Close-Coupled Converter and Engine Breakdown or Non-Function Due to Severe Overheat or Lack of Oil Causing Piston(s) Connecting Rod(s) Crankshaft Cylinder(s) and/or Head(s) Camshaft(s) Intake and/or Exhaust Valve(s) Main and/or Rod Bearing(s) Damage Models: 2004-2008 GM Passenger Cars and Trucks with Close-Coupled Catalytic Converters Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-06-01-010 (Section 06 - Engine/Propulsion System). Certain 2004-2008 General Motors products may be equipped with a new style of catalytic converter technically known as the close-coupled catalytic converter providing quick catalyst warm-up resulting in lower tail pipe emissions earlier in the vehicle operating cycle. If an engine breakdown or non-function were to occur (such as broken intake/exhaust valve or piston) debris may be deposited in the converter through engine exhaust ports. If the engine is non-functioning due to a severe overheat event damage to the ceramic "brick" internal to the catalytic converter may occur. This may result in ceramic debris being drawn into the engine through the cylinder head exhaust ports. If a replacement engine is installed in either of these instances the replacement engine may fail due to the debris being introduced into the combustion chambers when started. When replacing an engine for a breakdown or non-function an inspection of the catalytic converters and ALL transferred components (such as exhaust/ intake manifolds) should be performed. Any debris found should be removed. In cases of engine failure due to severe overheat dealers should also inspect each catalytic converter for signs of melting or cracking of the ceramic "brick". If damage is observed the converter should be replaced. Disclaimer Page 5637 Oxygen Sensor: Service Precautions Excessive Force and Oxygen Sensor Notice Excessive Force and Oxygen Sensor Notice Notice: The oxygen sensor may be difficult to remove when the engine temperature is below 48°C (120°F). Excessive force may damage threads in the exhaust manifold or the exhaust pipe. Page 3647 Notice: The camshaft actuator must be fully advanced during installation. Engine damage may occur if the camshaft actuator is not fully advanced. Notice: Refer to Fastener Notice. Important: Ensure the camshaft actuator is rotated clockwise relative to the camshaft prior to tightening the bolt. Do not force the camshaft actuator to rotate clockwise. If it does not move easily, it is already fully advanced. New camshaft actuators are already packaged in the fully advanced (clockwise) position. 4. Install the exhaust camshaft actuator bolt. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt the final pass an additional 135 degrees. 5. Remove the J-44217. 6. Install the top chain guide. 7. Add threadlocker to the top chain guide bolt threads. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 8. Install the top chain guide bolts. Tighten the top chain guide bolts to 10 N.m (89 lb in). 9. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 1386 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 9002 12. Remove the EVAP/fuel hose/pipe assembly (4) from the fuel pipe clip at the rear of the engine. 13. Disconnect the EVAP purge pipe at the fuel tank. 14. Disconnect the chassis fuel feed pipe (1) from the fuel tank. 15. Disconnect the chassis EVAP pipe (2) from the fuel tank. 16. Remove the EVAP/fuel hose/pipe assembly from the vehicle. Important: Note the position of the EVAP/fuel hose/pipe assembly clips before disassembly. 17. Remove the fuel/EVAP hose/pipe assembly retaining clips. 18. Separate the fuel feed pipe (1) from the EVAP purge pipe (2). Installation Procedure Page 2299 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 4258 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7567 Powertrain Control Module (PCM) C1 (Pin 25 To 56) Powertrain Control Module (PCM) C2 Locations Manifold Pressure/Vacuum Sensor: Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Evaporative Emission (EVAP) Hoses/Pipes Replacement Canister/Fuel Tank (TrailBlazer, Envoy, Rainier) Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (TrailBlazer, Envoy, Rainier) Evaporative Emission Hoses/Pipes Replacement - Canister/Fuel Tank (TrailBlazer, Envoy, Rainier) Removal Procedure Caution: Refer to Fuel and EVAP Pipe Caution. Notice: Refer to Fuel and Evaporative Emission (EVAP) Hose/Pipe Connection Cleaning Notice. 1. Remove the fuel tank. 2. Release the evaporative emission (EVAP) hose assembly retainers (1) from the fuel tank heat shield. Important: Before disconnecting or reconnecting EVAP pipes. Refer to Plastic Collar Quick Connect Fitting Service. 3. Cut and remove the ties (1) securing the EVAP hoses. 4. Disconnect the EVAP hose assembly (3) from the fuel tank vent valves and fuel module. 5. Remove the EVAP hose assembly from the fuel tank. 6. Remove the EVAP canister purge pipe (2) from the fuel tank. Installation Procedure Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: All Technical Service Bulletins Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 10260 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 7504 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5452 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5089 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2226 Page 10062 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 4847 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5845 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2353 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 9619 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 10327 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5592 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 652 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 8588 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8477 Canister Purge Solenoid: Service and Repair Evaporative Emission Canister Purge Solenoid Valve Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect the harness electrical connector (2) from the evaporative emission (EVAP) canister purge valve (1). 3. Disconnect the EVAP purge pipe from the EVAP canister purge valve. 4. Disconnect the engine vacuum pipe from the EVAP canister purge valve. 5. Remove the purge valve (2) from the purge valve mounting bracket. 6. If replacing the purge valve bracket, remove the attaching bolt (1) and purge valve bracket. Installation Procedure Notice: Refer to Fastener Notice. 1. If replacing the purge bracket, install the purge valve bracket and the attaching bolt (1). Tighten the purge valve mounting bracket attaching bolt to 10 N.m (89 lb in). 2. Install purge valve (2) on to the purge valve mounting bracket. 3. Connect the EVAP purge pipe to the EVAP canister purge valve. 4. Connect the engine vacuum pipe to the EVAP canister purge valve. Page 1364 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5062 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 367 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 2271 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4306 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9500 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4826 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10399 US English/Metric Conversion US English/Metric Conversion Page 8646 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 6574 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, disconnect the body wiring extension (1) from the rear electrical center. 11. Remove the body wiring extension from the vehicle. INSTALLATION PROCEDURE 1. IMPORTANT: Ensure the sliding latch is fully extended before connecting the body wiring extension to the rear electrical center. Using a downward motion, install the body wiring extension (1) to the rear electrical center. 2. Connect the 24-way gray electrical connector (1) to the BCM. 3. Connect the 32-way tan electrical connector (2) to the BCM. 4. Connect the body wiring extension (1) to the BCM. Locations Parking Brake Warning Switch: Locations Hydraulic Brake Component Views Park Brake Switch 1 - Park Brake Lever Assembly 2 - Park Brake Switch Page 6040 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7721 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 6010 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 2012 Page 7889 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7281 Page 8925 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 3066 Fluid - A/T: Technical Service Bulletins A/T - Water Or Coolant Contamination Information INFORMATION Bulletin No.: 08-07-30-035B Date: November 01, 2010 Subject: Information on Water or Ethylene Glycol in Transmission Fluid Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks with Automatic Transmission Supercede: This bulletin is being revised to update model years. Please discard Corporate Bulletin Number 08-07-30-035A (Section 07 - Transmission/Transaxle). Water or ethylene glycol in automatic transmission fluid (ATF) is harmful to internal transmission components and will have a negative effect on reliability and durability of these parts. Water or ethylene glycol in ATF will also change the friction of the clutches, frequently resulting in shudder during engagement or gear changes, especially during torque converter clutch engagement. Indications of water in the ATF may include: - ATF blowing out of the transmission vent tube. - ATF may appear cloudy or, in cases of extreme contamination, have the appearance of a strawberry milkshake. - Visible water in the oil pan. - A milky white substance inside the pan area. - Spacer plate gaskets that appear to be glued to the valve body face or case. - Spacer plate gaskets that appear to be swollen or wrinkled in areas where they are not compressed. - Rust on internal transmission iron/steel components. If water in the ATF has been found and the source of the water entry has not been identified, or if a leaking in-radiator transmission oil cooler is suspected (with no evidence of cross-contamination in the coolant recovery reservoir), a simple and quick test kit is available that detects the presence of ethylene glycol in ATF. The "Gly-Tek" test kit, available from the Nelco Company, should be obtained and the ATF tested to make an accurate decision on the need for radiator replacement. This can help to prevent customer comebacks if the in-radiator transmission oil cooler is leaking and reduce repair expenses by avoiding radiator replacement if the cooler is not leaking. These test kits can be obtained from: Nelco Company Test kits can be ordered by phone or through the website listed above. Orders are shipped standard delivery time but can be shipped on a next day delivery basis for an extra charge. One test kit will complete 10 individual fluid sample tests. For vehicles repaired under warranty, the cost of the complete test kit plus shipping charges should be divided by 10 and submitted on the warranty claim as a net item. The transmission should be repaired or replaced based on the normal cost comparison procedure. Important If water or coolant is found in the transmission, the following components MUST be replaced. - Replace all of the rubber-type seals. - Replace all of the composition-faced clutch plates and/or bands. - Replace all of the nylon parts. - Replace the torque converter. - Thoroughly clean and rebuild the transmission, using new gaskets and oil filter. Important The following steps must be completed when repairing or replacing. Flush and flow check the transmission oil cooler using J 45096. Refer to Corporate Bulletin Number 02-07-30-052F- Automatic Transmission Oil Cooler Flush and Flow Test Essential Tool J 45096 TransFlow. - Thoroughly inspect the engine cooling system and hoses and clean/repair as necessary. Page 2129 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8683 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 4797 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 3357 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9080 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 11237 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 10426 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7235 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4979 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10626 Four Wheel Drive Selector Switch: Diagrams Transfer Case Shift Control Switch Transfer Case Shift Control Switch Page 5232 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 6784 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7999 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 9604 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6963 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 3877 8. Remove the engine wire harness bracket bolt. 9. Remove the electrical harness and vacuum lines from the intake manifold. 10. Disconnect the manifold absolute pressure (MAP) sensor electrical connector. 11. Disconnect the crankcase ventilation hose from the intake manifold. Page 9117 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5157 Page 6877 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 9533 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2333 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 714 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7285 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 1425 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8377 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4548 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 4953 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 8835 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8176 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2163 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 836 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 1583 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 6199 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 7186 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2123 Page 6710 Utility/Van Zoning UTILITY/VAN ZONING Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 8589 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2887 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 10013 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9685 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9543 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1477 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10324 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3970 Tighten the resonator to engine bolts to 6 N.m (53 lb in). 4. Connect the air cleaner outlet duct to the air cleaner outlet resonator (3). 5. Properly position the air cleaner outlet duct and air cleaner outlet resonator clamps (2). Tighten the clamps (2) to 4 N.m (35 lb in). Page 7863 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5463 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9222 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7780 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4787 Page 4360 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. NVG 126-NP4 - Transfer Case Control Module: Locations NVG 126-NP4 - Transfer Case Transfer Case Control Component Views Instrument Carrier Support, Lower Left Instrument Carrier Support, Lower Left 1- Transfer Case Shift Control Module 2- Instrument Carrier Support, Left Side Page 3133 Refrigerant Oil: Fluid Type Specifications PAG Oil GM P/N 12345923 (Canadian P/N 10953486) Page 4116 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6254 Page 10877 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7800 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 11127 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 11096 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 2249 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9408 Page 5166 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4989 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7695 US English/Metric Conversion US English/Metric Conversion Page 2053 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 3467 Notice: Refer to Fastener Notice. 3. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 N.m (62 lb in). Important: Before reinstalling the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting. ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting. Important: A service replacement tire pressure sensor is shipped in OFF mode. In this mode the sensor's unique identification code cannot be learned into the passenger door modules (PDMs) memory. The sensor must be taken out of OFF mode by spinning the tire/wheel assembly above 32 km/h (20 mph) in order to close the sensors internal roll switch for at least 10 seconds. 4. Install the tire/wheel assembly on the vehicle. Refer to Tire and Wheel Removal and Installation. 5. Lower the vehicle. 6. Learn the tire pressure sensors. Refer to Tire Pressure Sensor Learn. Page 6607 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9491 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9740 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 2549 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10628 Important: Ensure that the bezel cover is properly seated before installing the trim screws. 3. Install the bezel cover. Refer to Instrument Panel Cluster Trim Plate Bezel Replacement (Chevrolet) Instrument Panel Cluster Trim Plate Bezel Replacement (GMC, Buick). Page 6536 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9165 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 354 Page 2745 Parts Information Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 3267 Fuse Block - Underhood (4.2L), Label Usage Page 1329 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5948 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Specifications Compression Check: Specifications Engine Compression Test ................................................................................................................... ..................................................... 1482 kPa (215 psi) Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. Page 6610 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9207 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9577 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9284 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 229 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9511 Page 681 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5881 Page 9050 Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Page 5611 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 7746 View of the connector when released from the component. View of another type of Micro 64 connector. Page 8040 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10182 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4843 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6944 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9830 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9098 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4638 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Locations Ambient Temperature Sensor / Switch HVAC: Locations HVAC Component Views Body Front End 1 - Ambient Air Temperature Sensor Page 2201 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 5293 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 7262 Step 14 - Step 15 The number below refers to the step number on the diagnostic table. 4. This step tests for a short to voltage on the MIL control circuit. With the fuse removed there should be no voltage on the MIL control circuit. Page 4077 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 5317 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 10368 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 6060 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 360 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 3925 18. Remove the tee in the timing chain tensioner to regain tension on the timing chain. 19. Remove the J 44221. 20. The dark lines (1) on the chain should be aligned with the marks on the sprockets as shown. 21. Install the top chain guide. 22. Add threadlock on the top chain guide bolt threads. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 23. Install the top chain guide bolts. Tighten the top chain guide bolts to 10 N.m (89 lb in). 24. Install the engine front cover. Refer to Engine Front Cover Replacement. 25. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 10833 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 239 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 1359 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Locations Steering Mounted Controls Assembly: Locations Secondary/Configurable Control Component Views Steering Wheel and Column Steering Wheel and Column 1 - Steering Wheel Control Switch Assembly - Upper Left (STW) 2 - Passlock Sensor Connector (w/o BAE) 3 - Ignition Key Alarm Switch 4 - Ignition Lock Cylinder Control Actuator 5 - Ignition Lock Cylinder Control Actuator Connector 6 - Ignition Switch 7 - Ignition Key Cylinder 8 - Steering Wheel Control Switch Assembly - Upper Right (STW) 9 - Horn Switch 10 - Steering Wheel Control Switch Assembly - Lower Right (STW) 11 - C277 12 - Steering Wheel Control Switch Assembly - Lower Left (STW) 13 - Turn Signal/Multifunction Switch Page 6681 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 10809 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2082 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1760 3. Connect the electrical connector. Page 7088 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 6773 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9075 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1871 US English/Metric Conversion US English/Metric Conversion Page 1160 Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Lower Right Side Air Temperature Sensor Replacement - Lower Right Side Removal Procedure 1. Remove the passenger side closeout panel. 2. Remove the I/P lower closeout panel. 3. Disconnect the electrical connector (3) from the air temperature sensor-lower right (2). 4. Remove the air temperature sensor-lower right (2). Installation Procedure 1. Install the air temperature sensor-lower right (2). 2. Connect the electrical connector (3) to the air temperature sensor-lower right (2). 3. Install the I/P lower closeout panel. 4. Install the passenger side closeout panel. Page 4880 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4519 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 2707 Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Quarter Window Switch Replacement Power Window Switch: Service and Repair Quarter Window Switch Replacement QUARTER WINDOW SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the overhead console. 2. Disconnect the electrical connector (1) from the quarter window switch. 3. Release the tabs retaining the quarter window switch to the overhead console. 4. Remove the quarter window switch from the overhead console. INSTALLATION PROCEDURE 1. Install the quarter window switch to the overhead console, ensuring the retaining tabs are fully seated. 2. Connect the electrical connector (1) to the quarter window switch. 3. Install the overhead console. Page 9124 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5441 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 507 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5337 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 10787 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6118 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2243 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 10769 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2384 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7070 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8772 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10870 Page 4298 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4553 Page 527 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9666 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 737 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 1664 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4530 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8245 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7744 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 10811 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor Grommet Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire/wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal, the cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ Position the bead breaking fixture 90 degrees from the valve stem when separating the tire bead from the wheel. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: If any tire sealant is noted upon tire dismounting, replace the sensor. Refer to Tire Pressure Sensor Replacement. Also remove all residual liquid sealant from the inside of the tire and wheel surfaces. ^ Remove the tire pressure sensor nut. ^ Remove the sensor from the wheel hole. ^ Remove the sensor grommet from the valve stem. Installation Procedure 1. Clean any dirt or debris from the grommet sealing areas. 2. Install the grommet on the sensor valve stem. Page 3228 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 427 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7564 Page 4264 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4565 Utility/Van Zoning UTILITY/VAN ZONING Page 3296 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8149 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4949 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2413 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 945 1. Squeeze the negative battery cable together. Important: Ensure the generator battery current sensor is installed in the correct direction and location on the negative battery cable. 2. Slide the NEW generator battery current sensor (1) up onto the negative battery cable and insert the tab under the negative battery cable terminal cover. 3. Wrap electrical tape around the generator battery current sensor leg in order to secure the sensor to the negative battery cable. 4. Install the negative battery cable clips to the cable to the locations previously marked during removal. 5. Install the negative battery cable. Page 7919 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6360 Page 2512 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 7082 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 10578 Control Module: Locations NVG 226-NP8 - Transfer Case Transfer Case Control Component Views Instrument Carrier Support, Lower Left Instrument Carrier Support, Lower Left 1- Transfer Case Shift Control Module 2- Instrument Carrier Support, Left Side Page 9922 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 8286 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6604 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 8170 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7924 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 1590 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 5540 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10081 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9981 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8959 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 10445 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 2564 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 8644 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Locations Air Injection Control Valve Relay: Locations Fuse Block - Underhood (4.2L), Label Page 2314 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 54 Disclaimer Page 6953 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 2114 Page 7834 Page 1493 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 2562 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4198 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 3278 Page 8175 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7032 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10063 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 6071 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 5968 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10455 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8127 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 1069 Seat Adjuster Switch - Driver (AR9) Seat Adjuster Switch - Passenger (With RPO Code V40) Page 9389 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8386 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9231 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5351 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 5578 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 5456 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 11067 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 3319 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 9555 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 8631 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6487 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 2286 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 4297 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 6569 Body Control Module (BCM) C2 Page 5061 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 2253 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8348 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4302 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 4759 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Engine Mount and Bracket Replacement - Left Engine Mount: Service and Repair Engine Mount and Bracket Replacement - Left Engine Mount and Bracket Replacement - Left Side Removal Procedure 1. Disconnect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 2. Remove the cooling fan. Refer to Cooling Fan and Shroud Replacement. 3. Remove the manifold absolute pressure (MAP) sensor electrical connector and the retainer (1). 4. Remove the MAP sensor (2). 5. Remove the left shock module, if frame mount is being removed. Refer to Shock Module Replacement. 6. Remove the right and the left upper engine mount nuts (1). 7. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 8. Remove the right and the left lower engine mount nuts. 9. Remove the engine protection shield. Refer to Engine Protection Shield Replacement. Important: When placing jack onto the oil pan, pay close attention to not damage the oil level sender. 10. Lower the vehicle and place a floor jack under the oil pan with a block of wood. 11. Raise the engine with the jack just enough to clear the engine mount stud. Page 7809 Page 7266 Manifold Pressure/Vacuum Sensor: Diagrams Engine Controls Connector End Views Manifold Absolute Pressure (MAP) Sensor Page 10042 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 6016 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 938 Air Bag Control Module: Service and Repair Inflatable Restraint Sensing and Diagnostic Module Replacement Removal Procedure Caution: Do not strike or jolt the inflatable restraint sensing and diagnostic module (SDM). Before applying power to the SDM, make sure that it is securely fastened with the arrow facing toward the front of the vehicle. Failure to observe the correct installation procedure could cause SIR deployment, personal injury, or unnecessary SIR system repairs. Caution: Refer to Restraint System Service Precautions. 1. Disable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling. See: Body and Frame/Interior Moulding / Trim/Dashboard / Instrument Panel/Air Bag(s) Arming and Disarming/Service and Repair 2. Remove the floor console. 3. Partially remove the console mounting bracket in order to allow access to the rear carpet. Refer to Floor Console Bracket Replacement. 4. Position the rear carpet in order to access the sensing and diagnostic module (SDM). 5. Disconnect the electrical connectors (2) from the SDM (1). 6. Remove the nuts that retain the SDM to the floor panel. 7. Remove the SDM from the vehicle. Installation Procedure 1. Remove any dirt, grease, etc. from the mounting surface. 2. Install the SDM horizontally to the vehicle. 3. Point the arrow on the SDM towards the front of the vehicle. Notice: Refer to Fastener Notice. 4. Install the nuts that retain the SDM to the floor panel. Tighten the nuts to 12 N.m (106 lb in). Page 4240 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 3616 Wheel Fastener: Service and Repair Rear Suspension Wheel Stud Replacement Tools Required J 43631 Ball Joint Separator Removal Procedure 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire and wheel. Refer to Tire and Wheel Removal and Installation. 3. Remove the rotor. Refer to Rear Brake Rotor Replacement. 4. Remove the wheel stud from the axle flange using the J 43631. Installation Procedure 1. Install the stud into the axle flange. 2. Install the 4 washers and the lug nut to the stud. 3. Tighten the lug nut in order to draw the stud into the flange until the stud fully seats. 4. Remove the lug nut and the washers. 5. Install the rotor. Refer to Rear Brake Rotor Replacement. 6. Install the tire and wheel. Refer to Tire and Wheel Removal and Installation. 7. Lower the vehicle. Page 8708 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 3705 If the tools are not available at your dealership, use an aftermarket equivalent. For Display Purposes Only (End Section of the Crankshaft) 18 MM. or 19 MM. Impact Style Socket (Thick Wall) with a 1/2 drive base that is approximately 15 MM. deep with an overall height of 38 MM. (1-1/2"). J 8433-1 Puller Bar or Equivalent Verify the oil leak. Refer to the above illustration (1), showing the leak path through the end of the crankshaft flange bore area. Order a crankshaft service cup plug part number WPC-340 by completing the WPC PART REQUEST FORM at the end of this bulletin and send it to the WPC via fax or E-mail. Typically, the cup plug should arrive within 2 business days. Fax Number - 248-371-0192 E-mail Address - [email protected]. Clean the crankshaft flange bore area with BrakeKleen (12378392, 12346139 (in Canada, 88901247) or equivalent. Thoroughly dry the area and examine the bore surface for irregularities. If the bore surface needs additional cleaning, use sand paper, or equivalent, and clean as necessary. Once the crankshaft bore surface is clean and smooth, apply a thin bead of LOCTITE(TM) 620, P/N 89021297 or Permatex 27010 High Strength Red Thread Locker Gel, P/N 88861429 (in Canada, 88861430), completely around the inside of the crankshaft flange bore. Position the crankshaft service cup plug into the crankshaft flange bore with service cup plug, dish side out. Page 6686 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 8244 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1707 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8942 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 2238 Page 10232 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1787 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4183 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 3475 Customer TPMS Information Page 8359 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 7632 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 1725 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1689 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8399 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 249 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10958 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10033 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6586 Page 6174 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5155 Page 9862 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 3224 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 1825 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5213 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 2331 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 4313 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 9930 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10990 ^ (1) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from the jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 4. Touch the battery terminals of the 9-volt battery to the battery terminals of the jumper harness. This will rotate the encoder motor shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 5. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the two reference lines as shown in the picture. This orientates the encoder motor (actuator) to NEUTRAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 6. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. NVG 226 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (4) J-356165 Terminal Test Adapter (Test Probe) ^ (2) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from one of the jumper harnesses to the Battery Positive Voltage terminal (pin F - wire color orange) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Lock Solenoid Control terminal (pin G - wire color tan) of the transfer case encoder motor (actuator) wiring harness connector. 4. Attach a 9-volt battery to this harness. You will hear the encoder motor (actuator) unlock. Page 2577 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 3306 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 5855 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 5898 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Locations Parking Brake Warning Switch: Locations Hydraulic Brake Component Views Park Brake Switch 1 - Park Brake Lever Assembly 2 - Park Brake Switch Page 5543 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7885 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2044 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4697 Exhaust Manifold: Service and Repair Exhaust Manifold Replacement (4.2L Engine) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Loosen and remove the exhaust pipe bolts from the exhaust manifold. 3. Lower the vehicle. 4. Remove the manifold heat shield. Refer to Exhaust Manifold Heat Shield Replacement. 5. Loosen and remove the exhaust manifold bolts. 6. Remove the exhaust manifold. 7. Remove the exhaust manifold gasket. Installation Procedure Page 2598 Electronic Frontal Sensor (EFS) - Left Page 1466 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 6735 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 167 Page 1110 For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) For vehicles repaired under warranty, use the table. Disclaimer Page 4545 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 8337 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 1650 Page 9369 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 3226 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9712 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4543 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 11111 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 10620 13. Slide the secondary lock (1) over the primary lock. 14. Be sure that the secondary lock tab (1) is securely in place. 15. Lower the vehicle. 16. Check the vehicle for proper operation. Page 5778 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1869 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9838 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8214 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2148 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7182 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 10354 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6796 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 7678 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7968 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6879 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 1851 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3923 3. Install the timing chain tensioner shoe and secure the shoe with the bolt. Tighten the timing chain tensioner shoe bolt to 26 N.m (19 lb ft). 4. Install the cylinder head access hole plugs. Tighten the cylinder head access hole plugs to 5 N.m (44 lb in). 5. Install the J 44221 with the camshaft flats up and the number 1 piston at top dead center. The crank pin will be at 12 o'clock when the number 1 piston is at top dead center. 6. Install the crankshaft sprocket (1). Page 1944 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9251 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Diagram Information and Instructions Fuse: Diagram Information and Instructions Electrical Symbols Page 9593 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7782 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 704 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 8979 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 5289 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10795 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2618 1 - Inflatable Restraint Seat Position Sensor (SPS) - Right 2 - Seat Recline Motor - Passenger (V40) 3 - Seat Rear Vertical Motor - Passenger (V40) 4 - Seat Front Vertical Motor - Passenger (V40) 4 - 5 - Seat Horizontal Motor - Passenger (V40) Page 5527 Page 9454 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6301 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9481 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 2156 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 369 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4889 Powertrain Control Module (PCM) C1 (Pin 1 To 24) Page 7673 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 2035 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 4983 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7786 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 2878 Air Filter Element: Service and Repair Air Cleaner Element Replacement Removal Procedure 1. Remove the radiator support diagonal brace if applicable. 2. Disconnect the secondary air injection (AIR) reaction pump inlet hose from the air cleaner air outlet duct. 3. Loosen the 3 air cleaner housing retaining screws (1). 4. Remove the air cleaner housing (2). 5. Lift the air cleaner element (6) and air outlet duct (3) from the lower air cleaner housing/washer solvent tank assembly (4). 6. Remove the air cleaner element (6) from the air outlet duct (3) with a twisting and pulling motion. 7. Inspect the entire assembly for dust, debris, or water. Clean or replace as necessary. Installation Procedure Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 8511 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Page 2484 Page 4357 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9446 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7963 Page 6797 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4921 Page 3364 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4987 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 3067 Disclaimer Page 6980 Engine Control Module: Description and Operation Powertrain Control Module Description Powertrain The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: * The engine fueling * The ignition control (IC) * The knock sensor (KS) system * The evaporative emissions (EVAP) system * The secondary air injection (AIR) system (if equipped) * The exhaust gas recirculation (EGR) system * The automatic transmission functions * The generator * The A/C clutch control * The cooling fan control Powertrain Control Module Function The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. Malfunction Indicator Lamp (MIL) Operation The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: Page 9606 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 488 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 6330 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 3087 to have a lower fluid level than a vehicle that has been stationary for an hour or two. Remember that the rear axle assembly must be supported to get a true reading. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Ensure the vehicle is level. 3. Inspect the rear axle for leaks. Repair as necessary. 4. Clean the area around the rear axle fill plug. 5. Remove the rear axle fill plug. 6. Inspect the lubricant level. The lubricant level should be between 0-10 mm (0.00-1.57 in) below the fill plug opening for the 9.5 inch LD axle. 7. If the level is low, add lubricant until the level is even with the bottom edge of the fill plug opening. Use the proper fluid. Refer to Fluid and Lubricant Recommendations. Notice: Refer to Fastener Notice. 8. Install the rear axle fill plug. Tighten the rear axle fill plug to 33 N.m (24 lb ft). 9. Lower the vehicle. Rear Axle Lubricant Level Inspection (8.0/8.6 Inch Axle) Rear Axle Lubricant Level Inspection (8.0/8.6 Inch Axle) 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Make sure the vehicle is level. 3. Inspect the rear axle for leaks. Repair as necessary. 4. Clean the area around the rear axle fill plug. Page 5931 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10614 Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 4219 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Capacity Specifications Fluid - Transfer Case: Capacity Specifications Transfer Case Lubricant ...................................................................................................................... .................................................. 2.0 quarts (1.8 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Page 458 Page 2187 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5941 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 6518 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7526 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 1563 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................345-395 kPa (50-57 psi) Locations Discharge Air Temperature Sensor / Switch: Locations HVAC Component Views Instrument Panel Carrier - Center Section 1 - Air Temperature Sensor - Lower Left Instrument Panel Carrier - Air Duct 1 - Air Temperature Sensor - Upper Left 2 - Air Temperature Sensor - Upper Right Instrument Panel Carrier - Right Side Page 902 Page 5308 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 8759 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 10070 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Wheels/Tires - Refinishing Aluminum Wheels Wheels: All Technical Service Bulletins Wheels/Tires - Refinishing Aluminum Wheels INFORMATION Bulletin No.: 99-08-51-007E Date: March 17, 2011 Subject: Refinishing Aluminum Wheels Models: 2012 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add additional model years. Please discard Corporate Bulletin Number 99-08-51-007D (Section 08 - Body and Accessories). This bulletin updates General Motor's position on refinishing aluminum wheels. GM does not endorse any repairs that involve welding, bending, straightening or re-machining. Only cosmetic refinishing of the wheel's coatings, using recommended procedures, is allowed. Evaluating Damage In evaluating damage, it is the GM Dealer's responsibility to inspect the wheel for corrosion, scrapes, gouges, etc. The Dealer must insure that such damage is not deeper than what can be sanded or polished off. The wheel must be inspected for cracks. If cracks are found, discard the wheel. Any wheels with bent rim flanges must not be repaired or refinished. Wheels that have been refinished by an outside company must be returned to the same vehicle. The Dealer must record the wheel ID stamp or the cast date on the wheel in order to assure this requirement. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. Aluminum Wheel Refinishing Recommendations - Chrome-plated aluminum wheels Re-plating these wheels is not recommended. - Polished aluminum wheels These wheels have a polyester or acrylic clearcoat on them. If the clearcoat is damaged, refinishing is possible. However, the required refinishing process cannot be performed in the dealer environment. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. - Painted aluminum wheels These wheels are painted using a primer, color coat, and clearcoat procedure. If the paint is damaged, refinishing is possible. As with polished wheels, all original coatings must be removed first. Media blasting is recommended. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for the re-painting of this type of wheel. - Bright, machined aluminum wheels These wheels have a polyester or acrylic clearcoat on them. In some cases, the recessed "pocket" areas of the wheel may be painted. Surface refinishing is possible. The wheel must be totally stripped by media blasting or other suitable means. The wheel should be resurfaced by using a sanding process rather than a machining process. This allows the least amount of material to be removed. Important Do not use any re-machining process that removes aluminum. This could affect the dimensions and function of the wheel. Painting is an option to re-clearcoating polished and bright machined aluminum wheels. Paint will better mask any surface imperfections and is somewhat more durable than clearcoat alone. GM recommends using Corsican SILVER WAEQ9283 for a fine "aluminum-like" look or Sparkle SILVER WA9967 for a very bright look. As an option, the body color may also be used. When using any of the painting options, it is recommended that all four wheels be refinished in order to maintain color uniformity. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for specific procedures and product recommendations. Refinisher's Responsibility - Outside Company Important Some outside companies are offering wheel refinishing services. Such refinished wheels will be permanently marked by the refinisher and are warranted by the refinisher. Any process that re-machines or otherwise re-manufactures the wheel should not be used. A refinisher's responsibility includes inspecting for cracks using the Zyglo system or the equivalent. Any cracked wheels must not be refinished. No welding, hammering or reforming of any kind is allowed. The wheel ID must be recorded and follow the wheel throughout the process in order to assure that the same wheel is returned. A plastic media blast may be used for clean up of the wheel. Hand and/or lathe sanding of the machined surface and the wheel window is allowed. Material removal, though, must be kept to a minimum. Re-machining of the wheel is not allowed. Paint and/or clear coat must not be present on the following surfaces: the nut chamfers, the wheel mounting surfaces and the wheel pilot hole. The refinisher must permanently ID stamp the wheel and warrant the painted/clearcoated surfaces for a minimum of one year or the remainder of the new vehicle warranty, whichever is Page 6936 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5604 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 8270 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9501 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 6666 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 858 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5144 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 5188 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Specifications Thermostat: Specifications Use the temperature sticks to determine a thermostat's operating temperature by rubbing 87°C(188°F) and 97°C (206°F) sticks on the thermostat housing . The marks made by the sticks should melt when coolant temperatures reach 87°C (188°F) and 97°C (206°F), respectively. These temperatures are the normal operating range of the thermostat. Page 1327 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 10405 8. Remove the 3-2 control solenoid retainer. 9. Remove the 3-2 control solenoid. Installation Procedure 1. Install the 3-2 control solenoid. 2. Install the 3-2 control solenoid retainer. 3. Install the 1-2 and 2-3 shift solenoids. 4. Install the 1-2 and 2-3 shift solenoid retainers. 5. Install the pressure control solenoid. Page 8444 1. Install the AIR solenoid valve (4) and the gasket (5) to the engine. Notice: Refer to Fastener Notice. 2. Install the 2 AIR solenoid valve studs (3). Tighten the studs to 25 N.m (18 lb ft). 3. Install the transmission fluid level indicator tube (2) to the AIR solenoid valve stud (3). 4. Install the nut (1) securing the transmission fluid level indicator tube (2) to the AIR solenoid valve. Tighten the nut to 10 N.m (89 lb in). 5. Connect the AIR pump air outlet pipe to the AIR solenoid valve. 6. Connect the electrical connector to the AIR solenoid valve. 7. Install the air cleaner outlet resonator. Page 220 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5380 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 9793 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 944 Battery Control Module: Service and Repair Generator Battery Control Module Replacement Removal Procedure 1. Remove the negative battery cable. 2. Mark the location of the negative battery cable clips and remove the clips from the cable. 3. Remove the tape securing the generator battery current sensor to the negative battery cable. 4. Squeeze the negative battery cable branches together. Important: Note the orientation of the generator battery current sensor prior to removal. 5. Slide the generator battery current sensor (1) off of the negative battery cable. Installation Procedure Page 2261 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7867 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. NVG 126-NP4 - Transfer Case Control Module: Locations NVG 126-NP4 - Transfer Case Transfer Case Control Component Views Instrument Carrier Support, Lower Left Instrument Carrier Support, Lower Left 1- Transfer Case Shift Control Module 2- Instrument Carrier Support, Left Side Page 8246 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 3382 Fuse Block - Rear, Bottom View Page 7325 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7869 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 2571 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4761 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 6712 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 4501 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5248 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9948 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 3203 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 4961 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7941 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Page 2433 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Underhood Fuse Block Fuse: Locations Underhood Fuse Block Fuse Block - Underhood (4.2L), Label Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 9658 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3194 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10959 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1230 Headlamp Switch: Diagrams Headlamp Switch C1 Page 1867 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9859 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4640 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4919 Page 466 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be ABS/TCS - StabiliTrak(R) Indicator Blinking/DTC C0196 Electronic Brake Control Module: All Technical Service Bulletins ABS/TCS - StabiliTrak(R) Indicator Blinking/DTC C0196 TECHNICAL Bulletin No.: 08-05-25-005 Date: October 01, 2008 Subject: Intermittent StabiliTrak(R) Indicator Light Blinking, StabiliTrak(R) Active Message Displayed, DTC C0196 Set (Reprogram Electronic Brake Control Module (EBCM)) Models: 2006-2007 Buick Rainier 2006-2009 Chevrolet TrailBlazer Models 2006-2009 GMC Envoy Models 2006-2009 Saab 97X 2006-2009 Isuzu Ascender Models This bulletin provides information on two different conditions. Condition # 1 Some customers may comment on a Service StabiliTrak(R) indicator light along with a Service StabiliTrak(R) message displayed in the DIC. Upon investigation, the technician may find DTC C0196 set in history. Condition # 2 Some customers may comment on a blinking StabiliTrak(R) indicator light along with a StabiliTrak Active message displayed in the DIC during normal driving conditions. No DTCs will be found with this concern. Cause This condition may be caused by a software anomaly within the electronic brake control module (EBCM) that allowed the yaw offset to be falsely learned. Correction Important: From the controller list, select "VSES Vehicle Stability Enhancement System Control Module". If routine diagnosis using SI does not reveal any obvious cause, reprogram the EBCM using SPS with the latest software available on TIS2WEB. Refer to the Service Programming System (SPS) procedures in SI. As always, make sure your Tech 2(R) is updated with the latest software version. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Page 7912 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4968 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5790 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8039 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9916 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 2603 7. Position the sensor assembly above the front bumper. 8. Remove the retaining bolts and protective cover (1) from the sensor. 9. Remove the connector-position assurance (CPA) from the sensor electrical connector. 10. Disconnect the sensor (2) electrical connector. 11. Remove the sensor from the vehicle. Installation Procedure 1. Remove any dirt, grease, or other impurities from the mounting surface. 2. Position the sensor assembly horizontally above the front bumper. 3. Connect the sensor (2) electrical connector. 4. Install the connector-position assurance (CPA) to the sensor electrical connector. 5. Install the retaining bolts and protective cover (1) to the sensor. 6. Position the sensor assembly horizontally to the frame (1). 7. Point the arrow on the sensor toward the front of the vehicle. Notice: Refer to Fastener Notice. 8. Install the 2 bolts (1) retaining the discriminating sensor assembly to the frame. Tighten the bolts to 8 N.m (71 lb in). Page 11177 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 6454 Page 2536 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10765 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7100 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 11138 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8537 Tighten the resonator to engine bolts to 6 N.m (53 lb in). 4. Connect the air cleaner outlet duct to the air cleaner outlet resonator (3). 5. Properly position the air cleaner outlet duct and air cleaner outlet resonator clamps (2). Tighten the clamps (2) to 4 N.m (35 lb in). Page 4221 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5902 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 1490 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 10030 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4563 Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 7300 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6620 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7883 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4065 Page 7051 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8404 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1947 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9720 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10356 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6622 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7535 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 2999 Disclaimer Page 10286 For vehicles repaired under warranty, use the table. Disclaimer Page 5078 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 491 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 4523 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9490 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5366 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4532 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Instruments - Erratic Speedometer Operation Engine Control Module: All Technical Service Bulletins Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 8182 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10842 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 2304 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5257 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 6323 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 1097 Parking Brake Warning Switch: Diagrams Hydraulic Brake Connector End Views Park Brake Switch Page 4452 Page 3232 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9298 Page 5880 Page 8783 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4514 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 9810 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7475 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9952 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 2146 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6043 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1554 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 271 Door Module: Connector Views Driver Door Module (DDM) C1 Page 2084 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield: Service and Repair Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Remove the frame brace mounting bolts. 3. Remove the frame brace. 4. Remove the fuel tank shield to the frame retaining bolts and nut. 5. Remove the fuel tank shield from the frame. Installation Procedure Page 10712 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 9353 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9488 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 10054 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5789 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Locations Variable Valve Timing Solenoid: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 10092 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 6621 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 7946 Fuel Tank Pressure Sensor: Service and Repair Fuel Tank Pressure Sensor Replacement Removal Procedure 1. Remove the fuel tank. 2. Disconnect the fuel tank pressure harness connector. 3. Remove the fuel tank pressure sensor. Installation Procedure 1. Install the new fuel tank pressure sensor seal. 2. Install the fuel tank pressure sensor. 3. Connect the fuel tank sensor harness connector. 4. Install the fuel tank. Page 9072 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 9200 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9880 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 9613 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Locations Body Control Module (BCM) Service and Repair Actuator: Service and Repair Front Drive Axle Actuator Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine protection shield. Refer to Engine Protection Shield Replacement. 3. Disconnect the electrical connector from the actuator assembly. 4. Remove the actuator assembly bolts. 5. Remove the actuator assembly. Installation Procedure 1. Install the actuator assembly. Notice: Refer to Fastener Notice. 2. Install the actuator assembly bolts. Tighten the bolts to 6 N.m (53 lb in). 3. Connect the electrical connector to the actuator assembly. 4. Install the engine protection shield. Refer to Engine Protection Shield Replacement. 5. Lower the vehicle. Page 4625 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 5785 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 11180 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4636 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 8747 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6722 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 2710 Transmission Speed Sensor: Diagrams Vehicle Speed Sensor Assembly, Wiring Harness Side Vehicle Speed Sensor Assembly, Wiring Harness Side Vehicle Speed Sensor Assembly, Wiring Harness Side Page 7654 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8620 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5057 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 755 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 7927 US English/Metric Conversion US English/Metric Conversion Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 3749 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 5538 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1914 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 3497 3. Insert the sensor in the wheel hole with the air passage facing away from the wheel. Notice: Refer to Fastener Notice. 4. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 N.m (62 lb in). Important: Before installing the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting . ^ Install the tire/wheel assembly on the vehicle. Refer to Tire and Wheel Removal and Installation. ^ Lower the vehicle. Page 5703 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 7753 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4839 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1979 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 10430 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 1398 Page 1805 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 11101 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 6114 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4478 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9475 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9584 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 10228 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4624 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 149 For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to refer to the table above. Disclaimer Page 7952 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 8570 1. Install the air cleaner element (6) onto the air outlet duct (3) with a twisting and pushing motion. 2. Install the air cleaner element (6) and air outlet duct (3) into the lower air cleaner housing/washer solvent tank assembly (4). Notice: Refer to Fastener Notice. Important: Ensure the air inlet duct (5) is properly positioned in the lower air cleaner housing/washer solvent tank assembly (4) before installing the air cleaner housing (2). 3. Install the air cleaner housing (2). Tighten the 3 air cleaner housing retaining screws (1) to 4 N.m (35 lb in). 4. Connect the AIR pump inlet hose to the air cleaner air outlet duct. 5. Install the radiator support diagonal brace if applicable. Page 6956 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 6289 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4131 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 2143 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 5750 Page 677 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5815 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10582 Control Module: Diagrams NVG 226-NP8 - Transfer Case Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module - C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C2 Page 6876 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 5066 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. Fuel: Technical Service Bulletins Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. INFORMATION Bulletin No.: 10-06-04-015 Date: December 08, 2010 Subject: General Motors' Position Regarding Use of E15 in Model Year 2007 and Newer Vehicles Models: 2007-2011 GM Passenger Cars and Trucks General Motors' position regarding the Environmental Protection Agency announcement allowing the use of E 15 in 2007 and newer vehicles: - General Motors' remains focused on securing a safe and positive driving experience for our customers. GM believes that the waiver decision by the EPA regarding E 15 could lead to confusion for consumers as to what fuel their vehicle should use. In response, we will continue to encourage our customers to refer to their vehicle Owner Manual for proper fuel designation. The vehicle Owner Manual specifies that fuels containing more than 10 percent ethanol should not be used in GM vehicles that do not have a flex fuel designation. - GM has the largest fleet of flex fuel vehicles on the road today (over 4 million in the U.S.) and these vehicles can safely use ethanol blends of up to 85 percent ethanol. So blends of E 15 (15 percent ethanol), as in the partial waiver announced, are appropriate for these vehicles. However, ethanol blends greater than E 10 should not be used in GM vehicles that do not have a flex fuel designation as they are not designed and certified to run on gasoline consisting of more than 10 percent ethanol-blend volume to avoid any unintended consequences, as per: their Owner Manual. - We believe biofuels, especially E 85 ethanol, are an effective near-term solution to reduce petroleum dependence and the carbon footprint of driving. As the global leader in producing vehicles designed to handle ethanol blends from E 0 to E 85, GM offers 19 flexible-fuel vehicles for the 2011 model year. Disclaimer Page 11050 Page 4265 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2588 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 5791 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 4285 Utility/Van Zoning UTILITY/VAN ZONING Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 6795 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7151 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8205 Page 4308 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 4163 Page 7461 Page 186 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6259 Page 2323 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7084 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Service Precautions Valve Spring: Service Precautions Valve Springs Can Be Tightly Compressed Caution Caution: Valve springs can be tightly compressed. Use care when removing retainers and plugs. Personal injury could result. Page 1863 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7961 Page 8592 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 8346 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10124 For vehicles repaired under warranty, use the table. Disclaimer Page 5417 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 5489 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6354 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9439 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9598 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4580 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 3202 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 1603 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2584 Electrical - MIL ON/DTC's Set By Various Control Modules Relay Module: All Technical Service Bulletins Electrical - MIL ON/DTC's Set By Various Control Modules TECHNICAL Bulletin No.: 09-06-03-004D Date: December 08, 2010 Subject: Intermittent No Crank/No Start, No Module Communication, MIL, Warning Lights, Vehicle Messages or DTCs Set by Various Control Modules - Diagnosing and Repairing Fretting Corrosion (Disconnect Affected Connector and Apply Dielectric Lubricant) Models: 2011 and Prior GM Passenger Cars and Trucks Attention: This repair can be applied to ANY electrical connection including, but not limited to: lighting, body electrical, in-line connections, powertrain control sensors, etc. DO NOT over apply lubricant to the point where it prevents the full engagement of sealed connectors. A light coating on the terminal surfaces is sufficient to correct the condition. Supercede: This bulletin is being revised to update the Attention statement and add the 2011 model year. Please discard Corporate Bulletin Number 09-06-03-004C (Section 06 Engine/Propulsion System). Condition Some customers may comment on any of the following conditions: - An intermittent no crank/no start - Intermittent malfunction indicator lamp (MIL) illumination - Intermittent service lamp illumination - Intermittent service message(s) being displayed The technician may determine that he is unable to duplicate the intermittent condition. Cause This condition may be caused by a buildup of nonconductive insulating oxidized debris known as fretting corrosion, occurring between two electrical contact surfaces of the connection or connector. This may be caused by any of the following conditions: - Vibration - Thermal cycling - Poor connection/terminal retention - Micro motion - A connector, component or wiring harness not properly secured resulting in movement On low current signal circuits this condition may cause high resistance, resulting in intermittent connections. On high current power circuits this condition may cause permanent increases in the resistance and may cause a device to become inoperative. Representative List of Control Modules and Components The following is only a representative list of control modules and components that may be affected by this connection or connector condition and DOES NOT include every possible module or component for every vehicle. - Blower Control Module - Body Control Module (BCM) - Communication Interface Module (CIM) - Cooling Fan Control Module - Electronic Brake Control Module (EBCM) - Electronic Brake and Traction Control Module (EBTCM) - Electronic Suspension Control (ESC) Module - Engine Control Module (ECM) - Heating, Ventilation and Air Conditioning (HVAC) Control Module Page 2853 Step 1 - Step 6 Page 3176 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 8958 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 11102 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1497 Page 8829 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Multifunction Turn Signal Switch Housing Replacement Turn Signal Switch: Service and Repair Multifunction Turn Signal Switch Housing Replacement Multifunction Turn Signal Switch Housing Replacement Removal Procedure Caution: Refer to SIR Caution in Cautions and Notices. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the steering wheel from the column. Refer to Steering Wheel Replacement. 3. Remove the ignition lock cylinder case assembly. Refer to Ignition Lock Cylinder Case Replacement. 4. Remove the turn signal and multifunction switch assembly. Refer to Turn Signal Multifunction Switch Replacement. 5. Slide the turn signal switch housing off of the steering column shaft assembly. Installation Procedure Page 5216 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2522 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 7596 Page 9264 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 6635 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 3391 Fuse Block - Rear C4 (Pin A1 To A16) Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 10466 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4570 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10901 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10025 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 10971 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1613 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 7749 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7326 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Electrical - MIL ON/DTC's Set By Various Control Modules Relay Module: Customer Interest Electrical - MIL ON/DTC's Set By Various Control Modules TECHNICAL Bulletin No.: 09-06-03-004D Date: December 08, 2010 Subject: Intermittent No Crank/No Start, No Module Communication, MIL, Warning Lights, Vehicle Messages or DTCs Set by Various Control Modules - Diagnosing and Repairing Fretting Corrosion (Disconnect Affected Connector and Apply Dielectric Lubricant) Models: 2011 and Prior GM Passenger Cars and Trucks Attention: This repair can be applied to ANY electrical connection including, but not limited to: lighting, body electrical, in-line connections, powertrain control sensors, etc. DO NOT over apply lubricant to the point where it prevents the full engagement of sealed connectors. A light coating on the terminal surfaces is sufficient to correct the condition. Supercede: This bulletin is being revised to update the Attention statement and add the 2011 model year. Please discard Corporate Bulletin Number 09-06-03-004C (Section 06 Engine/Propulsion System). Condition Some customers may comment on any of the following conditions: - An intermittent no crank/no start - Intermittent malfunction indicator lamp (MIL) illumination - Intermittent service lamp illumination - Intermittent service message(s) being displayed The technician may determine that he is unable to duplicate the intermittent condition. Cause This condition may be caused by a buildup of nonconductive insulating oxidized debris known as fretting corrosion, occurring between two electrical contact surfaces of the connection or connector. This may be caused by any of the following conditions: - Vibration - Thermal cycling - Poor connection/terminal retention - Micro motion - A connector, component or wiring harness not properly secured resulting in movement On low current signal circuits this condition may cause high resistance, resulting in intermittent connections. On high current power circuits this condition may cause permanent increases in the resistance and may cause a device to become inoperative. Representative List of Control Modules and Components The following is only a representative list of control modules and components that may be affected by this connection or connector condition and DOES NOT include every possible module or component for every vehicle. - Blower Control Module - Body Control Module (BCM) - Communication Interface Module (CIM) - Cooling Fan Control Module - Electronic Brake Control Module (EBCM) - Electronic Brake and Traction Control Module (EBTCM) - Electronic Suspension Control (ESC) Module - Engine Control Module (ECM) - Heating, Ventilation and Air Conditioning (HVAC) Control Module Page 10485 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 8781 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Fuel Injector Circuit Diagnosis Fuel Injector: Testing and Inspection Fuel Injector Circuit Diagnosis Fuel Injector Circuit Diagnosis Circuit Description The control module enables the appropriate fuel injector pulse for each cylinder. Ignition voltage is supplied to the fuel injectors. The control module controls each fuel injector by grounding the control circuit via a solid state device called a driver. Diagnostic Aids * A short to battery voltage or ignition 1 voltage on the MAP sensor signal circuit will disable the injector control circuits. * Monitoring the fuel injector circuit status with a scan tool, while moving the fuel injector harness, may help isolate an intermittent condition. * Performing the Fuel Injector Coil Test may help isolate an intermittent condition. Refer to Fuel Injector Diagnosis (w/J39021 or Tech 2) See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics/Fuel Injector Diagnosis (w/J39021 or w/Tech 2) Refer to Fuel Injector Diagnosis (w/CH47976). See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics/Fuel Injector Diagnosis (With CH 47976) * For an intermittent condition, refer to Intermittent Conditions. See: Computers and Control Systems/Testing and Inspection/Initial Inspection and Diagnostic Overview/Intermittent Conditions Test Step 1 - Step 8 Page 4210 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 5187 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 6081 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 8610 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5342 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 2198 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9147 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7035 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2652 Steering Angle Sensor: Service and Repair Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Removal Procedure Caution: Refer to SIR Caution. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. Notice: The wheels of the vehicle must be straight ahead and the steering column in the LOCK position before disconnecting the steering column or intermediate shaft from the steering gear. Failure to do so will cause the SIR coil assembly to become uncentered, which may cause damage to the coil assembly. 2. Position the front wheels straight ahead and lock the steering column to prevent rotation of the steering wheel. 3. Remove the intermediate shaft from the steering column. Refer to Upper Intermediate Steering Shaft Replacement. 4. Remove the steering wheel position sensor retainer screws (1). 5. Remove the steering wheel position sensor retainer (2) from the base of the steering column. 6. Disconnect the electrical connector from the steering wheel position sensor. 7. Remove the steering wheel position sensor (3) from the steering column. Installation Procedure Page 8857 Fuel Injector: Removal and Replacement Fuel Injector Replacement Removal Procedure Notice: Use care in removing the fuel injectors in order to prevent damage to the fuel injector electrical connector pins or the fuel injector nozzles. Do not immerse the fuel injector in any type of cleaner. The fuel injector is an electrical component and may be damaged by this cleaning method. Important: The engine oil may be contaminated with fuel if the fuel injectors are leaking. 1. Remove the fuel rail assembly. 2. Disconnect the fuel injector electrical harness (2) connectors from the fuel injectors (4). 3. Remove the fuel injector retainer clips (6). 4. Remove the fuel injectors (4) from the fuel rail (1). 5. Discard the injector retainer clips (6). 6. Remove the injector O-ring seals (3,5) from both ends of the injectors (4). Discard the O-ring seals. Installation Procedure Important: When ordering new fuel injectors, be sure to order the correct injector for the application being serviced. The fuel injector assembly (1) is stamped with a part number identification (2). A four digit build date code (3) indicates the month (4), day (5), year (6), and the shift (7) that built the injector. Page 9036 Fuel Gauge Sender: Diagrams Displays and Gages Connector End Views Fuel Pump and Sender Assembly Page 3587 service operation. A simple distraction or time constraint that rushes the job may result in personal injury if the greatest of care is not exercised. Make it a habit to double check your work and to always side with caution when installing wheels. Disclaimer Page 8415 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8896 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 520 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5014 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1676 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8035 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 10779 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6068 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 3350 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 2195 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 2136 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 253 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9233 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 9825 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5108 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10016 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 1809 View of the connector when released from the component. View of another type of Micro 64 connector. Page 8105 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6733 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 7328 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 2983 Oil Filter: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure 1. Remove the oil fill cap. 2. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Remove the oil pan drain plug and drain the oil into a suitable container. 4. Remove the oil filter using a suitable wrench. 5. Inspect the old oil filter to ensure the filter seal is not left on the engine block. Installation Procedure 1. Wipe the excess oil from the oil filter housing. 2. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice. 3. Install the new oil filter. Tighten the oil filter to 17 N.m (22 lb ft) plus 150 degrees. 4. Install the oil pan drain plug. Tighten the oil pan drain plug to 26 N.m (19 lb ft). 5. Lower the vehicle. Page 2483 Page 9256 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9650 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4608 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10681 Speed Sensor: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the transfer case front speed sensor electrical connector. 3. Remove the transfer case front speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case front speed sensor. Tighten the speed sensor to 17 N.m (13 lb ft). Page 2774 Speed Sensor: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the transfer case front speed sensor electrical connector. 3. Remove the transfer case front speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case front speed sensor. Tighten the speed sensor to 17 N.m (13 lb ft). Page 219 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7083 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 1675 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 2538 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3236 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 3732 1. Connect the coolant heater cord retainers (1) to the battery cover. 2. If equipped with a 5.3L or 6.0L engine, connect the coolant heater cord to the coolant heater (1). 3. Install the coolant heater cord clip to the engine harness. 4. If equipped with a 4.2L engine, install the coolant heater cord to the coolant heater (2). 5. Install the coolant heater cord to the engine harness bracket (1). 6. Install the PCM. Refer to Powertrain Control Module Replacement. Page 2327 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1067 Lumbar Adjuster Switch - Passenger (With RPO Code V40) Page 509 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8935 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9259 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 10101 US English/Metric Conversion US English/Metric Conversion Page 5433 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1728 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7034 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 4180 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 9857 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2117 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 9642 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 464 Page 4886 Page 10373 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8037 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7607 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 11051 Page 10635 Notice: Refer to Fastener Notice 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 4184 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 8670 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4067 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7404 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, disconnect the body wiring extension (1) from the rear electrical center. 11. Remove the body wiring extension from the vehicle. INSTALLATION PROCEDURE 1. IMPORTANT: Ensure the sliding latch is fully extended before connecting the body wiring extension to the rear electrical center. Using a downward motion, install the body wiring extension (1) to the rear electrical center. 2. Connect the 24-way gray electrical connector (1) to the BCM. 3. Connect the 32-way tan electrical connector (2) to the BCM. 4. Connect the body wiring extension (1) to the BCM. Page 7539 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 640 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 8117 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9792 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10175 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 9536 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7321 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1647 Page 699 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3223 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 9957 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4572 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2734 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor (2) from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps (1-5) to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. Page 3986 Air Filter Element: Service and Repair Air Cleaner Element Replacement Removal Procedure 1. Remove the radiator support diagonal brace if applicable. 2. Disconnect the secondary air injection (AIR) reaction pump inlet hose from the air cleaner air outlet duct. 3. Loosen the 3 air cleaner housing retaining screws (1). 4. Remove the air cleaner housing (2). 5. Lift the air cleaner element (6) and air outlet duct (3) from the lower air cleaner housing/washer solvent tank assembly (4). 6. Remove the air cleaner element (6) from the air outlet duct (3) with a twisting and pulling motion. 7. Inspect the entire assembly for dust, debris, or water. Clean or replace as necessary. Installation Procedure Page 9632 Page 8633 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 7725 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4780 Engine Control Module: Locations Engine Controls Component Views Upper Left Side of the Engine - Front 1 - Powertrain Control Module (PCM) 2 - Powertrain Control Module (PCM) C3 3 - Powertrain Control Module (PCM) C2 4 - Generator Page 5471 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9311 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 8264 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Locations Radiator Cooling Fan Motor Relay: Locations Fuse Block - Underhood (4.2L), Label Page 4062 Page 7807 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 374 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 11087 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 10043 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5427 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 4016 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ...................................................................AC 41-981 Page 5425 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9392 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 5886 Utility/Van Zoning UTILITY/VAN ZONING Page 6157 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7400 Body Control Module: Diagrams Body Control Module (BCM) C3 Body Control Module (BCM) C3 Page 9280 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 3270 Fuse Block - Rear, Label Usage Page 10856 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1578 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4641 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1627 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. Page 5864 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6442 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 3550 of vibration is normally felt more in the "seat of the pants" than the steering wheel. 5. Next, record the Hertz (Hz) reading as displayed by the EVA onto the tire data worksheet found at the end of this bulletin. This should be done after a tire break-in period of at least 16 km (10 mi) at 72 km/h (45 mph) or greater, in order to eliminate any possible tire flat-spotting. This reading confirms what the vehicle vibration frequency is prior to vehicle service and documents the amount of improvement occurring as the result of the various steps taken to repair. Completing the Steering Wheel Shake Worksheet below is required. A copy of the completed worksheet must be saved with the R.O. and a copy included with any parts returned to the Warranty Parts Center for analysis. A reading of 35 to 50 Hz typically indicates a first order propshaft vibration. If this is the situation, refer to Corporate Bulletin Number 08-07-30-044D. Generally, a reading between 10 and 20 Hz indicates a tire/wheel vibration and if this is the reading obtained, continue using this bulletin. If the tire 1st order vibration goes away and stays away during this evaluation, the cause is likely tire flat-spotting. Tire flat-spotting vibration may come and go at any speed over 72 km/h (45 mph) during the first 10 minutes of operation, if vibration continues after 10 minutes of driving at speeds greater than 72 km/h (45 mph), tire flat-spotting can be ruled out as the cause for vibration. 6. If flat-spotting is the cause, provide the explanation that this has occurred due to the vehicle being parked for long periods of time and that the nature of the tire is to take a set. Refer to Corporate Bulletin Number 03-03-10-007E: Information on Tire/Wheel Characteristics (Vibration, Balance, Shake, Flat Spotting) of GM Original Equipment Tires. 7. If the road test indicates a shake/vibration exists, check the imbalance of each tire/wheel assembly on a known, calibrated, off-car dynamic balancer.Make sure the mounting surface of the wheel and the surface of the balancer are absolutely clean and free of debris. Be sure to chose the proper cone/collet for the wheel, and always use the pilot bore for centering. Never center the wheel using the hub-cap bore since it is not a precision machined surface. If any assembly calls for more than 1/4 ounce on either rim flange, remove all balance weights and rebalance to as close to zero as possible. If you can see the vibration (along with feeling it) in the steering wheel (driving straight without your hands on the wheel), it is very likely to be a tire/wheel first order (one pulse per revolution) disturbance. First order disturbances can be caused by imbalance as well as non-uniformities in tires, wheels or hubs. This first order frequency is too low for a human to hear, but if the amplitude is high enough, it can be seen. If a vibration or shake still exists after balancing, any out of round conditions, of the wheel, and force variation conditions of the tire, must be addressed. Equipment such as the Hunter GSP9700 can address both (it is also a wheel balancer). Tire radial force vibration (RFV) can be defined as the amount of stiffness variation the tire will produce in one revolution under a constant load. Radial force variation is what the vehicle feels because the load (weight) of the vehicle is always on the tires. Although free runout of tires (not under load) is not always a good indicator of a smooth ride, it is critical that total tire/wheel assembly runout be within specification. Equipment such as the Hunter GSP9700 loads the tire, similar to on the vehicle, and measures radial force variation of the tire/wheel assembly. Note that the wheel is affecting the tire's RFV measurement at this point. To isolate the wheel, its runout must be measured. This can be easily done on the Hunter, without the need to set up dial indicators. If the wheel meets the runout specification, the tire's RFV can then be addressed. After measuring the tire/wheel assembly under load, and the wheel alone, the machine then calculates (predicts) the radial force variation of the tire. However, because this is a prediction that can include mounting inaccuracies, and the load wheel is much smaller in diameter than used in tire production, this type of service equipment should NOT be used to audit new tires. Rather, it should be used as a service diagnostic tool to minimize radial force variation of the tire/wheel assembly. Equipment such as the Hunter GSP9700 does an excellent job of measuring wheel runout, and of finding the low point of the wheel (for runout) and the high point of the tire (for radial force variation). This allows the tire to be matched mounted to the wheel for lowest tire/wheel assembly force variation. The machine will simplify this process into easy steps. The following assembly radial force variation numbers should be used as a guide: When measuring RFV and match mounting tires perform the following steps. Measuring Wheel Runout and Assembly Radial Force Variation Important The completed worksheet at the end of this bulletin must be attached to the hard copy of the repair order. - Measure radial force variation and radial runout. - If a road force/balancing machine is used, record the radial force variation (RFV) on the worksheet at the end of this bulletin. It may be of benefit to have the lowest RFV assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires onto the subject vehicle. - If a runout/balancing machine is used, record the radial runout of the tire/wheel assemblies on the worksheet at the end of this bulletin. If one or more of the tire/wheel assemblies are more than.040 in (1.02 mm), match mount the tire to the wheel to get below.040 in (1.02 mm). For sensitive customers, readings of 0.030 inch (0.76 mm) or less are preferable, it may also be of benefit to have the lowest runout assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires Page 4927 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Service and Repair Fuel Tank Unit: Service and Repair Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. 4. Clean the fuel sender sealing surfaces (4). Page 7922 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 4832 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6970 Page 5928 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10899 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9354 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2310 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2735 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). Page 7860 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7128 Step 10 - Step 13 The numbers below refer to the step numbers on the diagnostic table. 2. A partial malfunction in the high speed GMLAN serial data circuits uses a different procedure from a total malfunction of the high speed GMLAN data circuits. The following modules are connected to the high speed GMLAN serial data circuits: ECM, for 5.3L - Transmission control module (TCM) 5. Data link connector terminals 6 and 14 provide the connection to the GMLAN serial data high circuit and the GMLAN serial data low circuit respectively. 12. The communication malfunction may have prevented diagnosis of the customer complaint. Scan Tool Does Not Power Up SCAN TOOL DOES NOT POWER UP CIRCUIT DESCRIPTION The data link connector (DLC) is a standardized 16 cavity connector. Connector design and location is dictated by an industry wide standard, and is required to provide the following: Scan tool power battery positive voltage at terminal 16 - Scan tool power ground at terminal 4 - Common signal ground at terminal 5 The scan tool will power up with the ignition OFF. Some modules however, will not communicate unless the ignition is ON and the power mode master (PMM) module sends the appropriate power mode message. TEST DESCRIPTION Page 5122 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8060 US English/Metric Conversion US English/Metric Conversion Wheels/Tires - Tire Radial Force Variation (RFV) Wheels: Customer Interest Wheels/Tires - Tire Radial Force Variation (RFV) INFORMATION Bulletin No.: 00-03-10-006F Date: May 04, 2010 Subject: Information on Tire Radial Force Variation (RFV) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X 2000-2005 Saturn L Series 2003-2007 Saturn ION Supercede: This bulletin is being revised to considerably expand the available information on Radial Force Variation (RFV) and should be reviewed in whole. Please discard Corporate Bulletin Number 00-03-10-006E (Section 03 - Suspension). Important - Before measuring tires on equipment such as the Hunter GSP9700, the vehicle MUST be driven a minimum of 16 km (10 mi) to ensure removal of any flat-spotting. Refer to Corporate Bulletin Number 03-03-10-007E - Tire/Wheel Characteristics of GM Original Equipment Tires. - Equipment such as the Hunter GSP9700 MUST be calibrated prior to measuring tire/wheel assemblies for each vehicle. The purpose of this bulletin is to provide guidance to GM dealers when using tire force variation measurement equipment, such as the Hunter GSP9700. This type of equipment can be a valuable tool in diagnosing vehicle ride concerns. The most common ride concern involving tire radial force variation is highway speed shake on smooth roads. Tire related smooth road highway speed shake can be caused by three conditions: imbalance, out of round and tire force variation. These three conditions are not necessarily related. All three conditions must be addressed. Imbalance is normally addressed first, because it is the simpler of the three to correct. Off-vehicle, two plane dynamic wheel balancers are readily available and can accurately correct any imbalance. Balancer calibration and maintenance, proper attachment of the wheel to the balancer, and proper balance weights, are all factors required for a quality balance. However, a perfectly balanced tire/wheel assembly can still be "oval shaped" and cause a vibration. Before balancing, perform the following procedures. Tire and Wheel Diagnosis 1. Set the tire pressure to the placard values. 2. With the vehicle raised, ensure the wheels are centered on the hub by loosening all wheel nuts and hand-tightening all nuts first by hand while shaking the wheel, then torque to specifications using a torque wrench, NOT a torque stick. 3. Visually inspect the tires and the wheels. Inspect for evidence of the following conditions and correct as necessary: - Missing balance weights - Bent rim flange - Irregular tire wear - Incomplete bead seating - Tire irregularities (including pressure settings) - Mud/ice build-up in wheel - Stones in the tire tread - Remove any aftermarket wheels and/or tires and restore vehicle to original condition prior to diagnosing a smooth road shake condition. 4. Road test the vehicle using the Electronic Vibration Analyzer (EVA) essential tool. Drive for a sufficient distance on a known, smooth road surface to duplicate the condition. Determine if the vehicle is sensitive to brake apply. If the brakes are applied lightly and the pulsation felt in the steering wheel increases, refer to the Brakes section of the service manual that deals with brake-induced pulsation. If you can start to hear the vibration as a low boom noise (in addition to feeling it), but cannot see it, the vehicle likely has a first order (one pulse per propshaft revolution) driveline vibration. Driveline first order vibrations are high enough in frequency that most humans can start to hear them at highway speeds, but are too high to be able to be easily seen. These issues can be caused by driveline imbalance or misalignment. If the vehicle exhibits this low boom and the booming pulses in-and-out on a regular basis (like a throbbing), chances are good that the vehicle could have driveline vibration. This type Page 7593 Page 3729 7. Connect the integral clip (3) to the wire harness bracket. 8. Connect the fuel feed (1) and fuel return (2) pipes to the fuel rail. Refer to Metal Collar Quick Connect Fitting Service. 9. Connect the ECT sensor electrical connector (1). 10. Install the PCM mounting studs (5) to the intake manifold. Tighten the studs to 6 N.m (53 lb in). 11. Install the PCM (1) onto the studs (5). 12. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). 13. Install the PCM retaining nuts (6). Page 7025 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Radiator Replacement Radiator: Service and Repair Radiator Replacement Radiator Replacement (LL8) Tools Required J 38185 Hose Clamp Pliers Removal Procedure 1. Drain the coolant from the radiator. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the lower radiator support shield, if equipped. Refer to Radiator Support Shield Replacement. 5. Reposition the outlet radiator hose clamp using J 38185. 6. Remove the outlet radiator hose (1) from the radiator. 7. Remove the transmission cooler lines from the radiator. Refer to Transmission Fluid Cooler Hose/Pipe Quick-Connect Fitting Replacement. 8. Lower the vehicle. 9. Remove the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. 10. Remove the radiator support diagonal brace. Refer to Radiator Support Diagonal Brace Replacement. 11. Remove the coolant recovery line from the radiator. 12. Disconnect the radiator side panels from the shroud (1). 13. Remove the radiator. Page 6691 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 10764 Page 6878 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 9764 Page 8469 Catalytic Converter: Service and Repair Catalytic Converter Replacement (4.2L Engine) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the heated oxygen sensor (H2OS). Refer to Heated Oxygen Sensor 2 Replacement. 3. Remove the nuts that secure the catalytic converter pipe to the exhaust manifold. 4. Discard the old exhaust seal. Do NOT reuse the seal. 5. Remove the nuts that secure the catalytic converter pipe to the muffler. 6. Remove the transmission mount. Refer to Transmission Mount Replacement (4.2L) Transmission Mount Replacement (5.3L). 7. Remove the catalytic converter pipe from the vehicle. Page 2703 4. Position the tool J 41364-A onto the park/neutral position switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. Notice: Refer to Fastener Notice. 5. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts securing the switch to 25 N.m (18 lb ft). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Connect the electrical connectors to the switch. 8. Install the transmission control lever to the manual shaft with the nut. Tighten the control lever nut to 25 N.m (18 lb ft). 9. Lower the vehicle. 10. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. If proper operation of the switch can not be obtained, replace the switch. Page 1770 Page 9204 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 3237 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 6456 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9232 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5372 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 3242 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1482 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6551 US English/Metric Conversion US English/Metric Conversion Page 9411 Page 222 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9804 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 5576 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6561 Intake Air Temperature Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 7247 Page 3113 Engine Oil: Fluid Type Specifications ENGINE OIL TYPE LOOK FOR TWO THINGS: 1.Your vehicle's engine requires oil meeting GM Standard GM6094M. 2.SAE 5W-30 is best for your vehicle. These numbers on an oil container show its viscosity, or thickness. Do not use other viscosity oils such as SAE 20W-50. Oils meeting these requirements should also have the starburst symbol on the container. This symbol indicates that the oil has been certified by the American Petroleum Institute (API). You should look for this information on the oil container, and use only those oils that are identified as meeting GM Standard GM6094M and have the starburst symbol on the front of the oil container. NOTICE: Use only engine oil identified as meeting GM Standard GM6094M and showing the American Petroleum Institute Certified For Gasoline Engines starburst symbol. Failure to use the recommended oil can result in engine damage not covered by your warranty. GM Goodwrench oil meets all the requirements for your vehicle. If you are in an area of extreme cold, where the temperature falls below -20°F (-29°C), it is recommended that you use either an SAE 5W-30 synthetic oil or an SAE 0W-30 oil. Both will provide easier cold starting and better protection for your engine at extremely low temperatures. ENGINE OIL ADDITIVES Do not add anything to your oil. The recommended oils with the starburst symbol that meet GM Standard GM6094M are all you will need for good performance and engine protection. Page 894 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10775 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6084 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 10392 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5044 Page 6103 Page 1953 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7040 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 2205 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7758 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1354 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6560 Intake Air Temperature Sensor: Diagrams Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 1132 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 2045 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7709 Page 9229 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 1476 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Locations Fuel Tank Pressure Sensor: Locations Engine Controls Component Views Fuel Tank 1 - Fuel Tank Pressue (FTP) Sensor 2 - Fuel Pump and Sender Assembly 3 - Chassis Harness 4 Fuel Tank 5 - Evaporative Emission (EVAP) Canister Vent Solenoid Page 2976 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 7551 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6656 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 10973 Page 8402 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4857 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9269 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7964 Utility/Van Zoning UTILITY/VAN ZONING Page 8218 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5938 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 1551 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 9301 Utility/Van Zoning UTILITY/VAN ZONING Page 2290 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5324 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7243 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 4154 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5554 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 2623 Notice: Refer to Fastener Notice. 2. Install the seat position switch (3) to the seat adjuster (2) with 2 nuts (1). Tighten the seat position switch nuts to 24 N.m (18 lb ft). 3. Install the seat adjusters to the seat cushion frame with 4 nuts (1). Tighten the seat cushion frame mounting nuts to 24 N.m (18 lb ft). 4. Install the assist spring. Page 9356 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 863 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 496 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 224 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 8261 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1608 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5142 Page 3796 Drive Belt: Service and Repair Drive Belt Replacement Removal Procedure 1. Install 3/8 inch breaker bar on the drivebelt tensioner arm and turn the breaker bar clockwise enough to relieve the tension on the drivebelt. 2. Remove the drivebelt. 3. Release the tension on the tensioner arm. Installation Procedure 1. Route the drivebelt over all the pulleys except the drivebelt tensioner pulley. 2. Install the 3/8 inch breaker bar on the drivebelt tensioner arm and turn the breaker bar clockwise. 3. Install the drivebelt over the drivebelt tensioner pulley. 4. Slowly release the tension to the drivebelt tensioner arm. 5. Inspect for proper installation of the drivebelt on the pulleys. Page 1611 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 8825 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Locations Wiper Switch: Locations Windshield Wiper/Washer Switch Page 4893 Powertrain Control Module (PCM) C2 (Pin 55 To 73) Powertrain Control Module (PCM) C3 Page 98 monitor the Tech2(R) for the current time and date. REMINDER - Keep in mind that the time displayed on the Tech2(R) is in Greenwich Mean Time (GMT) and the offset is based on the time zones relationship to GMT. If replacement of the VIU/VCIM is necessary, you MUST reconfigure the OnStar® system. Failure to reconfigure the system will result in an additional customer visit for repair. OnStar® VIU, Generations 2 and 3, will require the technician to press the blue OnStar® button to reconfigure the vehicle with an OnStar® advisor. OnStar(R) VCIM, Generations 4-7 will require the technician to reconfigure the vehicle with the use of the TIS2WEB and SPS applications (pass thru only), along with the Tech2(R). The configuration and set-up procedure is a two-step process that must be completed step-by-step without interruption or delay in between each step. This procedure enables an automated activation without a button press by the technician to the OnStar(R) Call Center. Following this procedure, it may take up to 24 hours for all OnStar(R) services to be fully activated. How to Order Parts If the OnStar(R) GPS date/time stamp is non-recoverable and the unit needs to be replaced, dealers in the U.S. should contact Autocraft Electronics select the catalog item that contains this bulletin number. Canadian dealers should contact MASS Electronics. Dealers DO NOT need to call the GM Technical Assistance Center (TAC) for replacement approval. Autocraft Electronics and MASS Electronics will be responsible for verifying that the subject vehicle is a candidate for a replacement VIU/VCIM. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Page 262 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 1296 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5613 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 4564 Page 5186 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 8985 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3101 3. Fill the transfer case with the proper fluid. Refer to Approximate Fluid Capacities. 4. Apply pipe sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent to the fill plug threads. 5. Install the fill plug. Tighten the fill plug to 27 N.m (20 lb ft). 6. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 8559 4. Compare the fuel tank serial number printed on the fuel tank label (1) to the fuel tank serial number (sequencing) range shown. ^ If the serial number of the tank is not within the ranges above, lower the vehicle. No further action is required. ^ If the serial number of the tank is within the ranges above, remove and replace the fuel sender assembly. Proceed to Step 5 in this bulletin. 5. Remove the fuel tank from the vehicle. Remove the fuel sender assembly from the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. Notice: Ensure that the fuel level sensor pigtail wires are routed through the anti-chafing conduit of the fuel sender assembly to avoid damaging the fuel level sensor pigtail wires. Route the fuel level sensor pigtail wires through the anti-chafing conduit the same way the wires were routed in the old fuel sender assembly. 6. Remove the fuel level sensor from the old fuel sender assembly and install it to the new fuel sender assembly. Refer to Fuel Level Sensor Replacement in SI. 7. Install the fuel sender assembly into the fuel tank and install the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. 8. Lower the vehicle. Claim Information - GM and Saab Canada Only For vehicles repaired under this service update, use the table. Claim Information - US Saab Only Page 5073 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6188 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2112 US English/Metric Conversion US English/Metric Conversion Page 5352 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 3351 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9081 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 2435 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 750 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 10168 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4063 Page 8841 Fuel Injector 3 Fuel Injector 4 Page 7817 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 4102 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 6087 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9623 Page 7528 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4844 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 3539 longer. Important Whenever a wheel is refinished, the mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. When re-mounting a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Disclaimer Page 1974 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7268 3. Connect the electrical connector. Page 7226 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8839 Page 6207 Page 1715 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 8164 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4050 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 4073 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4314 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5309 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4538 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2581 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 929 Warranty Information (excluding Saab U.S. Models) Important Select the appropriate Labor Operation for the repair that is performed. For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 7249 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Page 2192 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5343 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 3612 Wheel Fastener: Description and Operation Metric Wheel Nuts and Bolts Description Metric wheel/nuts and bolts are identified in the following way: ^ The wheel/nut has the word Metric stamped on the face. ^ The letter M is stamped on the end of the wheel bolt. The thread sizes of metric wheel/nuts and the bolts are indicated by the following example: M12 x 1.5. ^ M = Metric ^ 12 = Diameter in millimeters ^ 1.5 = Millimeters gap per thread Wheels - Changing Procedures/Precautions Wheels: All Technical Service Bulletins Wheels - Changing Procedures/Precautions INFORMATION Bulletin No.: 06-03-10-010A Date: June 09, 2010 Subject: Information on Proper Wheel Changing Procedures and Cautions Models: 2011 and Prior GM Passenger Cars and Trucks 2010 and Prior HUMMER Models 2005-2009 Saab 9-7X 2005-2009 Saturn Vehicles Attention: Complete wheel changing instructions for each vehicle line can be found under Tire and Wheel Removal and Installation in Service Information (SI). This bulletin is intended to quickly review and reinforce simple but vital procedures to reduce the possibility of achieving low torque during wheel installation. Always refer to SI for wheel lug nut torque specifications and complete jacking instructions for safe wheel changing. Supercede: This bulletin is being revised to include the 2011 model year and update the available special tool list. Please discard Corporate Bulletin Number 06-03-10-010 (Section 03 Suspension). Frequency of Wheel Changes - Marketplace Driven Just a few years ago, the increasing longevity of tires along with greater resistance to punctures had greatly reduced the number of times wheels were removed to basically required tire rotation intervals. Today with the booming business in accessory wheels/special application tires (such as winter tires), consumers are having tire/wheel assemblies removed - replaced - or installed more than ever. With this increased activity, it opens up more of a chance for error on the part of the technician. This bulletin will review a few of the common concerns and mistakes to make yourself aware of. Proper Servicing Starts With the Right Tools The following tools have been made available to assist in proper wheel and tire removal and installation. - J 41013 Rotor Resurfacing Kit (or equivalent) - J 42450-A Wheel Hub Resurfacing Kit (or equivalent) Corroded Surfaces One area of concern is corrosion on the mating surfaces of the wheel to the hub on the vehicle. Excessive corrosion, dirt, rust or debris built up on these surfaces can mimic a properly tightened wheel in the service stall. Once the vehicle is driven, the debris may loosen, grind up or be washed away from water splash. This action may result in clearance at the mating surface of the wheel and an under-torqued condition. Caution Before installing a wheel, remove any buildup on the wheel mounting surface and brake drum or brake disc mounting surface. Installing wheels with poor metal-to-metal contact at the mounting surfaces can cause wheel nuts to loosen. This may cause a wheel to come off when the vehicle is moving, possibly resulting in a loss of control or personal injury. Whenever you remove the tire/wheel assemblies, you must inspect the mating surfaces. If corrosion is found, you should remove the debris with a die grinder equipped with a fine sanding pad, wire brush or cleaning disc. Just remove enough material to assure a clean, smooth mating surface. The J 41013 (or equivalent) can be used to clean the following surfaces: - The hub mounting surface - The brake rotor mounting surface - The wheel mounting surface Use the J 42450-A (or equivalent) to clean around the base of the studs and the hub. Lubricants, Grease and Fluids Engine Controls - A/C Not Cold/MIL ON/DTC P0116 Set PROM - Programmable Read Only Memory: Customer Interest Engine Controls - A/C Not Cold/MIL ON/DTC P0116 Set Bulletin No.: 06-01-39-012 Date: November 09, 2006 TECHNICAL Subject: Air Conditioning Not Cold, Malfunction Indicator Lamp On, DTC P0116 (Reprogram PCM) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy Models 2007 Saab 9-7X with 4.2L Engine (VIN S - RPO LL8) Condition Some customers may comment that the Air Conditioning (A/C) does not get cold enough. Others may comment that the Malfunction Indicator Lamp (MIL) is on. Technicians may find that Diagnostic Trouble Code (DTC) P0116 (Engine Coolant Temperature Sensor Performance) has been set in the Powertrain Control Module (PCM). Cause This condition may be caused by the software in the PCM that allows the P0116 to set. While the P0116 is active, the PCM will not allow the A/C compressor to engage. Correction Technicians are to reprogram the PCM in vehicles built prior to the VIN breakpoints shown. The updated PCM calibrations were released to dealerships that use the TIS2web application on August 23, 2006. They are contained in the new calibration entitled "New software with diagnostic enhancements for DTC P0483". The TIS satellite data update version 9.0 was broadcast to the field on September 3, 2006. For dealerships that use DVDs, the update will be included with version 9.0 that was mailed on September 13, 2006. As always, make sure your Tech 2(R) is updated with the latest software version. Refer to the Engine and Powertrain Control Module Programming and Setup procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 6341 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 5748 US English/Metric Conversion US English/Metric Conversion Page 5225 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Description and Operation Variable Valve Timing Actuator: Description and Operation Camshaft Actuator System Description Camshaft Position (CMP) Actuator System The camshaft position actuator (CMP) system is used for a variety of engine performance enhancements. These enhancements include lower emission output through exhaust gas recirculation control, a wider engine torque range, improved gas millage, and improved engine idle stability. The CMP actuator system accomplishes this by controlling the amount of intake and exhaust valve overlap. CMP Actuator System Operation The camshaft position CMP actuator system is controlled by the powertrain control module (PCM). The PCM sends a pulse width modulated 12 volt signal to a (CMP) actuator solenoid in order to control the amount of engine oil flow to a cam phaser passage. There are 2 different passages for oil to flow through, a passage for cam advance and a passage for cam retard. The cam phaser is attached to a camshaft and is hydraulically operated in order to change the angle of the camshaft relative to crankshaft position. Engine oil pressure, viscosity, temperature and engine oil level can have an adverse affect on cam phaser performance. The PCM calculates the optimum cam position through the following inputs: * Engine speed * Manifold absolute pressure (MAP) * Throttle position (TP) indicated angle * Crankshaft position (CKP) * Camshaft position (CMP) * Engine load * Barometric (BARO) pressure The cam phaser default position is 0 degrees. The PCM uses the following inputs before assuming control of the cam phaser: * Engine coolant temperature (ECT) * Closed loop fuel control * Engine oil temperature * Engine oil pressure * Engine oil level * CMP actuator solenoid circuit state * Ignition 1 signal voltage * Barometric (BARO) pressure CMP Actuator Solenoid Circuit Diagnostics The powertrain control module (PCM) monitors the control circuits of the camshaft position (CMP) actuator solenoid for electrical faults. The PCM has the ability to determine if a control circuit is open, shorted high, and shorted low. If the PCM detects a fault with a CMP actuator solenoid circuit a diagnostic trouble code (DTC) will set. CMP Actuator System Performance Diagnostics The powertrain control module (PCM) monitors the performance of the CMP actuator system by monitoring the actual and desired positions of a cam phaser. If the difference between the actual and desired position is more than a calibrated angle for more than a calibrated amount of time, a DTC will set. Page 9904 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 6234 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 4807 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. NVG 120-NR9 - Transfer Case Speed Sensor: Service and Repair NVG 120-NR9 - Transfer Case Transfer Case Speed Sensor Replacement Preliminary Procedures Raise the vehicle. Refer to Lifting and Jacking the Vehicle. Page 6125 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Cooling System, A/C - Aluminum Heater Cores/Radiators Heater Core: Technical Service Bulletins Cooling System, A/C - Aluminum Heater Cores/Radiators INFORMATION Bulletin No.: 05-06-02-001A Date: July 16, 2008 Subject: Information On Aluminum Heater Core and/or Radiator Replacement Models: 2005 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2005 HUMMER H2 Supercede: This bulletin is being revised to update the Warranty Information. Please discard Corporate Bulletin Number 05-06-02-001 (Section 06 - Engine/Propulsion System). Important: 2004-05 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX-COOL(R). Refer to the flushing procedure explained later in this bulletin. The following information should be utilized when servicing aluminum heater core and/or radiators on repeat visits. A replacement may be necessary because erosion, corrosion, or insufficient inhibitor levels may cause damage to the heater core, radiator or water pump. A coolant check should be performed whenever a heater core, radiator, or water pump is replaced. The following procedures/ inspections should be done to verify proper coolant effectiveness. Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if the radiator cap or surge tank cap is removed while the engine and radiator are still hot. Important: If the vehicle's coolant is low, drained out, or the customer has repeatedly added coolant or water to the system, then the system should be completely flushed using the procedure explained later in this bulletin. Technician Diagnosis ^ Verify coolant concentration. A 50% coolant/water solution ensures proper freeze and corrosion protection. Inhibitor levels cannot be easily measured in the field, but can be indirectly done by the measurement of coolant concentration. This must be done by using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale), or equivalent, coolant tester. The Refractometer uses a minimal amount of coolant that can be taken from the coolant recovery reservoir, radiator or the engine block. Inexpensive gravity float testers (floating balls) will not completely analyze the coolant concentration fully and should not be used. The concentration levels should be between 50% and 65% coolant concentrate. This mixture will have a freeze point protection of -34 degrees Fahrenheit (-37 degrees Celsius). If the concentration is below 50%, the cooling system must be flushed. ^ Inspect the coolant flow restrictor if the vehicle is equipped with one. Refer to Service Information (SI) and/or the appropriate Service Manual for component location and condition for operation. ^ Verify that no electrolysis is present in the cooling system. This electrolysis test can be performed before or after the system has been repaired. Use a digital voltmeter set to 12 volts. Attach one test lead to the negative battery post and insert the other test lead into the radiator coolant, making sure the lead does not touch the filler neck or core. Any voltage reading over 0.3 volts indicates that stray current is finding its way into the coolant. Electrolysis is often an intermittent condition that occurs when a device or accessory that is mounted to the radiator is energized. This type of current could be caused from a poorly grounded cooling fan or some other accessory and can be verified by watching the volt meter and turning on and off various accessories or engage the starter motor. Before using one of the following flush procedures, the coolant recovery reservoir must be removed, drained, cleaned and reinstalled before refilling the system. Notice: ^ Using coolant other than DEX‐COOL(R) may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50,000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX‐COOL(R) (silicate free) coolant in your vehicle. ^ If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. Page 9508 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 5209 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2024 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10469 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6055 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4610 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7791 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3791 Step 1 - Step 7 Page 6685 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4876 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8517 Step 7 - Step 13 Page 2034 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7069 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 1759 Manifold Pressure/Vacuum Sensor: Service and Repair Manifold Absolute Pressure Sensor Replacement Removal Procedure 1. Turn OFF the ignition. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector. 3. Press the retainer locking tabs inward, then pull the retainer (1) up to remove it. 4. Remove the MAP sensor (2). 5. Inspect the MAP sensor seal for damage, and replace as necessary. Installation Procedure 1. Install the MAP sensor (2). 2. Install the MAP sensor retainer (1). Page 10643 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Locations Steering Wheel And Column Page 7598 Page 4125 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7719 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10304 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7609 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9760 Ignition Coil: Diagrams Engine Controls Connector End Views Ignition Coil 1 Ignition Coil 2 Page 6322 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 3302 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7767 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 4495 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6373 Fuel Pressure: Testing and Inspection Fuel System Diagnosis Fuel System Diagnosis System Description The fuel system is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. Test Page 7485 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 3356 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 4595 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 7848 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 1838 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 1534 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 8937 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 8843 Fuel Injector 6 Page 3995 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 758 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6340 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 9818 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 9300 Page 9683 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Specifications Timing Chain: Specifications Timing Chain Install the intake camshaft sprocket into the timing chain. Align the - dark link of the timing chain with the timing mark on the intake camshaft sprocket (1). Feed the timing chain down through the opening in the head. Install the timing chain onto the crankshaft sprocket. Align the - dark link of the timing chain with the timing mark on the crankshaft sprocket (2). Important: It may be necessary to remove J 44221 to rotate and hold the camshaft (hex) to align the pin to the camshaft sprocket. Page 9208 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10895 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 1781 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 7680 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9426 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 2537 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 1796 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9723 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4731 Body Control Module (BCM) C3 Page 10069 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 10252 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 2186 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 368 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 9661 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10992 Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Disclaimer Page 1469 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7806 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 5714 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 7020 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 1615 US English/Metric Conversion US English/Metric Conversion Diagram Information and Instructions Radiator Cooling Fan Motor: Diagram Information and Instructions Electrical Symbols Page 10387 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 8827 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 881 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2280 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 155 - HVAC Actuator - Inflatable Restraint Sensing and Diagnostic Module (SDM) - Any AIR BAG module - Seatbelt Lap Anchor Pretensioner - Seatbelt Retractor Pretensioner - An SIR system connection or connector condition resulting in the following DTCs being set: B0015, B0016, B0019, B0020, B0022, or B0023 - Powertrain Control Module (PCM) - Remote Control Door Lock Receiver (RCDLR) - Transmission Control Module (TCM) Correction Important DO NOT replace the control module, wiring or component for the following conditions: - The condition is intermittent and cannot be duplicated. - The condition is present and by disconnecting and reconnecting the connector the condition can no longer be duplicated. Use the following procedure to correct the conditions listed above. 1. Install a scan tool and perform the Diagnostic System Check - Vehicle. Retrieve and record any existing history or current DTCs from all of the control modules (refer to SI). ‹› If any DTC(s) are set, refer to Diagnostic Trouble Code (DTC) List - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). ‹› If DTCs are not set, refer to Symptoms - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). 2. When identified, use the appropriate DTC Diagnostics, Symptoms, Schematics, Component Connector End Views and Component Locator documents to locate and disconnect the affected harness connector(s) which are causing the condition. Note Fretting corrosion looks like little dark smudges on electrical terminals and appear where the actual electrical contact is being made. In less severe cases it may be unable to be seen or identified without the use of a magnifying glass. Important DO NOT apply an excessive amount of dielectric lubricant to the connectors as shown, as hydrolock may result when attempting to mate the connectors. Use ONLY a clean nylon brush that is dedicated to the repair of the conditions in this bulletin. 3. With a one-inch nylon bristle brush, apply dielectric lubricant to both the module/component side and the harness side of the affected connector(s). 4. Reconnect the affected connector(s) and wipe away any excess lubricant that may be present. 5. Attempt to duplicate the condition by using the following information: - DTC Diagnostic Procedure - Circuit/System Description - Conditions for Running the DTC - Conditions for Setting the DTC - Diagnostic Aids - Circuit/System Verification ‹› If the condition cannot be duplicated, the repair is complete. ‹› If the condition can be duplicated, then follow the appropriate DTC, Symptom or Circuit/System Testing procedure (refer to SI). Repair Order Documentation Page 4571 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1713 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6803 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 523 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8983 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 420 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9325 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10198 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 723 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6837 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 10072 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 3792 Step 8 - Step 17 Page 9116 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 8315 Page 2425 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 1338 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 10799 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 6504 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9812 View of the connector when released from the component. View of another type of Micro 64 connector. Page 441 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 868 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 4995 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 8223 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6317 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2316 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3189 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9479 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9905 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10085 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 3201 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 10812 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5158 Utility/Van Zoning UTILITY/VAN ZONING Page 7689 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4017 Spark Plug: Testing and Inspection Spark Plug Inspection Spark Plug Usage 1. Ensure that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. 2. Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: * Spark plug fouling-Colder plug * Pre-ignition causing spark plug and/or engine damage-Hotter plug Spark Plug Inspection 1. Inspect the terminal post (1) for damage. * Inspect for a bent or broken terminal post (1). * Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should NOT move. 2. Inspect the insulator (2) for flashover or carbon tracking, soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: * Inspect the spark plug boot for damage. * Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated causes arcing to ground. 3. Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). Page 7490 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 11039 Shift Interlock Solenoid: Locations Shift Lock Control Component Views Automatic Transmission Shift Lock Actuator Automatic Transmission Shift Lock Actuator 1 - Lower Console 2 - Automatic Transmission Shift Lock Actuator Page 1651 Page 10365 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 3297 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 5345 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 3473 up, allowing tire air pressure to increase above the threshold causing the light to go off. Properly adjusting all tire air pressures to the recommended levels will correct this (Refer to the Tire and Loading Information Label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". For more detailed information, refer to Corporate Bulletin Number 07-03-16-004C and TPMS Training Course 13044.12T2. Tire Pressure Light At key on, without starting the vehicle: Steady Solid Glowing TPM Indicator If the TPM indicator appears as a steady glowing yellow lamp (as above), the system is functioning properly and you should add air to the tires to correct this condition. Blinking TPM Indicator If the TPM indicator appears as a BLINKING yellow lamp for one minute and then stays on solid, diagnostic service is needed. The Effect of Outside Temperature on Tire Pressures Important: As a rule of thumb, tire pressure will change about 7kPa (1 psi) for every 6°C (10°F) decrease in temperature - Tire pressure will drop when it gets colder outside, and rise when it gets warmer. Under certain situations such as extreme outside temperature changes, the system may bring on a solid light with a check tire pressure message. This should be considered normal and the system is working properly. The light will turn off upon adding the proper amount of air to the tires (refer to the Tire & Loading Information label in the driver's door opening). When properly adjusting tire air pressure, the following steps are important to help optimize the system and prolong bringing a tire pressure light on: ^ Use an accurate, high quality tire pressure gauge. ^ Never set the tire pressure below the specified placard value regardless of tire temperature or ambient temperature. ^ Tire pressure should be set to the specified placard pressure at the lowest seasonal temperature the vehicle will encounter during operation. Page 10159 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 4208 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8301 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1442 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9296 Page 10947 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2519 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 5449 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70 2 - Park/Neutral Position (PNP) Switch Page 6137 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5823 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9159 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7970 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6863 Engine Control Module: Locations Engine Controls Component Views Upper Left Side of the Engine - Front 1 - Powertrain Control Module (PCM) 2 - Powertrain Control Module (PCM) C3 3 - Powertrain Control Module (PCM) C2 4 - Generator Page 5692 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 9852 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 10438 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9115 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10889 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5086 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10813 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 1716 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4463 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9279 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 10211 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2322 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 673 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 8087 Utility/Van Zoning UTILITY/VAN ZONING Page 8419 Page 8769 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5228 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8184 Page 7092 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6736 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6292 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 9652 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 4291 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8751 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5421 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 4174 Page 2032 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 853 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7995 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 187 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2962 1. Install the air cleaner element (6) onto the air outlet duct (3) with a twisting and pushing motion. 2. Install the air cleaner element (6) and air outlet duct (3) into the lower air cleaner housing/washer solvent tank assembly (4). Notice: Refer to Fastener Notice. Important: Ensure the air inlet duct (5) is properly positioned in the lower air cleaner housing/washer solvent tank assembly (4) before installing the air cleaner housing (2). 3. Install the air cleaner housing (2). Tighten the 3 air cleaner housing retaining screws (1) to 4 N.m (35 lb in). 4. Connect the AIR pump inlet hose to the air cleaner air outlet duct. 5. Install the radiator support diagonal brace if applicable. Page 10003 Page 494 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4203 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 3019 Notice: Clean the power steering gear inlet and outlet ports thoroughly of any debris. Failure to do so could result in contamination and damage to the power steering system components. 25. Install the seal extraction end of the J 44586 (2) to the power steering gear oil seal (1). 26. Extract the power steering gear oil seal (1) from the power steering gear using the J 44586 (2) with the aid of a flat-bladed tool (3) for additional leverage. 27. With the hose assembly on a work bench, note the location of the hoses. 28. Remove the 3 retaining clamps. Note the location for assembly. 29. Remove the damaged power steering hose. Installation Procedure 1. Place the replacement hose into the hose assembly. 2. Install the 3 retaining clamps as noted during disassemble. Page 7348 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 10965 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10141 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10446 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5334 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9552 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 7729 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 7044 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6943 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2262 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1460 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7286 Page 10281 5. Compress the reverse boost valve sleeve into the bore of the oil pump to expose the retaining ring slot. 6. Install the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 7. Install the transmission oil filter and pan. Refer to Automatic Transmission Fluid and Filter Replacement. 8. Lower the vehicle. 9. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 10. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 4412 Heater Hose: Service and Repair Heater Outlet Hose Replacement (LL8) Heater Outlet Hose Replacement (LL8) Tools Required * J43181 Heater Line Quick Connect Release Tool * GE-47622 Hose Clamp Pliers Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the transmission. 3. Remove the generator. 4. Using the J43181, disconnect the outlet hose from the heater core outlet tube (1). 1. Install the J43181 to the outlet heater core hose. 2. Close the tool around the outlet heater core hose. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. 5. Remove the heater outlet hose (3) from the heater core (1). 6. Position the outlet heater hose clamp (6) at the water pump using GE-47622. 7. Remove the heater outlet hose (7) from the outlet hose fitting. 8. Remove the heater outlet hose. Installation Procedure 1. Install the outlet heater hose. 2. Install the heater outlet hose (7) to the outlet hose fitting. 3. Position the outlet heater hose clamp (6) at the outlet hose fitting using GE-47622. Page 8181 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4019 Spark Plug: Service and Repair Spark Plug Replacement Removal Procedure 1. Turn OFF the ignition switch. 2. Remove the ignition coils. Notice: Allow the engine to cool before removing the spark plugs. Attempting to remove the spark plugs from a hot engine may cause the plug threads to seize, causing damage to cylinder head threads. Notice: Clean the spark plug recess area before removing the spark plug. Failure to do so could result in engine damage because of dirt or foreign material entering the cylinder head, or by the contamination of the cylinder head threads. The contaminated threads may prevent the proper seating of the new plug. Use a thread chaser to clean the threads of any contamination. 3. Remove the spark plugs from the engine. Installation Procedure Notice: Use only the spark plugs specified for use in the vehicle. Do not install spark plugs that are either hotter or colder than those specified for the vehicle. Installing spark plugs of another type can severely damage the engine. Notice: Check the gap of all new and reconditioned spark plugs before installation. The pre-set gaps may have changed during handling. Use a round feeler gage to ensure an accurate check. Installing the spark plugs with the wrong gap can cause poor engine performance and may even damage the engine. 1. Measure the spark plug gap on the spark plugs to be installed. Compare the measurement to the gap specifications. Notice: Be sure that the spark plug threads smoothly into the cylinder head and the spark plug is fully seated. Use a thread chaser, if necessary, to clean threads in the cylinder head. Cross-threading or failing to fully seat the spark plug can cause overheating of the plug, exhaust blow-by, or thread damage. Notice: Refer to Fastener Notice. Page 5899 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 9380 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7037 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3259 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 438 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 10553 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 9529 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 8495 6. Lift up the front of the air cleaner outlet resonator (2). 7. Disconnect the crankcase clean air hose from the valve cover port. 8. Disconnect the crankcase clean air hose from the air cleaner outlet resonator (2). Installation Procedure 1. Connect the crankcase clean air hose to the air cleaner outlet resonator (2). 2. Connect the crankcase clean air hose to the valve cover port. Notice: Refer to Fastener Notice. 3. Install the 2 resonator to engine bolts (4) to the air cleaner outlet resonator (5). Tighten the bolts to 6 N.m (53 lb in). Page 7572 Powertrain Control Module (PCM) C3 (Pin 21 To 56) NVG 126-NP4 - Transfer Case Speed Sensor: Locations NVG 126-NP4 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 1772 Locations Impact Sensor: Locations SIR Component Views Inflatable Restraint Side Impact Sensor (SIS) - Left 1 - Driver Door 2 - Left Front Door Harness 3 - Inflatable Restraint Side Impact Sensor (SIS) - Left Inflatable Restraint Side Impact Sensor (SIS) - Right Page 5106 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5963 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5341 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Specifications Camshaft Gear/Sprocket: Specifications Intake Camshaft Sprocket Bolt Install the intake camshaft sprocket washer and new bolt. Tighten the new intake camshaft sprocket bolt First Pass ............................................................................................................................................. .................................................... 20 N.m (15 lb ft) Final Pass ............................................................ ............................................................................................................................................ 100 degrees Page 8247 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4340 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 11234 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 6453 Page 9215 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8017 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7391 Oxygen Sensor: Service and Repair Heated Oxygen Sensor 2 Replacement Heated Oxygen Sensor 2 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 3. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New or service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must reinstall the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). 4. Lower the vehicle. Page 2500 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1258 Turn Signal/Multifunction Switch C2 Page 8879 Step 1 - Step 6 Page 2426 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1003 Hood Sensor/Switch (For Alarm): Diagrams Immobilizer Connector End Views Hood Ajar Switch (UA2) Page 9104 View of the connector when released from the component. View of another type of Micro 64 connector. Page 9879 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 8977 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4861 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 7799 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 9721 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Service and Repair Clutch Control Solenoid Valve: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. Important: Do not remove the valve body for the following procedures. Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. 2. Remove the 1-2 accumulator if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ Torque converter clutch (TCC) pulse width modulation (PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer. 5. Remove the pressure control solenoid. 6. Remove the 1-2 and 2-3 shift solenoid retainers. 7. Remove the 1-2 and 2-3 shift solenoids. Page 6655 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8367 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5952 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 10297 Page 5081 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 4143 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10039 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6697 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Page 9427 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 8140 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Fastener Tightening Specifications Alignment: Specifications Fastener Tightening Specifications Fastener Tightening Specifications Fastener Tightening Specifications Page 10798 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 5664 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4418 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 2149 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Engine - Squeal Or Whine Noise Coming Engine Compartment Idler Pulley: Technical Service Bulletins Engine - Squeal Or Whine Noise Coming Engine Compartment TECHNICAL Bulletin No.: 09-06-01-011 Date: August 05, 2009 Subject: Squeal or Whine Type Noise Coming from Engine Compartment (Replace Drive Belt Idler Pulley) Models: 2006-2007 Buick Rainier 2006-2009 Chevrolet TrailBlazer 2006-2009 GMC Envoy 2006-2009 Saab 9-7X Equipped with Engine RPO LL8 Please Refer to GMVIS Condition Some customers may comment on a squeal or whine type noise coming from the engine compartment. Correction Replace the drive belt idler pulley. The drive belt idler pulley is now available for service as a separate part. The pulley was formerly available only as part of the pulley and bracket assembly. DO NOT replace the pulley and bracket assembly if the pulley only requires replacement. Please refer to the replacement procedure listed below. 1. Remove the drive belt. 2. To confirm the suspect noise, operate the engine for no longer than 30-40 seconds. If the noise is no longer present, continue with the repair. If the noise is still present, refer to the diagnosis information found in SI. 3. Remove the drive belt idler pulley bolt. 4. Remove the drive belt idler pulley from the vehicle. 5. Install the drive belt idler pulley to the vehicle. 6. Install the drive belt idler pulley bolt. Tighten Tighten the idler pulley bolt to 40 Nm (30 lb ft). 7. Install the drive belt. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Page 9485 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 9971 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Catalytic Converter Heat Shield Replacement Heat Shield: Service and Repair Catalytic Converter Heat Shield Replacement Catalytic Converter Heat Shield Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the 5 bolts securing the heat shield to the floor panel studs. 3. Remove the heat shield from the vehicle. Installation Procedure 1. Place the catalytic converter heat shield onto the floor panel studs. Notice: Refer to Fastener Notice. 2. Secure the heat shield with the 5 bolts. Tighten the catalytic converter heat shield bolts to 7 N.m (62 lb in). 3. Lower the vehicle. Page 1408 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4878 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8957 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Specifications Drive Belt Tensioner: Specifications Drive Belt Tensioner Bolt ..................................................................................................................... ...................................................... 50 N.m (37 lb ft) Page 2620 Seat Position Sensor: Service and Repair Inflatable Restraint Seat Position Sensor Replacement Removal Procedure 1. Remove the seat from the vehicle. 2. Unclip the front, rear, and side J-strips (1, 2) on the underside of the seat. 3. Remove the lumbar knob by pulling the knob straight away from the seat, if equipped. 4. Remove the recliner handle. 5. Remove the screws (2) that retain the lumbar adjustment mechanism (1) to the seat adjuster. 6. Remove the lumbar cable from the lumbar adjustment mechanism. Page 9951 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 10218 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 2394 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 11132 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5506 US English/Metric Conversion US English/Metric Conversion Page 749 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 2042 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Locations Headlamp Relay: Locations Fuse Block - Underhood (4.2L), Label Page 8780 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6927 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5530 Page 137 Emergency Contact Module: Service and Repair OnStar Module Bracket Assembly Replacement (Trailblazer, Envoy, Rainier) OnStar Module Bracket Assembly Replacement (Trailblazer, Envoy, Rainier) Removal Procedure 1. Remove the right rear seat cushion. 2. Remove the communication interface module. 3. Using a flat bladed tool, release the retaining tab on the upper bracket. 4. Slide the upper bracket inboard until the retaining tabs are released from the processor bracket. 5. Remove the upper bracket from the processor bracket. 6. Remove the nut that retains the processor bracket to the rear seat back stud. 7. Remove the processor bracket from the vehicle. Installation Procedure 1. Install the processor bracket to the rear seat studs. Notice: Refer to Fastener Notice. 2. Install the nut to the rear seat back stud. Tighten the nut to 45 N.m (33 lb ft). Page 2527 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4766 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 7346 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9979 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 1712 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8880 Step 7 - Step 13 Page 1264 Turn Signal Switch: Service and Repair Turn Signal Multifunction Switch Replacement Turn Signal Multifunction Switch Replacement Removal Procedure Caution: Refer to SIR Caution. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the upper and lower trim covers. Refer to Steering Column Trim Covers Replacement. 3. Tilt the column to the CENTER position. 4. Disconnect the connectors from the turn signal and multifunction switch assembly. 5. Remove 2 pan head tapping screws from the turn signal and multifunction switch assembly. 6. Remove the turn signal and multifunction switch assembly. Installation Procedure Important: The electrical contact on the turn signal and multifunction switch assembly must rest on the turn signal cancel cam assembly. 1. Install the turn signal and multifunction switch assembly. Notice: Refer to Fastener Notice. 2. Secure by using 2 pan head tapping screws. ^ Tighten the screw on the top of the column to 3 N.m (27 lb in). ^ Tighten the screw on the side to 7 N.m (62 lb in). 3. Connect the connectors to the turn signal and multifunction switch assembly. 4. Install the upper and lower trim covers. Refer to Steering Column Trim Covers Replacement. 5. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 2313 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 2439 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5717 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 499 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8878 Fuel Pressure: Testing and Inspection Fuel System Diagnosis Fuel System Diagnosis System Description The fuel system is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. Test Page 206 View of the connector when released from the component. View of another type of Micro 64 connector. Page 11208 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 9258 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 2039 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 8737 Page 6652 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 231 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7160 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 2809 Rear Window Wiper/Washer Switch Page 692 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9631 Page 9856 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 9565 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Service and Repair Rocker Arm Assembly: Service and Repair Valve Rocker Arm and Valve Lash Adjuster Replacement Tools Required EN-47945 Valve Spring Compressor Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Rotate the crankshaft until the affected cylinder valve is fully open (cam lobe fully depressing the spring). Important: Engine design and packaging does not allow all cylinder locations to use both fasteners for holding the tool to the cylinder head. One fastener is sufficient in these locations. 3. Install the EN-47945 on the engine cylinder head using either one or two of the supplied fasteners installed in the coil fastener hole. Important: DO NOT rotate the engine with the tool installed. It is possible to damage the valves if they contact the piston. Rotate the engine enough to come back to the base circle of the cam. 4. Rotate the engine clockwise enough to ensure the cam is on the base circle (spring will stay compressed by the tool). This will allow the lash adjuster and rocker to be removed. 5. Remove the valve rocker arm and valve lash adjuster. 6. Clean and inspect the valve rocker arm and valve lash adjuster. Refer to Valve Rocker Arm and Valve Lash Adjuster Cleaning and Inspection. Installation Procedure 1. Lubricate the valve rocker arm and fill the valve lash adjuster with oil. 2. Install the valve rocker arm and valve lash adjuster. 3. When the valve rocker arm and valve lash adjuster are in place, slowly rotate the engine counterclockwise enough that the cam lobe fully depresses the spring again. Page 4146 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7480 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1954 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 11128 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 2139 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7693 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 439 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3152 Fuse Block - Underhood (4.2L), Label Usage Page 9655 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3603 9. Remove the wheel hub and bearing to the steering knuckle mounting bolts. 10. Remove the wheel hub and bearing from the steering knuckle. 11. Remove the splash shield from the steering knuckle. Installation Procedure 1. Install the splash shield to the steering knuckle. Align the splash shield to the steering knuckle threaded holes. 2. Install the wheel hub and bearing to the steering knuckle. Align the threaded holes. Notice: Refer to Fastener Notice. 3. Install the wheel hub and bearing to the steering knuckle mounting bolts. Tighten the wheel hub and bearing mounting bolts to 105 N.m (77 lb ft). Page 5712 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: Customer Interest A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Page 2389 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 8213 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4588 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Page 4492 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8775 View of the connector when released from the component. View of another type of Micro 64 connector. Page 7879 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4849 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 10440 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5491 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9644 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 257 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8756 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Malfunction Indicator Lamp (MIL) Always On Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Always On Malfunction Indicator Lamp (MIL) Always On Circuit Description Ignition voltage is supplied to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. MIL Operation The MIL is located on the instrument panel (IPC). MIL Function * The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. * The MIL illuminates during a bulb test and a system test. * A DTC will be stored if a MIL is requested by the diagnostic. MIL Illumination * The MIL will illuminate with ignition switch ON and the engine not running. * The MIL will turn OFF when the engine is started. * The MIL will remain ON if the self-diagnostic system has detected a malfunction. * The MIL may turn OFF if the malfunction is not present. * If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. * If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. Diagnostic Aids If the problem is intermittent, refer to Intermittent Conditions. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Intermittent Conditions Test Description Step 1 - Step 6 The number below refers to the step number on the diagnostic table. 2. This step determines if the condition is with the MIL control circuit or the PCM. Page 7203 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10776 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2505 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8383 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 10456 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 228 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Page 8351 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 8036 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9447 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8666 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 5095 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1655 Page 6452 Page 7021 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7081 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10825 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4611 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 9477 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 181 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5956 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 11135 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 4647 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8626 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5445 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6109 Utility/Van Zoning UTILITY/VAN ZONING Page 307 Power Seat Control Module: Removal and Replacement MEMORY SEAT CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the 3 seat switch bezel screws. 2. Remove 4 nuts that attach the seat pan to the seat assembly. 3. Remove the clip from the front outboard seat pan stud. Discard the clip. 4. Lift the seat pan up in order to allow access to the seat control module retaining screw. 5. Remove the seat control module retaining screw. 6. Disconnect the electrical connectors from the seat control module as necessary. 7. Remove the seat control module from the seat assembly. INSTALLATION PROCEDURE 1. Align and install the locating tabs on the seat control module with the seat pan. 2. Connect the electrical connectors to the seat control module as necessary. 3. NOTE: Refer to Fastener Notice. Install the screw that retains the seat control module to the seat pan. Tighten the screw to 3 N.m (26 lb in). 4. Install the seat pan to the seat assembly. Page 1612 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 9766 Notice: Refer to Fastener Notice. 2. Install the ignition coil retaining bolts (2). Tighten the ignition coil retaining bolts to 10 N.m (89 lb in). 3. Replace the ignition coil connectors (1). 4. Install the air cleaner outlet resonator. Page 1371 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2349 Page 7173 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Locations Air Injection Control Valve Relay: Locations Fuse Block - Underhood (4.2L), Label Page 5354 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7153 Page 1535 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 6661 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 386 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10009 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9103 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7842 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9391 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 429 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5397 Intake Air Temperature Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 8278 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 4486 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 11092 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8114 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 1481 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 3390 Fuse Block - Rear C3 (Pin E4 To F6) Page 5511 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 4898 * The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. * The MIL turns OFF after the engine is started if a diagnostic fault is not present. * The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. * The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. * When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. * When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. Trip A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). Warm-Up Cycle The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. Diagnostic Trouble Codes (DTCs) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC Status When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) - Indicates that this DTC failed during the present ignition cycle. Last Test Fail - Indicates that this DTC failed the last time the test ran. MIL Request - Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) - Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History - Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) - DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display Page 10020 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 11061 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6211 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 4982 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2555 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 558 Page 9773 Page 11073 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2848 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Page 4454 Page 10905 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 1448 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 8011 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 2278 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6929 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7074 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1053 Behind Driver Seat Page 2087 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1826 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 8651 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 5583 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3109 The dexos (TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos (TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos (TM)specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 2(TM) engine oil. GM dexos 2(TM) Engine Oil Specification - dexos 2(TM) is approved and recommended by GM for use in Europe starting in model year 2010 vehicles, regardless of where the vehicle was manufactured. - dexos 2(TM) is the recommended service fill oil for European gasoline engines. Important The Duramax(TM) diesel engine is the exception and requires lubricants meeting specification CJ-4. - dexos 2(TM) is the recommended service fill oil for European light-duty diesel engines and replaces GM-LL-B-025 and GM-LL-A-025. - dexos 2(TM) protects diesel engines from harmful soot deposits and is designed with limits on certain chemical components to prolong catalyst life and protect expensive emission reduction systems. It is a robust oil, resisting degradation between oil changes and maintaining optimum performance longer. Disclaimer Page 8567 4. Compare the fuel tank serial number printed on the fuel tank label (1) to the fuel tank serial number (sequencing) range shown. ^ If the serial number of the tank is not within the ranges above, lower the vehicle. No further action is required. ^ If the serial number of the tank is within the ranges above, remove and replace the fuel sender assembly. Proceed to Step 5 in this bulletin. 5. Remove the fuel tank from the vehicle. Remove the fuel sender assembly from the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. Notice: Ensure that the fuel level sensor pigtail wires are routed through the anti-chafing conduit of the fuel sender assembly to avoid damaging the fuel level sensor pigtail wires. Route the fuel level sensor pigtail wires through the anti-chafing conduit the same way the wires were routed in the old fuel sender assembly. 6. Remove the fuel level sensor from the old fuel sender assembly and install it to the new fuel sender assembly. Refer to Fuel Level Sensor Replacement in SI. 7. Install the fuel sender assembly into the fuel tank and install the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. 8. Lower the vehicle. Claim Information - GM and Saab Canada Only For vehicles repaired under this service update, use the table. Claim Information - US Saab Only Page 5922 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 866 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1888 Page 10549 Front Axle Actuator Page 5170 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 7921 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2273 View of the connector when released from the component. View of another type of Micro 64 connector. Page 1347 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 5913 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 859 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8898 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4149 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 9351 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8810 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9014 10. Connect the EVAP purge pipe (1) to the EVAP canister purge valve. 11. Connect the integral clip (2) to the wire harness bracket. 12. Connect the fuel feed pipe (3) to the fuel rail. 13. Connect the engine coolant temperature sensor electrical connector (1). 14. Install the PCM (1) onto the studs (5). 15. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). Page 9934 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 6751 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10948 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 5218 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9297 Page 6324 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 10506 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 618 6. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 7. Install the rear electrical center cover. 8. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 9. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 10. Connect the negative battery cable. 11. If installing a replacement BCM, program the BCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 7066 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5355 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 376 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10608 Transmission Position Switch/Sensor: Adjustments Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the parking brake. ^ The engine must start in the P (Park) or N (Neutral) positions only. ^ Check the switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the N (Neutral) position. 2. With an assistant in the drivers seat, raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Loosen the park/neutral position switch mounting bolts. 4. With the vehicle in the N (Neutral) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. Notice: Refer to Fastener Notice. 6. Tighten the bolts securing the switch to the transmission. Tighten the bolts to 25 N.m (18 lb ft). 7. Lower the vehicle. 8. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. 9. Replace the park/neutral position switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Page 6476 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Service Precautions Idle Speed/Throttle Actuator - Electronic: Service Precautions Handling Idle Air Control Valve Notice Notice: If the IAC valve has been in service: DO NOT push or pull on the IAC valve pintle. The force required to move the pintle may damage the threads on the worm drive. Also, DO NOT soak the IAC valve in any liquid cleaner or solvent, as damage may result. Page 10239 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Diagrams Oil Pressure Sender: Diagrams Displays and Gages Connector End Views Engine Oil Pressure (EOP) Switch (4.2L) Page 9987 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 7521 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 3645 Variable Valve Timing Actuator: Service and Repair Camshaft Position Exhaust Actuator Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 44217 Timing Chain Retention Tool Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Rotate the engine until the word Delphi on the exhaust camshaft position actuator is lined up parallel with the cylinder head to cam cover mating surface. 3. Remove the top chain guide bolts. 4. Remove the top chain guide. 5. Using the timing mark on the exhaust camshaft position actuator sprocket as a reference, make a mark on the timing chain link across from it. 6. Install the J-44217 (1). 1. Install the hook portion of the timing chain retention tools into one of the timing chain links near the timing chain shoe on both sides of the engine. 2. Tighten the wingnuts. 3. Ensure the hooks are still in one of the links and the gage blocks of the tool are firmly in place on the edge of the head. Page 9796 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2610 Seat Belt Tension Sensor: Diagrams SIR Connector End Views Inflatable Restraint Passenger Seat Belt Tension Retractor Sensor Page 7733 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 715 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 6544 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4508 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1652 Utility/Van Zoning UTILITY/VAN ZONING Page 5165 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 7857 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6905 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 2587 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 2838 Alignment: Service and Repair Front Toe Adjustment Front Toe Adjustment 1. Loosen the jam nut on the outer tie rod (2). Notice: Care must be taken that the boots are not twisted when rotating the inner tie rods, or damage to the boots may result. 2. Rotate the inner tie rod (1) to the required toe specification setting. Refer to Wheel Alignment Specifications. Notice: Refer to Fastener Notice. 3. Tighten the jam nut on the outer tie rod. Tighten the outer tie rod jam nut to 75 N.m (55 lb ft). 4. Check the toe setting after tightening. 5. Re-adjust the toe setting if necessary. Page 3897 Important: Place the camshaft caps in a rack to ensure the caps are installed in the same location from which they were removed. 9. Remove the camshaft caps. 10. Remove the camshafts. 11. Using a suitable adapter, apply air pressure to the cylinder. 12. Install the J-44228-A and compress the valve springs. Page 6640 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10320 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10442 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5251 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 10344 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Locations Intake Air Temperature Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 2234 Service and Repair Front Crankshaft Seal: Service and Repair Crankshaft Front Oil Seal Replacement Tools Required J 44218 Seal Installer Removal Procedure Important: Do not damage the engine front cover or the crankshaft. 1. Remove the crankshaft balancer. Refer to Crankshaft Balancer Replacement. 2. Pry out the crankshaft front oil seal using a suitable tool. Use the provided slots for prying out the seal. Installation Procedure 1. Apply the engine oil to the outside diameter of the crankshaft front oil seal. Page 6885 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 1878 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Page 1799 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8158 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 5838 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 928 Caution When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Failure to observe the correct procedure could cause deployment of the SIR components. Serious injury can occur. Failure to observe the correct procedure could also result in unnecessary SIR system repairs. 1. Perform the Diagnostic System Check-Vehicle. 2. Identify the DTC that is set AND review the DTC Descriptor in the corresponding diagnostic procedure. Refer to Diagnostic Trouble Code (DTC) List-Vehicle in SI. 3. Using the information from the DTC Descriptor, determine the location of the affected electrical connector. Refer to SIR Identification Views and the Master Electrical Component List in SI. 4. Turn OFF the ignition and disable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 5. BEFORE removing, INSPECT the CPA retainer at the electrical connector. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. ‹› If the CPA retainer is loose, damaged, or will not seat in the connector, replace it with a new one. Reinstall the CPA correctly by first pushing the connector body in completely, and then pushing the CPA retainer in completely. ‹› If the CPA retainer is not loose or damaged and is properly seated, proceed to Step 6. 6. Remove the CPA retainer and disconnect the electrical connector. Inspect the terminals for the following conditions: - Corrosion - Contamination - Terminal tension - Damage Important The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. DO NOT substitute any other terminals for those in the repair kit. ‹› If the terminals are damaged, corrosion is observed, or have poor tension, repair or replace as necessary. Apply dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins and terminals when reassembling. Refer to SIR/SRS Wiring Repairs in SI. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. 7. Connect the electrical connector, and install the CPA retainer. 8. Enable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 9. Clear the DTC with a scan tool. 10. Verify that the DTC does not reset by performing the Diagnostic Repair Verification in SI. ‹› If any DTC resets, then refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. Parts Information Note If the CPA retainer P/N 54590003 (Orange CPA) cannot be located in the J-38125 SIR/SRS terminal repair kit, contact Kent Moore Tools and order P/N 54590003-PKG to obtain a package of 5. Page 9919 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 4794 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 8707 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 1852 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 525 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7222 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Service and Repair Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine shield. Refer to Engine Protection Shield Replacement. 3. Remove the electrical connector from the oil pressure switch. 4. Remove the oil pressure switch. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the oil pressure switch. Tighten the oil pressure switch to 20 N.m (15 lb ft). 2. Install the electrical connector to the oil pressure switch. 3. Install the engine shield. Refer to Engine Protection Shield Replacement. 4. Lower the vehicle. Page 5857 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5617 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 5768 Page 11072 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 5818 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10014 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2018 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 9177 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 5052 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 7745 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 6696 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 7365 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6887 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 10859 Page 8971 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7965 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 6338 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10618 Transmission Speed Sensor: Adjustments Range Selector Lever Cable Adjustment Adjustment Procedure 1. Ensure that the range selector cable is not restricted. 2. Ensure that the floor shift control is in the PARK position. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Disconnect the range selector cable (4) from the range selector lever ball stud (6). 5. Ensure that the range selector lever is in the mechanical PARK position. (Rotate the range selector lever fully clockwise.) 6. Release the locking tab (1). 7. Slide the secondary lock cover (1) to the side. Page 1939 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10178 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 7510 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 1350 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 1063 Passenger Seat Switches (With RPO Code V40) Page 8409 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3055 coolant system integrity and will no longer be considered a 5 yr/150,000 mile (240,000 km) coolant. Coolant Removal Services/Recycling The tables include all coolant recycling processes currently approved by GM. Also included is a primary phone number and demographic information. Used DEX-COOL(R) can be combined with used conventional coolant (green) for recycling. Depending on the recycling service and/or equipment, it is then designated as a conventional 2 yr/30,000 mile (50,000 km) coolant or DEX-COOL(R) 5 yr/150,000 mile (240,000 km) coolant. Recycled coolants as designated in this bulletin may be used during the vehicle(s) warranty period. DEX-COOL(R) Recycling The DEX-COOL(R) recycling service listed in Table 2 has been approved for recycling waste engine coolants (DEX-COOL) or conventional) to DEX-COOL(R) with 5 yr/150,000 mile (240,000 km) usability. Recycling Fluid Technologies is the only licensed provider of Recycled DEX-COOL(R) meeting GM6277M specifications and utilizes GM approved inhibitor packages. This is currently a limited program being monitored by GM Service Operations which will be expanded as demand increases. Conventional (Green) Recycling NVG 126-NP4 - Transfer Case Gear Sensor/Switch: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Motor/Encoder Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy) 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 9494 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7166 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 812 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 8009 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 11054 Page 9932 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 136 5. Position the right second row seat to a passenger position. Page 2219 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8464 Air Injection Pump Relay: Diagrams Engine Controls Connector End Views Secondary Air Injection (AIR) Pump Relay (K18) Page 6643 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9503 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 3498 Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Replacement Tire Pressure Sensor Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire/wheel assembly from the vehicle. Refer to Tire and Wheel Removal and Installation. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting. ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ When separating the tire bead from the wheel, position the bead breaking fixture 90 degrees from the valve stem. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: If any tire sealant is noted upon tire dismounting, remove all residual liquid sealant from the inside of the tire and wheel surfaces. 3. Remove the tire pressure sensor nut. 4. Remove the tire pressure sensor. Installation Procedure 1. Clean any dirt or debris from the grommet sealing area. 2. Insert the sensor in the wheel hole with the air passage facing away from the wheel. Page 3333 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 9243 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE HVAC - Automatic Control Module HVAC: Service and Repair HVAC - Automatic Auxiliary Heater and Air Conditioning Control Module Replacement Auxiliary Heater and Air Conditioning Control Module Replacement Removal Procedure 1. Using a flat bladed tool, carefully pry out on the top of the HVAC control-auxiliary. 2. Remove the HVAC control-auxiliary from the center console/seat. 3. Disconnect the electrical connector. 4. Remove the HVAC control-auxiliary. Installation Procedure 1. Connect the HVAC control-auxiliary electrical connector. 2. Install the HVAC control-auxiliary in the console bottom first. 3. Push in at the top of the HVAC control-auxiliary in order to engage the HVAC control-auxiliary in the console/seat. Blower Motor Control Processor Replacement Page 5914 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10067 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8322 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 3311 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 2625 11. Install the 2 bolts (1) securing the seat recliner to the seat adjuster. 12. Install the lumbar adjustment mechanism (1) to the seat adjuster with the 2 screws (2). 13. Install the lumbar cable to the lumbar adjustment mechanism. 14. Install the lumbar knob by pushing the knob straight onto the shaft, if equipped. 15. Install the recliner handle. 16. Install the front, rear, and side J-strips (1, 2) to the underside of the seat. 17. Install the seat in the vehicle. Page 8851 any individual pressure drop and the average pressure drop is more than 20 kPa (3 psi), perform the following procedure: * Perform the Fuel Injector Cleaning procedure. * Perform the Fuel Injector Balance Test. ‹› If the difference between any individual pressure drop and the average pressure drop is still more than 20 kPa (3 psi), replace the fuel injectors. Repair Instructions Perform the Diagnostic Repair Verification after completing the diagnostic procedure. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/Verification Tests and Procedures * Fuel Injector Cleaning * Fuel Injector Replacement Page 10732 8. Remove the 3-2 control solenoid retainer. 9. Remove the 3-2 control solenoid. Installation Procedure 1. Install the 3-2 control solenoid. 2. Install the 3-2 control solenoid retainer. 3. Install the 1-2 and 2-3 shift solenoids. 4. Install the 1-2 and 2-3 shift solenoid retainers. 5. Install the pressure control solenoid. Page 5413 Page 1923 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5573 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7224 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8308 Transmission Position Switch/Sensor: Adjustments Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the parking brake. ^ The engine must start in the P (Park) or N (Neutral) positions only. ^ Check the switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the N (Neutral) position. 2. With an assistant in the drivers seat, raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Loosen the park/neutral position switch mounting bolts. 4. With the vehicle in the N (Neutral) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. Notice: Refer to Fastener Notice. 6. Tighten the bolts securing the switch to the transmission. Tighten the bolts to 25 N.m (18 lb ft). 7. Lower the vehicle. 8. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. 9. Replace the park/neutral position switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Page 10883 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 9238 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 11010 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor, follow steps 6-10. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. 10. Disconnect the rotary position sensor (2) from the wiring harness. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps 1-5 to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to ensure the connector is fully installed. Page 5238 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 214 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4546 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9248 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 6979 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Page 5797 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 9892 Page 2207 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3155 Fuse Block - Rear, Label Usage Page 6108 Page 4400 Flushing Procedures using DEX-COOL(R) Important: The following procedure recommends refilling the system with DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. This coolant is orange in color and has a service interval of 5 years or 240,000 km (150,000 mi). However, when used on vehicles built prior to the introduction of DEX-COOL(R), maintenance intervals will remain the same as specified in the Owner's Manual. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling system flush and fill machine is not available, drain the coolant and dispose of properly following the draining procedures in the appropriate Service Manual. Refill the system using clear, drinkable water and run the vehicle until the thermostat opens. Repeat and run the vehicle three (3) times to totally remove the old coolant or until the drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with DEX‐COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. Then slowly add clear, drinkable water (preferably distilled) to the system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and reverify the coolant level. If necessary, add clean water to restore the coolant to the appropriate level. Once the system is refilled, reverify the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. The concentration levels should be between 50% and 65%. Flushing Procedures using Conventional Silicated (Green Colored) Coolant Important: 2004-2005 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX‐COOL(R). The Aveo and Wave are filled with conventional, silicated engine coolant that is blue in color. Silicated coolants are typically green in color and are required to be drained, flushed and refilled every 30,000 miles (48,000 km). The Aveo and Wave are to be serviced with conventional, silicated coolant. Use P/N 12378560 (1 gal) (in Canada, use P/N 88862159 (1 L). Refer to the Owner's Manual or Service Information (SI) for further information on OEM coolant. Important: Do not mix the OEM orange colored DEX-COOL(R) coolant with green colored coolant when adding coolant to the system or when servicing the vehicle's cooling system. Mixing the orange and green colored coolants will produce a brown coolant which may be a customer dissatisfier and will not extend the service interval to that of DEX-COOL(R). Conventional silicated coolants offered by GM Service and Parts Operations are green in color. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling systems flush and fill machine is not available, drain coolant and dispose of properly following the draining procedures in appropriate Service Manual. Refill the system using clear, drinkable water and run vehicle until thermostat opens. Repeat and run vehicle three (3) times to totally remove old coolant or until drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with a good quality ethylene glycol base engine coolant, P/N 12378560, 1 gal (in Canada, use P/N 88862159 1 L), conforming to GM specification 1825M, or recycled coolant conforming to GM specification 1825M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% good quality ethylene glycol base (green colored) engine coolant, P/N 12378560 1 gal., (in Canada, use P/N 88862159 1 L) conforming to GM specification 1825M. Then slowly add clear, drinkable water (preferably distilled) to system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and recheck coolant level. If necessary, add clean water to restore coolant to the appropriate level. Once the system is refilled, recheck the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. Concentration levels should be between 50% and 65%. Parts Information Warranty Information Page 1969 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Body Wiring Harness Extension Replacement Body Control Module: Service and Repair Body Wiring Harness Extension Replacement BODY WIRING HARNESS EXTENSION REPLACEMENT - BCM REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the body wiring harness extension on a Chevrolet Trail Blazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the body wiring extension (1) from the BCM. Page 2028 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 6791 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1908 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7675 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Capacity Specifications Refrigerant Oil: Capacity Specifications Refrigerant System Capacities HVAC - Automatic Low Pressure Sensor / Switch: Diagrams HVAC - Automatic HVAC Connector End Views A/C Low Pressure Switch Reverse Lockout Solenoid Page 10836 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 3756 Bolt Extractor Tool Kit Part Number EN-47702 The bolt extractor kit EN-47702 provides the following components to assist in removal of the broken bolt segment: 1. One 5/32" reverse twist drill - part number EN-47702-6 2. One double-ended drill pilot insert - part number EN-47702-1 (ensures a straight drilling procedure) 3. Drill pilot inserts for larger diameter heads or main cap bolts - part number EN-47702-2 (ensure a straight drilling procedure) 4. Bolt extraction # 3 EZ out - part number EN-47702-3 (after the drilling procedure) 5. Bottom tap (M11 X 2) - part number EN-47702-5 (for the head bolts to chase the threads after the completion of bolt removal) 6. Bottom tap (M10 X 1.5) - part number EN-47702-4 (for the main bolts to chase the threads after the completion of bolt removal) Disclaimer Page 2443 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 10328 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2235 Page 10230 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9687 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1413 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 986 ^ Turn OFF all accessories. ^ Turn ON the ignition, with the engine OFF. Remote Programming Feature 1. Connect the scan tool to the vehicle. 2. Power-up the scan tool and select the Service Programming feature. 3. Select the appropriate vehicle. 4. Press the Request Info button on the scan tool. 5. Disconnect the scan tool from the vehicle and connect the scan tool to the computer station. 6. Follow the menu select items for reprogramming and provide information as to what type of device you are programming and whether you are reprogramming or replacing the electronic control unit (ECU). 7. Select "vehicle"; from the selection menu. 8. Select the module you wish to Program. 9. Select "Normal"; for Programming Type. 10. Select the applicable software calibrations. 11. Transfer data file to the scan tool. 12. Reconnect the scan tool to the vehicle. 13. Turn ON the ignition, with the engine OFF. 14. Select the Service Programming feature on the scan tool. 15. Press the Program button on the scan tool. Programming Using Scan Tool Pass-Through Connection 1. Connect the scan tool to vehicle and power it up. 2. Connect the computer station to the scan tool. 3. Select "PC Using Scan Tool Connection"; from the programming menu on the computer station. 4. Follow the menu select items for reprogramming and provide information as to what type of device you are programming and whether you are reprogramming or replacing the electronic control unit (ECU). 5. Select "vehicle"; from the selection menu. 6. Select the module you wish to program. 7. Select "Normal"; for Programming Type. 8. Select the applicable software calibrations. 9. Transfer data file to the scan tool. Page 6914 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2492 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4024 Compression Check: Testing and Inspection Engine Compression Test Tools Required J 38722 Compression Tester A compression pressure test of the engine cylinders determines the condition of the rings, the valves, and the head gasket. Important: The battery must be at or near full charge. Do not block the throttle open. 1. Remove the air duct from the throttle control module. 2. Remove the ignition control modules. 3. Disable the fuel system. 4. Remove the spark plugs. 5. Measure the engine compression, using the following procedure: 1. Firmly install J 38722 to the spark plug hole. 2. Have an assistant crank the engine through at least four compression strokes in the testing cylinder. 3. Check and record the readings on J 38722 at each stroke. 4. Disconnect J 38722. 5. Repeat the compression test for each cylinder. 6. Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. 7. The following are examples of the possible measurements: ^ When the compression measurement is normal, the compression builds up quickly and evenly to the specified compression on each cylinder. ^ When the compression is low on the first stroke and tends to build up on the following strokes, but does not reach the normal compression, or if the compression improves considerably with the addition of three squirts of oil, the piston rings may be the cause. ^ When the compression is low on the first stroke and does not build up in the following strokes, or the addition of oil does not affect the compression, the valves may be the cause. ^ When the compression is low on two adjacent cylinders, or coolant is present in the crankcase, the head gasket may be the cause. 8. Install the air duct to the throttle body. 9. Install the spark plugs. 10. Enable the fuel system. 11. Install the ignition control modules. Page 556 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4662 Page 5065 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Service and Repair Actuator: Service and Repair Front Drive Axle Actuator Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the engine protection shield. Refer to Engine Protection Shield Replacement. 3. Disconnect the electrical connector from the actuator assembly. 4. Remove the actuator assembly bolts. 5. Remove the actuator assembly. Installation Procedure 1. Install the actuator assembly. Notice: Refer to Fastener Notice. 2. Install the actuator assembly bolts. Tighten the bolts to 6 N.m (53 lb in). 3. Connect the electrical connector to the actuator assembly. 4. Install the engine protection shield. Refer to Engine Protection Shield Replacement. 5. Lower the vehicle. Page 3173 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4338 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6897 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7371 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5215 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7016 Page 8162 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 11130 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 6450 Page 4845 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 11191 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9895 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 7220 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9732 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10806 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 1468 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5958 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 4364 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6506 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 10975 Torque Converter Clutch Solenoid: Connector Views Torque Converter Clutch Pulse Width Modulated (TCC PWM) Solenoid Valve, Wiring Harness Side Torque Converter Clutch Pulse Width Modulated (TCC PWM) Solenoid Valve, Wiring Harness Side Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Torque Converter Clutch (TCC) Solenoid Valve, Wiring Harness Side Page 6063 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5295 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3354 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 8357 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 9989 US English/Metric Conversion US English/Metric Conversion Page 1527 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2525 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 173 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8324 Page 2027 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 8926 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2542 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 886 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1312 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5487 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10571 4. If the ECM was previously removed from the ECM/TCM bracket (2), install the ECM (3). Refer to Engine Control Module Replacement for the 5.3L engine. 5. Insert the TCM (1) into the retaining slot of the ECM/TCM bracket (2). 6. Secure the TCM (2) to the ECM/TCM mounting bracket ensuring the TCM retaining tab (1) is fully engaged. Page 3575 hot particles embed themselves in the chrome layer and create a small pit. If the material is allowed to sit on the wheel while it is exposed to moisture or salt, it will corrode the wheel beneath the chrome leaving a pit or small blister in the chrome. Heavy brake dust build-up should be removed from wheels by using GM Chrome Cleaner and Polish, P/N 1050173 (in Canada use 10953013). For moderate cleaning, light brake dust build-up or water spots use GM Swirl Remover Polish, P/N 12377965 (in Canada, use Meguiars Plast-X(TM) Clear Plastic Cleaner and Polish #G12310C**). After cleaning, the wheel should be waxed using GM Cleaner Wax, P/N 12377966 (in Canada, use Meguiars Cleaner Wax #M0616C**), which will help protect the wheel from brake dust and reduce adhesion of any brake dust that gets on the wheel surface. For general maintenance cleaning, PEEK Metal Polish† may be used. It will clean and shine the chrome and leave behind a wax coating that may help protect the finish. Warranty of Stardust Corroded Chrome Wheels Wheels returned with pitting or spotting as a result of neglect and brake dust build-up may be replaced one time. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean and free of prolonged exposure to brake dust build-up. "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). Customer Assistance and Instructions GM has looked for ways customers may improve the appearance of wheels damaged by acidic cleaners. The following product and procedure has been found to dramatically improve the appearance of stained wheels. For wheels that have milky stains caused by acidic cleaners try the following: Notice THE 3M CHROME AND METAL POLISH REQUIRED FOR THIS PROCEDURE IS AN EXTREMELY AGGRESSIVE POLISH/CLEANER. THE WHEELS MUST BE CLEANED BEFORE APPLICATION TO AVOID SCRATCHING THE WHEEL SURFACE. THIS PRODUCT WILL REDUCE THE THICKNESS OF THE CHROME PLATING ON THE WHEEL AND IF USED INCORRECTLY OR EXCESSIVELY MAY REMOVE THE CHROME PLATING ALL TOGETHER, EXPOSING A LESS BRIGHT AND BRASSY COLORED SUB-LAYER. FOLLOW INSTRUCTIONS EXACTLY. 1. Wash the wheels with vigorously with soap and water. This step will clean and may reduce wheel staining. Flood all areas of the wheel with water to rinse. 2. Dry the wheels completely. Notice Begin with a small section of the wheel and with light pressure buff off polish and examine results. ONLY apply and rub with sufficient force and time to remove enough staining that you are satisfied with the results. Some wheels may be stained to the extent that you may only achieve a 50% improvement while others may be able to be restored to the original lustre. IN ALL CASES, only apply until the results are satisfactory. 3. Apply 3M Chrome and Metal Polish #39527* with a clean terry cloth towel. As you apply the polish, the staining will be diminished. 4. When dry, buff off the polish with a clean portion of the towel. 5. Repeat application of the 3M Chrome and Metal Polish until satisfied with the results. If continued applications fail to improve the appearance further discontinue use. This procedure will improve the appearance of the wheels and may, with repeated applications, restore the finish dramatically. For wheels that exhibit spotting from road chemicals the above procedure may marginally improve the condition but will not restore the finish or remove the pitting. In this type of staining the wheel finish has actually been removed in spots and no manner of cleaning will restore the finish. †*We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Page 4293 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10201 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8120 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 6690 Camshaft Position Sensor: Connector Views Engine Controls Connector End Views Camshaft Position (CMP) Sensor Page 8905 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10423 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1973 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7895 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9802 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9286 Page 4269 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 5391 Fuel Tank Pressure Sensor: Diagrams Engine Controls Connector End Views Fuel Tank Pressure (FTP) Sensor Page 3948 Variable Valve Timing Solenoid: Diagrams Engine Controls Connector End Views Camshaft Actuator Solenoid Assembly Page 1533 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9126 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 9144 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 11198 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 2509 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 2595 1 - Seat Belt Switch Connector - Passenger 2 - Inflatable Restraint Front Passenger Presence System (PPS) Sensor 3 - Inflatable Restraint Front Passenger Presence System (PPS) Module 4 Heated Seat Element Connector - Passenger Cushion (w/Heat) Rollover Sensor Page 5123 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 4590 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6615 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1780 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Locations Power Door Lock Switch: Locations Driver Door Module (DDM) Page 10316 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5735 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7644 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Engine - Noise/Damage Oil Filter Application Importance Oil Filter: Technical Service Bulletins Engine - Noise/Damage Oil Filter Application Importance INFORMATION Bulletin No.: 07-06-01-016B Date: July 27, 2009 Subject: Information on Internal Engine Noise or Damage After Oil Filter Replacement Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being updated to add model years. Please discard Corporate Bulletin Number 07-06-01-016A (Section 06 - Engine/Propulsion System). Important Engine damage that is the result of an incorrect or improperly installed engine oil filter is not a warrantable claim. The best way to avoid oil filter quality concerns is to purchase ACDelco(R) oil filters directly from GMSPO. Oil filter misapplication may cause abnormal engine noise or internal damage. Always utilize the most recent parts information to ensure the correct part number filter is installed when replacing oil filters. Do not rely on physical dimensions alone. Counterfeit copies of name brand parts have been discovered in some aftermarket parts systems. Always ensure the parts you install are from a trusted source. Improper oil filter installation may result in catastrophic engine damage. Refer to the appropriate Service Information (SI) installation instructions when replacing any oil filter and pay particular attention to procedures for proper cartridge filter element alignment. If the diagnostics in SI (Engine Mechanical) lead to the oil filter as the cause of the internal engine noise or damage, dealers should submit a field product report. Refer to Corporate Bulletin Number 02-00-89-002I (Information for Dealers on How to Submit a Field Product Report). Disclaimer Page 7651 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 1395 Page 3881 15. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 16. Install the PCM harness connectors (2) to the PCM body. 17. Tighten the PCM harness connector retaining bolts (4). Tighten the bolts to 8 N.m (71 lb in). 18. Install the throttle body. Refer to Throttle Body Assembly Replacement. 19. Connect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 20. Inspect for leaks using the following procedure: 1. Turn ON the ignition, with the engine OFF for 2 seconds. 2. Turn OFF the ignition for 10 seconds. 3. Turn ON the ignition, with the engine OFF. 4. Inspect for fuel leaks. Page 503 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1929 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2520 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2334 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Locations Underhood Lamp Switch: Locations Liftgate Page 5738 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6332 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 1865 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 7309 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 733 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7608 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 890 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10893 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 3422 Customer TPMS Information Page 5992 Page 517 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 9966 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 8442 Air Injection Vacuum Control Solenoid Valve: Diagrams Engine Controls Connector End Views Secondary Air Injection (AIR) Solenoid(K18) Page 8732 Fuel Injector: Pressure, Vacuum and Temperature Specifications Fuel Injector Pressure Drop.................................................................................................................. ..............................................................20 kPa (3 psi) Page 5164 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6417 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 5041 Page 6014 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8964 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 1998 4. Position the tool J 41364-A onto the park/neutral position switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. Notice: Refer to Fastener Notice. 5. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts securing the switch to 25 N.m (18 lb ft). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Connect the electrical connectors to the switch. 8. Install the transmission control lever to the manual shaft with the nut. Tighten the control lever nut to 25 N.m (18 lb ft). 9. Lower the vehicle. 10. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. If proper operation of the switch can not be obtained, replace the switch. Page 7684 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 3811 Engine Mount: Service and Repair Engine Mount and Bracket Replacement - Right Engine Mount and Bracket Replacement - Right Side Removal Procedure 1. Disconnect the battery negative cable. Refer to Battery Negative Cable Disconnection and Connection. 2. Remove the cooling fan. Refer to Cooling Fan and Shroud Replacement. 3. Remove the manifold absolute pressure (MAP) sensor electrical connector and retainer (1). 4. Remove the MAP sensor (2). 5. Remove the right shock module, if frame engine mount is being removed. Refer to Shock Module Replacement. 6. Remove the right and the left upper engine mount nuts (1). 7. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 8. Remove the right and the left lower engine mount nuts. 9. Remove the engine protection shield. Refer to Engine Protection Shield Replacement. Important: When placing jack onto the oil pan, pay close attention to not damaging the oil level sender. 10. Lower the vehicle and place a floor jack under the oil pan with a block of wood. 11. Raise the engine with the jack just enough to clear the engine mount studs. 12. Remove the right engine mount from the bracket. Note the location of the heat shield for installation. Page 6938 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9566 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10090 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 5318 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 8515 Fuel Pressure: Testing and Inspection Fuel System Diagnosis Fuel System Diagnosis System Description The fuel system is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. Test Page 10011 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 3393 Fuse Block - Underhood, Top View (4.2L) Fuse Block - Underhood, Bottom View Page 4867 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 2083 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 8661 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5946 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 1472 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 2015 Page 4835 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4476 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Module: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Page 4737 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, remove the BCM (1) from the rear electrical center. INSTALLATION PROCEDURE 1. Index the slots on the BCM (1) to the rear electrical center. 2. Using a downward motion, install the BCM to the rear electrical center. 3. Connect the 24-way gray electrical connector (1) to the BCM. 4. Connect the 32-way tan electrical connector (2) to the BCM. 5. Connect the 40-way body wiring extension (1) to the BCM. Drivetrain - Transfer Case Grinds In 4WD/AWD Transfer Case Actuator: All Technical Service Bulletins Drivetrain - Transfer Case Grinds In 4WD/AWD TECHNICAL Bulletin No.: 08-04-21-001B Date: August 25, 2008 Subject: NVG 126/226 Transfer Case Grating/Grinding Noise When 4WD is Engaged, Service 4WD Lamp On, DTC C0327 Set (Replace Clutch Pressure Plate Bearing Assembly and Clutch Lever) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (NP8) Transfer Case Built Prior to September 18, 2007 (NVG 126) or September 21, 2007 (NVG 226) Supercede: This bulletin is being revised to update the correction information to include a procedure to reindex the transfer case encoder motor (actuator). This procedure is being provided to help reduce unnecessary warranty expenses. Please discard Corporate Bulletin Number 08-04-21-001A (Section 04 - Transmission/Transaxle). Condition Some customers may comment on a grinding type noise in the transfer case when 4WD is engaged in either AUTO or 4WD mode. This noise may also be accompanied by the SERVICE 4WD lamp being illuminated and DTC C0327 set. This condition is more prevalent on vehicles where 4WD is continuously used. Cause This noise may be caused by a faulty clutch pressure plate bearing. Correction A more robust clutch pressure plate bearing, inner plate and clutch lever has been released for service. Replace the clutch pressure plate bearing, inner plate and clutch lever. Refer to the Transfer Case Disassemble and Transfer Case Assemble procedures in SI. Former and new parts should not be intermixed during transfer case overhaul and they are to be used in sets only. DO NOT replace the transfer case assembly unless extensive internal damage has occurred. Important: When the clutch pressure plate bearing fails, it causes the clutch lever to over-travel, allowing the transfer case encoder motor (actuator) to rotate to an invalid position. Engineering has developed a tool and procedure to reindex the transfer case encoder motor (actuator) so it can be reused. Use the specific procedure listed below. NVG 126 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (2) J-356165 Terminal Test Adapter (Test Probe) Specifications Shift Solenoid: Specifications Shift Solenoid Valve State and Gear Ratio Shift Solenoid Valve State and Gear Ratio Page 5911 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6750 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of ABS/TCS - StabiliTrak(R) Indicator Blinking/DTC C0196 Electronic Brake Control Module: Customer Interest ABS/TCS - StabiliTrak(R) Indicator Blinking/DTC C0196 TECHNICAL Bulletin No.: 08-05-25-005 Date: October 01, 2008 Subject: Intermittent StabiliTrak(R) Indicator Light Blinking, StabiliTrak(R) Active Message Displayed, DTC C0196 Set (Reprogram Electronic Brake Control Module (EBCM)) Models: 2006-2007 Buick Rainier 2006-2009 Chevrolet TrailBlazer Models 2006-2009 GMC Envoy Models 2006-2009 Saab 97X 2006-2009 Isuzu Ascender Models This bulletin provides information on two different conditions. Condition # 1 Some customers may comment on a Service StabiliTrak(R) indicator light along with a Service StabiliTrak(R) message displayed in the DIC. Upon investigation, the technician may find DTC C0196 set in history. Condition # 2 Some customers may comment on a blinking StabiliTrak(R) indicator light along with a StabiliTrak Active message displayed in the DIC during normal driving conditions. No DTCs will be found with this concern. Cause This condition may be caused by a software anomaly within the electronic brake control module (EBCM) that allowed the yaw offset to be falsely learned. Correction Important: From the controller list, select "VSES Vehicle Stability Enhancement System Control Module". If routine diagnosis using SI does not reveal any obvious cause, reprogram the EBCM using SPS with the latest software available on TIS2WEB. Refer to the Service Programming System (SPS) procedures in SI. As always, make sure your Tech 2(R) is updated with the latest software version. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Page 1564 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 4539 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 9206 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair Air Cleaner Outlet Resonator Replacement Removal Procedure 1. Loosen the air cleaner outlet duct and air cleaner outlet resonator clamps (2). 2. Disconnect the air cleaner outlet duct from the air cleaner outlet resonator (3). 3. Remove the 2 air cleaner outlet resonator to engine bolts (4). 4. Disconnect the crankcase ventilation hose (1) from the valve cover port (2). 5. Disconnect the electrical connector to the intake air temperature (IAT) sensor. 6. Remove the air cleaner outlet resonator assembly (5) from the engine. Installation Procedure 1. Connect the electrical connector to the IAT sensor. 2. Install the air cleaner outlet resonator assembly (5) to the engine making sure of the following: * The crankcase ventilation hose (1) is connected to the valve cover port (2). * The air cleaner outlet resonator (5) is properly fit to the throttle body assembly. Notice: Refer to Fastener Notice. 3. Install the 2 air cleaner outlet resonator to engine bolts (4). Page 8304 Page 8787 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 8091 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 3842 6. Fill the crankcase with the proper quantity of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 7. Remove the oil level indicator. 8. Wipe the indicator with a clean cloth. 9. Install the oil level indicator. 10. Remove the oil level indicator and check the oil level. 11. Add oil if necessary. 12. Check for any oil leaks. Page 10262 Spark Plug: Specifications Spark Plug Gap ................................................................................................................................... ................................................... 1.08 mm (0.0425 in) Spark Plug Torque ......................................... ............................................................................................................................................. 18 N.m (13 lb ft) Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: All Technical Service Bulletins Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 4238 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 5602 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. OnStar(R) - Re-establishing OnStar(R) Communications Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Re-establishing OnStar(R) Communications Bulletin No.: 00-08-46-004C Date: January 17, 2008 INFORMATION Subject: Re-establishing Communications with OnStar(R) Center After Battery Disconnect Models: 2000-2008 GM Passenger Cars and Trucks (Including Saturn and Saab) with Digital OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 00-08-46-004B (Section 08 - Body and Accessories). When servicing any of the above models and a battery cable is disconnected or power to the OnStar(R) Vehicle Communication Interface Module (VCIM) is interrupted for any reason the following procedure must be performed to verify proper Global Positioning System (GPS) function. Never swap OnStar(R) Vehicle Communication Interface Modules (VCIM) from other vehicles. Transfer of OnStar(R) modules from other vehicles should not be done. Each OnStar(R) module has a unique identification number. The VCIM has a specific Station Identification (STID). This identification number is used by the National Cellular Telephone Network and OnStar(R) systems and is stored in General Motors Vehicle History files by VIN. After completing ALL repairs to the vehicle you must perform the following procedure: Move the vehicle into an open area of the service lot. Sit in the vehicle with the engine running and the radio turned on for five minutes. Press the OnStar(R) button in the vehicle. When the OnStar(R) advisor answers ask the advisor to verify the current location of the vehicle. If the vehicle location is different than the location the OnStar(R) advisor gives contact GM Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis of a failed VCIM and, if appropriate, order a replacement part. Replacement parts are usually shipped out within 24 hours, and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part, you will avoid a non-return core charge. Disclaimer Page 11124 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 8623 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10266 Spark Plug: Service and Repair Spark Plug Replacement Removal Procedure 1. Turn OFF the ignition switch. 2. Remove the ignition coils. Notice: Allow the engine to cool before removing the spark plugs. Attempting to remove the spark plugs from a hot engine may cause the plug threads to seize, causing damage to cylinder head threads. Notice: Clean the spark plug recess area before removing the spark plug. Failure to do so could result in engine damage because of dirt or foreign material entering the cylinder head, or by the contamination of the cylinder head threads. The contaminated threads may prevent the proper seating of the new plug. Use a thread chaser to clean the threads of any contamination. 3. Remove the spark plugs from the engine. Installation Procedure Notice: Use only the spark plugs specified for use in the vehicle. Do not install spark plugs that are either hotter or colder than those specified for the vehicle. Installing spark plugs of another type can severely damage the engine. Notice: Check the gap of all new and reconditioned spark plugs before installation. The pre-set gaps may have changed during handling. Use a round feeler gage to ensure an accurate check. Installing the spark plugs with the wrong gap can cause poor engine performance and may even damage the engine. 1. Measure the spark plug gap on the spark plugs to be installed. Compare the measurement to the gap specifications. Notice: Be sure that the spark plug threads smoothly into the cylinder head and the spark plug is fully seated. Use a thread chaser, if necessary, to clean threads in the cylinder head. Cross-threading or failing to fully seat the spark plug can cause overheating of the plug, exhaust blow-by, or thread damage. Notice: Refer to Fastener Notice. Page 4158 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2692 13. Inspect the transmission fluid pressure manual valve position switch assembly for the following conditions: ^ Damage ^ Debris ^ Damaged or missing O-rings ^ Cracked connector ^ Loose electrical terminals ^ Poor terminal retention 14. Remove the manual detent spring retaining bolt. 15. Remove the manual detent spring. 16. Inspect the manual detent spring for cracks or damage. Important: Keep the control valve body level when lowering it from the vehicle. This will prevent the loss of checkballs located in the control valve body passages. 17. Remove the remaining control valve body bolts. Page 1722 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8944 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 7495 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5416 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1379 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 3526 Disclaimer Page 4934 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 6614 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6600 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 6120 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9378 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1116 For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) For vehicles repaired under warranty, use the table. Disclaimer Page 1303 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8982 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Service and Repair Maintenance Required Lamp/Indicator: Service and Repair SERVICE VEHICLE SOON or SERVICE ENGINE SOON INDICATOR Your vehicle is equipped with a "SERVICE VEHICLE SOON"or a "SERVICE ENGINE SOON" indicator. This indicator is not a maintenance indicator and does not mean a maintenance service is required. For additional "SERVICE VEHICLE SOON"or a "SERVICE ENGINE SOON" indicator information refer to Malfunction Indicator Lamp. For Maintenance Required Lamp/Indicator, refer to Oil Change Reminder Lamp. See: Oil Change Reminder Lamp/Service and Repair Page 7989 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2372 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9834 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4108 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8628 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 9101 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5901 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Drivetrain - Updated Transfer Case Speed Sensor Conn. Speed Sensor: All Technical Service Bulletins Drivetrain - Updated Transfer Case Speed Sensor Conn. Bulletin No.: 06-04-21-001 Date: May 17, 2006 INFORMATION Subject: Updated Transfer Case Connector Service Kit Now Available For Transfer Case Speed Sensor Wire Harness Connector that Comes Loose Or Connector Retainer Clip Breaks Models: 2007 and Prior GM Light Duty Trucks 2007 and Prior HUMMER H2, H3 2005-2007 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive Technicians may find that when the transfer case speed sensor wire harness connector is removed, the connector lock flexes/bends and does not return to the original position. The transfer case speed sensor wire harness connector then has no locking device. On older vehicles, the plastic connector retainer becomes brittle and the clip may break as soon as it is flexed. In the past, the only service fix was to install a wire harness connector service pack, P/N 88987183. This repair procedure involved splicing a new service connector with an integral connector lock. This connector service kit is of the same design and was still prone to failure over time. A new connector service repair kit is now available, P/N 15306187, that is an updated design. This new kit should be used whenever the speed sensor wire harness connector requires replacement. Parts Information Disclaimer Page 10118 For vehicles repaired under warranty, use the table. Disclaimer Page 7804 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2778 2. Connect the transfer case right rear speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 7418 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 8514 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 2419 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10670 Speed Sensor: Locations NVG 226-NP8 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 4231 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 3175 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 3835 - Support the GM Oil Life System, thereby minimizing the replacement of engine oil, before its life has been depleted. - Reduce the duplication of requirements for a large number of internal GM engine oil specifications. International Lubricants Standardization and Approval Committee (ILSAC) GF-5 Standard In addition to GM dexos 1(TM), a new International Lubricants Standardization and Approval Committee (ILSAC) standard called GF-5, was introduced in October 2010. - There will be a corresponding API category, called: SN Resource Conserving. The current GF-4 standard was put in place in 2004 and will become obsolete in October 2011. Similar to dexos 1(TM), the GF-5 standard will use a new fuel economy test, Sequence VID, which demands a statistically significant increase in fuel economy versus the Sequence VIB test that was used for GF-4. - It is expected that all dexos 1(TM) approved oils will be capable of meeting the GF-5 standard. However, not all GF-5 engine oils will be capable of meeting the dexos 1(TM) specification. - Like dexos(TM), the new ILSAC GF-5 standard will call for more sophisticated additives. The API will begin licensing marketers during October 2010, to produce and distribute GF-5 certified products, which are expected to include SAE 0W-20, 0W-30, 5W-20, 5W-30 and 10W-30 oils. Corporate Average Fuel Economy (CAFE) Requirements Effect on Fuel Economy Since CAFE standards were first introduced in 1974, the fuel economy of cars has more than doubled, while the fuel economy of light trucks has increased by more than 50 percent. Proposed CAFE standards call for a continuation of increased fuel economy in new cars and trucks. To meet these future requirements, all aspects of vehicle operation are being looked at more critically than ever before. New technology being introduced in GM vehicles designed to increase vehicle efficiency and fuel economy include direct injection, cam phasing, turbocharging and active fuel management (AFM). The demands of these new technologies on engine oil also are taken into consideration when determining new oil specifications. AFM for example can help to achieve improved fuel economy. However alternately deactivating and activating the cylinders by not allowing the intake and exhaust valves to open contributes to additional stress on the engine oil. Another industry trend for meeting tough fuel economy mandates has been a shift toward lower viscosity oils. dexos 1(TM) will eventually be offered in several viscosity grades in accordance with engine needs: SAE 0W-20, 5W-20, 0W-30 and 5W-30. Using the right viscosity grade oil is critical for proper engine performance. Always refer to the Maintenance section of a vehicle Owner Manual for the proper viscosity grade for the engine being serviced. GM Oil Life System in Conjunction With dexos (TM) Supports Extended Oil Change Intervals To help conserve oil while maintaining engine protection, many GM vehicles are equipped with the GM Oil Life System. This system can provide oil change intervals that exceed the traditional 3,000 mile (4,830 km) recommendation. The dexos (TM) specification, with its requirements for improved oil robustness, compliments the GM Oil Life System by supporting extended oil change intervals over the lifetime of a vehicle. If all GM customers with GM Oil Life System equipped vehicles would use the system as intended, GM estimates that more than 100 million gallons of oil could be saved annually. GM dexos 2(TM) Information Center Website Refer to the following General Motors website for dexos 2(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 2(TM) Engine Oil Trademark and Icons Page 5008 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 9900 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 3788 Step 5 - Step 13 TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Module: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Page 3184 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6156 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7544 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 9832 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10346 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Locations Overhead Console Page 5585 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5831 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 5699 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1793 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3386 Fuse Block - Rear C2 Page 4858 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9961 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8676 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4090 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10326 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Vehicle - Recreational (Dinghy) Towing Information Towing Information: Technical Service Bulletins Vehicle - Recreational (Dinghy) Towing Information Bulletin No.: 00-00-89-008F Date: July 28, 2006 INFORMATION Subject: Recreational (Dinghy) Towing Page 7787 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 824 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8927 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10209 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9736 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 10724 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 8287 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 10956 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 392 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9164 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 7892 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8328 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2373 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2970 4. Install the oil pan and a new gasket. Notice: Refer to Fastener Notice. 5. Install the oil pan bolts. Tighten the oil pan to transmission case bolts alternately and evenly to 11 N.m (97 lb in). 6. If previously removed, install the range selector cable bracket and bolts. Tighten the bolts to 25 N.m (18 lb ft). 7. Apply a small amount of sealant GM P/N 12346004 to the threads of the oil pan drain plug, if equipped. 8. Install the oil pan drain plug, if equipped. Tighten the oil pan drain plug to 18 N.m (13 lb ft). 9. Install the catalytic converter. Refer to Catalytic Converter Replacement (4.2L Engine) Catalytic Converter Replacement (5.3L and 6.0L Engines). 10. Lower the vehicle. 11. Fill the transmission to the proper level with DEXRON(R) III transmission fluid. Refer to Transmission Fluid Checking and Fluid Capacity Specifications. 12. Check the COLD fluid level reading for initial fill only. 13. Inspect the oil pan gasket for leaks. Page 3433 Step 1 - Step 13 Page 5469 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 8601 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 2074 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 9520 Page 6267 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2575 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8373 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 6294 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2086 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 1297 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10377 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8981 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4395 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 6641 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7299 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4467 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 1798 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 3251 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6931 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 8005 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 2540 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 8622 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8013 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 762 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 5734 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10339 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 1431 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 4176 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8894 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 1962 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5772 Page 6792 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8299 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8049 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10609 Transmission Position Switch/Sensor: Service and Repair Park/Neutral Position Switch Replacement Tools Required J 41364-A Park/Neutral Switch Aligner Removal Procedure 1. Apply the parking brake. 2. Shift the transmission into neutral. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the nut securing the transmission control lever to the manual shaft. 5. Remove the transmission control lever from the manual shaft. 6. Disconnect the electrical connectors from the switch. 7. Remove the bolts securing the park/neutral position switch to the transmission. 8. Remove the park/neutral position switch from the manual shaft. If the park/neutral position switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. Important: If a new switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in it proper position for installation and the use of neutral position adjustment tool will not be necessary. 3. Install the switch to the transmission with 2 bolts finger tight. Page 8476 Canister Purge Solenoid: Diagrams Engine Controls Connector End Views Evaporative Emission (EVAP) Canister Purge Solenoid Page 9522 Page 11117 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8220 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5298 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5047 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 3898 13. Remove the valve keys. 14. Remove the J-44228-A. 15. Remove the valve spring retainer and the valve spring. 16. Use the J 38820 and remove the seals. 17. Clean and inspect the cylinder head. Refer to Cylinder Head Cleaning and Inspection. Installation Procedure Important: Lubricate the valve stems with clean engine oil before installing. Page 9970 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7353 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9444 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 4965 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 5683 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 4280 Page 6882 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 8974 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7460 Page 3073 Fluid - A/T: Service and Repair Automatic Transmission Fluid and Filter Replacement Removal Procedure Caution: When the transmission is at operating temperatures, take necessary precautions when removing the drain plug, to avoid being burned by draining fluid. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the catalytic converter. Refer to Catalytic Converter Replacement (4.2L Engine) Catalytic Converter Replacement (5.3L and 6.0L Engines). 3. Place a drain pan under the transmission oil pan. 4. Remove the oil pan drain plug, if equipped. 5. If necessary, remove the bolts and position aside the range selector cable bracket for clearance while lowering the pan. It is not necessary to remove the cable from the lever or bracket. 6. Remove the oil pan bolts from the front and sides of the pan only. 7. Loosen the rear oil pan bolts approximately 4 turns. 8. Lightly tap the oil pan with a rubber mallet in order to loosen the pan to allow the fluid to drain. 9. Remove the remaining oil pan bolts. 10. Remove the oil pan and the gasket. Page 6742 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7656 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8385 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 1711 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4281 Page 4583 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11169 Page 7710 Page 7878 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 781 Notice: Refer to Fastener Notice. 1. Install the PCM mounting studs (5) to the intake manifold, if removed. Tighten the studs to 6 N.m (53 lb in). 2. Install the PCM (1) onto the studs (5). 3. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). 4. Install the PCM retaining nuts (6). Tighten the nuts to 8 N.m (71 lb in). 5. Install the PCM harness connectors (2) to the PCM body. 6. Tighten the PCM harness connector retaining bolts (4). Tighten the bolts to 8 N.m (71 lb in). 7. If a new PCM is being installed, the PCM must be programmed. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 2721 Important: Ensure that the bezel cover is properly seated before installing the trim screws. 3. Install the bezel cover. Refer to Instrument Panel Cluster Trim Plate Bezel Replacement (Chevrolet) Instrument Panel Cluster Trim Plate Bezel Replacement (GMC, Buick). Page 6356 US English/Metric Conversion US English/Metric Conversion Page 9898 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 526 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5369 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1294 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 872 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6932 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7241 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9375 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8636 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 132 Method 1 Method 2 Page 9975 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8116 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10242 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 5793 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8118 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7763 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5492 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 337 Electronic Brake Control Module (EBCM) Page 8050 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5285 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 7655 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 727 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4483 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7148 Page 7118 Data Communication Diagram 2 Page 6025 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10061 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4112 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 3307 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8145 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5722 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 3856 Oil Pan: Service and Repair Oil Pan Replacement Removal Procedure 1. Disconnect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 2. Remove the A/C compressor bottom bolts (4) and loosen the top bolts (2, 3). 3. Remove the oil level indicator and tube. Refer to Oil Level Indicator and Tube Replacement. 4. Remove the stabilizer shaft. Refer to Stabilizer Shaft Replacement. 5. Remove the front differential and secure to the frame. Refer to Differential Carrier Assembly Replacement (4.2L In-Line Six Cylinder) Differential Carrier Assembly Replacement (V8). 6. Remove the front drive axle intermediate shaft bearing assembly. Refer to Front Drive Axle Intermediate Shaft Bearing Assembly Replacement (A4WD) Front Drive Axle Intermediate Shaft Bearing Assembly Replacement (S4WD). 7. Drain the engine oil. Refer to Engine Oil and Oil Filter Replacement. 8. Unclip the transmission cooler lines from the engine block. 9. Remove 4 transmission bell housing bolts that are attached to the oil pan. Page 11175 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 6537 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 864 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5666 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 2132 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 4255 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 4649 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 3994 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 8697 Fuel: Service Precautions Gasoline/Gasoline Vapors Caution Caution: Gasoline or gasoline vapors are highly flammable. A fire could occur if an ignition source is present. Never drain or store gasoline or diesel fuel in an open container, due to the possibility of fire or explosion. Have a dry chemical (Class B) fire extinguisher nearby. Page 358 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 7057 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Diagrams Tow Sensor: Diagrams Immobilizer Connector End Views Inclination Sensor (BAE) Page 6009 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 355 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 4191 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8470 8. Remove the exhaust hanger from the catalytic converter pipe. Installation Procedure 1. Install the exhaust hanger to the catalytic converter pipe. 2. Install the catalytic converter pipe to the vehicle. 3. Install the transmission mount. Refer to Transmission Mount Replacement (4.2L) Transmission Mount Replacement (5.3L). 4. Install the converter pipe to the muffler. Notice: Refer to Fastener Notice. Important: The exhaust flange nuts must be tightened evenly to align the joint and prevent exhaust leaks. 5. Hand thread both nuts evenly until they contact the exhaust flange. Tighten the nuts to 45 N.m (33 lb ft). Page 5719 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 10046 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 4070 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 2906 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 2268 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10151 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 3112 Engine Oil: Capacity Specifications Engine Oil with Filter ............................................................................................................................ ............................................... 7.0 quarts (6.6 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Page 903 Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 4815 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6881 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5415 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Restraints - Air Bag Lamp ON/DTC B0092 Set Air Bag Control Module: All Technical Service Bulletins Restraints - Air Bag Lamp ON/DTC B0092 Set Bulletin No.: 07-09-41-005 Date: July 10, 2007 TECHNICAL Subject: Airbag Light On, Passenger Airbag Status Indicator Reads Off, DTC B0092 Set (Diagnose and Replace SDM, if Necessary) Models: 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 HUMMER H3 without Roof Side Inflatable Restraint (RPO ASF) Condition Some customers may comment that the airbag light is illuminated and the passenger airbag status indicator reads off even though a occupant is in the seat. Upon investigation, the technician may find communication error DTC B0092 set in the sensing and diagnostic module (SDM). Correction Using the Tech 2(R), request module ID information to determine the part number of the SDM. If the SDM part number is 25833651 (Envoy/TrailBlazer) or 25833286 (H3), replace the SDM before proceeding with DTC B0092 diagnosis. If the part number of the SDM is other than those listed above, follow diagnostic instructions published in SI. Parts Information Warranty Information Page 2429 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5551 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10962 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2004 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 6747 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7859 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 8285 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 701 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 6264 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 4224 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4589 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 896 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Campaign - Possible Fuel Sender Port Fracture Fuel Gauge Sender: All Technical Service Bulletins Campaign - Possible Fuel Sender Port Fracture Subject: Service Update for Inventory and Customer Vehicles-Fuel Sending Unit Port Fracture-Extended Start/Sluggish Acceleration/Check Engine Light-Expires with Base Warranty # 07005 - (02/16/2007) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 Saab 9-7X THIS SERVICE UPDATE INCLUDES VEHICLES IN DEALER INVENTORY AND CUSTOMER VEHICLES THAT RETURN FOR ANY TYPE OF SERVICE, AND WILL EXPIRE AT THE END OF THE INVOLVED VEHICLE'S NEW VEHICLE LIMITED WARRANTY PERIOD. Purpose This bulletin provides a service procedure to determine if a fuel tank sending unit requires replacement on certain 2007 Buick Rainier, Chevrolet Trailblazer, GMC Envoy, and Saab 9-7X vehicles. The fuel tank sending unit on these vehicles may have a fractured internal port. A fractured port will not deliver fuel to the engine at the designed pressure. If this were to occur, it could result in an extended start, sluggish acceleration, and/or the illumination of the check engine light. This service procedure should be completed as soon as possible on involved vehicles currently in dealer inventory and customer vehicles that return to the dealer/retailer for any type of service during the New Vehicle Limited Warranty coverage period. Vehicles Involved A list of involved vehicles currently in dealer inventory is attached to the Administrative Message (GM US), Dealer Communication (Canada), or IRIS (Saab U.S.), used to release this bulletin. Customer vehicles that return for service, for any reason, and are still covered under the vehicle's base warranty, and are within the VIN breakpoints shown, should be checked for vehicle eligibility in the appropriate system listed below. Important: Dealers are to confirm vehicle eligibility prior to beginning repairs by using the system(s) below. Not all vehicles within the above breakpoints may be involved. -- GM dealers and Canadian Saab retailers should use GMVIS. -- US Saab dealers should use IRIS On-Line Recall/Campaign Inquiry. Parts Information - GM and Saab Canada Only Parts required to complete this service update are to be obtained from General Motors Service Parts Operations (GMSPO). Please refer to your "involved vehicles listing" before ordering parts. Normal orders should be placed on a DRO = Daily Replenishment Order. In an emergency situation, parts should be ordered on a CSO = Customer Special Order. Parts Information - Saab US Only Page 726 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 5184 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8443 Air Injection Vacuum Control Solenoid Valve: Service and Repair Secondary Air Injection Solenoid Valve Replacement Removal Procedure 1. Remove the air cleaner outlet resonator. 2. Disconnect the electrical connector from the secondary air injection (AIR) reaction solenoid valve. 3. Disconnect the AIR pump air outlet pipe from the AIR solenoid valve. 4. Remove the nut (1) securing the transmission fluid level indicator tube (2) to the AIR solenoid valve. 5. Remove the transmission fluid level indicator tube (2) from the AIR solenoid valve stud (3). 6. Remove the 2 AIR solenoid valve studs (3). 7. Remove the AIR solenoid valve (4) and the gasket (5) from the engine. Installation Procedure Page 8369 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9510 US English/Metric Conversion US English/Metric Conversion Page 4096 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5908 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7980 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8934 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8595 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5654 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 7076 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10388 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 11056 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 1183 4. Compare the fuel tank serial number printed on the fuel tank label (1) to the fuel tank serial number (sequencing) range shown. ^ If the serial number of the tank is not within the ranges above, lower the vehicle. No further action is required. ^ If the serial number of the tank is within the ranges above, remove and replace the fuel sender assembly. Proceed to Step 5 in this bulletin. 5. Remove the fuel tank from the vehicle. Remove the fuel sender assembly from the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. Notice: Ensure that the fuel level sensor pigtail wires are routed through the anti-chafing conduit of the fuel sender assembly to avoid damaging the fuel level sensor pigtail wires. Route the fuel level sensor pigtail wires through the anti-chafing conduit the same way the wires were routed in the old fuel sender assembly. 6. Remove the fuel level sensor from the old fuel sender assembly and install it to the new fuel sender assembly. Refer to Fuel Level Sensor Replacement in SI. 7. Install the fuel sender assembly into the fuel tank and install the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. 8. Lower the vehicle. Claim Information - GM and Saab Canada Only For vehicles repaired under this service update, use the table. Claim Information - US Saab Only Page 967 4. If the ECM was previously removed from the ECM/TCM bracket (2), install the ECM (3). Refer to Engine Control Module Replacement for the 5.3L engine. 5. Insert the TCM (1) into the retaining slot of the ECM/TCM bracket (2). 6. Secure the TCM (2) to the ECM/TCM mounting bracket ensuring the TCM retaining tab (1) is fully engaged. Page 6154 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7293 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4912 Air Injection Pump Relay: Diagrams Engine Controls Connector End Views Secondary Air Injection (AIR) Pump Relay (K18) Page 1810 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6333 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4973 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10364 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6000 Page 371 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 6759 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10598 6. Remove the TCC PWM solenoid retainer (2) with a small screwdriver. Rotate the solenoid (1) in the bore, if necessary, until the flat part of the retainer (2) is visible. 7. Remove the TCC PWM solenoid (1) in order to access the TCC solenoid retaining bolts. 8. Remove the TCC solenoid retaining bolts. 9. Remove the TCC solenoid (with O-ring seal) and wiring harness from the control valve body. 10. Reposition the harness to the side of the transmission case. 11. Remove the control valve body bolts which retain the transmission fluid pressure switch to the control valve body. 12. Remove the transmission fluid pressure switch. Page 8680 Page 3398 Fuse Block - Underhood C2 Page 506 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 3011 Hose/Line HVAC: Service and Repair Suction Screen Installation Suction Screen Installation Tools Required J44551 Suction Screen Kit Important: Suction screens are intended to be installed in the suction hose after a major compressor failure. 1. Using a caliper that reads to 3 decimal places, measure the ID of the suction hose or manifold suction fitting. Refer to the suction screen coverage chart above to determine the correct size screen for the application. 2. Select and install the correct mandrel (1) on the threaded portion of the installation tool bolt. * The brass Universal Mandrel is for use on hose fittings with a smooth bore where the screen installs flush with the end of the fitting. * The 0.471" (11.96 mm) Mandrel is only for the 0.471" (11.96 mm) screen in hose fittings with an internal hourglass shape where the screen installs at the recessed, reduced diameter point. Page 9924 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6790 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 8953 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 11226 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7871 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 1292 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10068 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 11016 Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Transfer Case Motor/Encoder Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). Page 8590 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 3060 Coolant: Fluid Type Specifications ENGINE COOLANT The cooling system in your vehicle is filled with DEX-COOL engine coolant. This coolant is designed to remain in your vehicle for 5 years or 150,000 miles (240 000 km), whichever occurs first, if you add only DEX-COOL extended life coolant. A 50/50 mixture of clean, drinkable water and DEX-COOL coolant will: - Give freezing protection down to -34°F (-37°C). - Give boiling protection up to 265°F (129°C). - Protect against rust and corrosion. - Help keep the proper engine temperature. - Let the warning lights and gages work as they should. NOTICE: Using coolant other than DEX-COOL may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50 000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX-COOL (silicate-free) coolant in your vehicle. WHAT TO USE Use a mixture of one-half clean, drinkable water and one-half DEX-COOL coolant which won't damage aluminum parts. If you use this coolant mixture, you don't need to add anything else. CAUTION: Adding only plain water to your cooling system can be dangerous. Plain water, or some other liquid such as alcohol, can boil before the proper coolant mixture will. Your vehicle's coolant warning system is set for the proper coolant mixture. With plain water or the wrong mixture, your engine could get too hot but you would not get the overheat warning. Your engine could catch fire and you or others could be burned. Use a 50/50 mixture of clean, drinkable water and DEX-COOL coolant. NOTICE: If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. If you have to add coolant more than four times a year, check your cooling system. NOTICE: If you use the proper coolant, you do not have to add extra inhibitors or additives which claim to improve the system. These can be harmful. Page 4528 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Instruments - Erratic Speedometer Operation Engine Control Module: Customer Interest Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 8856 13. Remove J37287 or J42964-1, and J42964-2 or J42873-1, and J42873-2 and reconnect the vehicle fuel feed and return lines. 14. Start and idle the vehicle for an additional 2 minutes to ensure residual injector cleaner is flushed from the fuel rail and fuel lines. 15. Repeat steps 1-5 of the Injector Balance Test, and record the fuel pressure drop from each injector. 16. Subtract the lowest fuel pressure drop from the highest fuel pressure drop. If the value is 15 kPa (2 psi) or less, no additional action is required. If the value is greater than 15 kPa (2 psi), replace the injector with the lowest fuel pressure drop. 17. Add one ounce of Port Fuel Injector Cleaner, GM P/N 12345104 (Canadian P/N 10953467), to the vehicle fuel tank for each gallon of gasoline estimated to be in the fuel tank. Instruct the customer to add the reminder of the bottle of Port Fuel Injector Cleaner to the vehicle fuel tank at the next fill-up. 18. Advise the customer to change brands of fuel and to add GM Port Fuel Injector Cleaner every 5000 km (3,000 mi). GM Port Fuel Injector Cleaner contains the same additives that the fuel companies are removing from the fuel to reduce costs. Regular use of GM Port Fuel Injector Cleaner should keep the customer from having to repeat the injector cleaning procedure. 19. Road test the vehicle to verify that the customer concern has been corrected. Page 1540 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 2135 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 7041 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7472 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1443 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5219 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 485 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3432 Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Inoperative Malfunction Indicator Lamp (MIL) Inoperative Circuit Description Ignition voltage is supplied to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. There should be a steady MIL with the ignition ON and the engine OFF. MIL Operation The MIL is located on the instrument panel cluster (IPC). MIL Function * The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. * The MIL illuminates during a bulb test and a system test. * A DTC will be stored if a MIL is requested by the PCM. MIL Illumination * The MIL will illuminate with ignition switch ON and the engine not running. * The MIL will turn OFF when the engine is started. * The MIL will remain ON if the self-diagnostic system has detected a malfunction. * The MIL may turn OFF if the malfunction is not present. * If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. * If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. Test Description Page 6768 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 8107 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8838 Page 2182 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7560 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Locations Power Seat Motor Position Sensor: Locations Under Driver Seat Page 4891 Powertrain Control Module (PCM) C2 (Pin 1 To 14) Page 4892 Powertrain Control Module (PCM) C2 (Pin 15 To 54) Page 1492 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 880 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9844 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 11230 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9589 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7267 Manifold Pressure/Vacuum Sensor: Service and Repair Manifold Absolute Pressure Sensor Replacement Removal Procedure 1. Turn OFF the ignition. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector. 3. Press the retainer locking tabs inward, then pull the retainer (1) up to remove it. 4. Remove the MAP sensor (2). 5. Inspect the MAP sensor seal for damage, and replace as necessary. Installation Procedure 1. Install the MAP sensor (2). 2. Install the MAP sensor retainer (1). Page 11046 Shift Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Campaign - Possible Fuel Sender Port Fracture Fuel Gauge Sender: Recalls Campaign - Possible Fuel Sender Port Fracture Subject: Service Update for Inventory and Customer Vehicles-Fuel Sending Unit Port Fracture-Extended Start/Sluggish Acceleration/Check Engine Light-Expires with Base Warranty # 07005 - (02/16/2007) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 Saab 9-7X THIS SERVICE UPDATE INCLUDES VEHICLES IN DEALER INVENTORY AND CUSTOMER VEHICLES THAT RETURN FOR ANY TYPE OF SERVICE, AND WILL EXPIRE AT THE END OF THE INVOLVED VEHICLE'S NEW VEHICLE LIMITED WARRANTY PERIOD. Purpose This bulletin provides a service procedure to determine if a fuel tank sending unit requires replacement on certain 2007 Buick Rainier, Chevrolet Trailblazer, GMC Envoy, and Saab 9-7X vehicles. The fuel tank sending unit on these vehicles may have a fractured internal port. A fractured port will not deliver fuel to the engine at the designed pressure. If this were to occur, it could result in an extended start, sluggish acceleration, and/or the illumination of the check engine light. This service procedure should be completed as soon as possible on involved vehicles currently in dealer inventory and customer vehicles that return to the dealer/retailer for any type of service during the New Vehicle Limited Warranty coverage period. Vehicles Involved A list of involved vehicles currently in dealer inventory is attached to the Administrative Message (GM US), Dealer Communication (Canada), or IRIS (Saab U.S.), used to release this bulletin. Customer vehicles that return for service, for any reason, and are still covered under the vehicle's base warranty, and are within the VIN breakpoints shown, should be checked for vehicle eligibility in the appropriate system listed below. Important: Dealers are to confirm vehicle eligibility prior to beginning repairs by using the system(s) below. Not all vehicles within the above breakpoints may be involved. -- GM dealers and Canadian Saab retailers should use GMVIS. -- US Saab dealers should use IRIS On-Line Recall/Campaign Inquiry. Parts Information - GM and Saab Canada Only Parts required to complete this service update are to be obtained from General Motors Service Parts Operations (GMSPO). Please refer to your "involved vehicles listing" before ordering parts. Normal orders should be placed on a DRO = Daily Replenishment Order. In an emergency situation, parts should be ordered on a CSO = Customer Special Order. Parts Information - Saab US Only Page 11131 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7075 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 6748 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5862 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6966 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 2580 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8668 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8652 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5728 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2244 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 7467 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 8795 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 934 For vehicles repaired under warranty, use the table. Disclaimer Page 9795 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 11139 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 1084 Sunroof Switch Page 1686 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6713 Page 8797 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5478 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8660 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Restraints - Air Bag Lamp ON/Multiple DTC Set Air Bag Control Module: Customer Interest Restraints - Air Bag Lamp ON/Multiple DTC Set TECHNICAL Bulletin No.: 08-09-41-002F Date: June 10, 2010 Subject: Diagnostic Information for Supplemental Inflatable Restraint (SIR) System, Intermittent AIR BAG Indicator/Lamp Illuminated with DTC(s) B0012, B0013, B0015, B0016, B0019, B0020, B0022, B0023, B0026, B0033, B0040, B0042 or B0044 Set (Inspect and Replace Connector Position Assurance (CPA) Retainer) Models: 2005-2007 Buick Rainier 2006-2009 Buick Allure (Canada only), LaCrosse, Lucerne 2008-2010 Buick Enclave 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade Models 2008-2009 Cadillac SRX, XLR 2008-2010 Cadillac CTS, STS 2005-2006 Chevrolet SSR 2005-2009 Chevrolet TrailBlazer, TrailBlazer EXT 2005-2010 Chevrolet Cobalt 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Corvette, HHR, Impala, Malibu Models (includes Malibu Classic) 2007-2009 Chevrolet Equinox 2007-2010 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2005-2009 GMC Envoy Models 2007-2010 GMC Acadia, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 GMC Savana 2005-2006 Pontiac Pursuit 2005-2009 Pontiac G6 2006-2009 Pontiac Solstice 2007-2009 Pontiac G5, Torrent 2008-2009 Pontiac G8 2005-2009 Saab 9-7X 2007-2009 Saturn AURA, OUTLOOK, SKY 2008-2009 Saturn VUE 2008-2009 HUMMER H2 2007-2008 Daewoo G2X 2007-2009 Opel GT Supercede: This bulletin is being revised to update the Warranty Information and add Saab Warranty Information. Please discard Corporate Bulletin Number 08-09-41-002E (Section 09 Restraints). Condition - Some customers may comment on an intermittent or current AIR BAG indicator or lamp being illuminated on the instrument panel cluster (IPC). Important This bulletin only applies to the following DTCs: - Technicians may observe DTC(s) B0012 04, 0D, 0E; B0013 04, 0D, 0E; B0015 04, 0D, 0E; B0016 04, 0D, 0E; B0019 04, 0D, 0E; B0020 04, 0D, 0E; B0022, B0023 04, 0D, 0E; B0033 04, 0D, 0E; B0040 04, 0D, 0E; B0042 or B0044 set as Current or in History in the sensing and diagnostic module (SDM). Cause This condition may be caused by a loose, missing, or damaged connector position assurance (CPA) retainer at a supplemental inflatable restraint (SIR) module electrical connector, or a deployment loop wiring harness electrical connector. Correction Page 7046 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8903 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 4072 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 1242 steering column. 10. Depress the horn contacts in the steering wheel. Does the horn work? ^ Yes - Check if the operation of the horn is sensitive to pressure applied to the steering wheel as if a driver were doing a panic stop. In some cases, pressure applied to the steering wheel in different directions will expose a bad ground path in the steering column. Proceed to step 11. ^ No - proceed with step 11. 11. Inspect the steering column through the insulator panel location. Note: The shaft from the steering wheel comes through a metal bracket. That bracket is surrounded by plastic, which is inside of another metal bracket. Look for a small metal clip (refer to the "horn clip" graphic) that connects the inner bracket (inside the plastic) and the outer bracket. This clip provides an auxiliary ground path which is needed in some cases, if the primary path has a bad connection. 12. To verify this, connect a test light between the red wire on the horn contacts in the steering wheel and the steering column sections (1) and (2) in the illustration. Does the horn work when grounded to (1) and not (2)? ^ Yes - add or replace the horn clip. ^ No - refer to the Horn Inoperative section in SI to diagnose which component in the circuit is causing the horn inoperative condition. Parts Information Warranty Information Disclaimer Page 576 Page 5891 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 8677 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 5233 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 4800 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 6017 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4049 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 1585 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 4623 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4822 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4637 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 242 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5359 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8585 Page 10910 View of the connector when released from the component. View of another type of Micro 64 connector. Page 10184 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 4419 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 893 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 11207 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7599 Utility/Van Zoning UTILITY/VAN ZONING Page 2152 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4376 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9065 Page 11222 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5434 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8340 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6804 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8598 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 545 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2594 1 - Frame - Front 2 - Electronic Frontal Sensor (EFS) - Left 3 - Electronic Frontal Sensor (EFS) Right Beneath Passenger Seat Cushion Page 10860 Shift Solenoid: Connector Views 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side Page 2358 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 1654 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8682 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 7483 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2329 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6002 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 2204 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4263 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 185 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3421 ^ When adding proper tire air pressure, it is important to remember fluctuations in outside air temperatures and tire temperatures effect tire air pressures. ^ After you have added the proper tire pressure, if the vehicle has a DIC (after the system has updated), check to see if DIC displays are the same readings as the tire pressure gauge used (adjust as necessary). ^ Only perform a TPM sensor re-learn after a tire rotation or system part replacements and use the Tech 2(R) to initiate the relearn whenever possible to avoid invalid sensor I.D. learns. Important: Always take outside temperature and tire temperature into consideration to properly set tire pressures. Foe example, on colder days (20°F/-7°C), if setting tire pressure when the vehicle has been indoors (60°F/16°C) or the tires are warm from being driven, it will be necessary to compensate for the low outside temperature by adding 21-27 kPa (3-4 psi) more then the placecard pressure. At some later time, when the vehicle has been parked outside for a while, the tires will cool off and the pressures will drop back into the placecard range. Important: Recently, nitrogen gas (for use in inflating tires) has become available to the general customer through some retailers. The use of nitrogen gas to inflate tires is a technology used in automobile racing. Tires inflated with nitrogen gas may exhibit less of a pressure change in response to outside temperature changes. Nitrogen gas inflation is compatible with GM TPM sensors. For additional information, refer to Corporate Service Bulletin 05-03-10-020C. Important: All Models (Except the Pontiac Vibe): Do not perform a TPM relearn at PDI, the system has already been set at the Assembly Plant. Do not perform a TPM relearn after adding air to the tires. The low tire light is similar to the low fuel indicator and adding something (fuel, air) to the vehicle makes that light turn back off again. Note that because of system behavior, some vehicles must be driven a short distance before the sensors recognize the increase in pressure and turns the light off again. Pontiac Vibe Only: Do not use the TPMS reset button to turn off the light. The system will update and light will turn off when all tire pressures have been adjusted followed by short distance drive. Important: All models (except the Pontiac Vibe): Each tire monitor sensor is learned to a specific vehicle corner. When performing a TPM relearn (only after a tire rotation or replacement of a TPM sensor or Module), always use the Tech2(R) to initiate the J 46079 relearned process. Tech 2(R) - initiated relearns lock out other vehicle TPM signals that may be broadcasting in the area. Only signals initiated by the J 46079 tool will be accepted. This method avoids storing false TPM I.D.s and will prevent customers from returning with dashes (--) displayed in tire pressure readouts and/or a flashing tire pressure monitor (TPM) light. Checking the four TPM I.D.s with the Tech 2(R) prior to and following relearn to verify they are the same can prevent invalid I.D. learns. Pontiac Vibe Only: Tire Monitor Sensors are not learned to a specific vehicle corner. Do not perform a TPM Reset after tire rotation. The TPMS Reset button must only be used during pre-delivery inspection by the dealer to initialize the system (after all tire pressures have been adjusted properly) or when a Tire Pressure Monitor System component is replaced. The J 46079 tool does not work on Vibe TPM sensors. A TPMS relearn on Vibe must be preformed with a Tech 2(R) to set the TPMS Module in learn mode. The TPMS sensor IDs are entered through the Tech 2(R). Refer to SI for further Vibe TPMS information. Labor Operation and Repair Order/Warranty System Claim Required Documentation Important: The ONLY time labor operation E0726 or E0722 should be used is to diagnose for a system issue. That should ONLY occur if, at key ON, without starting the engine, the Tire Pressure Monitor (TPM) blinks for one minute and then stays on solid with a Service Tire Monitor System message (on vehicles equipped with a DIC) If that occurs, a TPM system problem exists and the system will have set a DTC. If one of these operastions is used, the following Repair Order and Warranty System documentation are required: ^ Document the customer complaint on the Repair Order. ^ Document the TPMS DTC that has set on the Repair Order. ^ Enter the TPMS DTC in the Warranty System (WINS) in the Failure Code/DTC field on the claim submission (refer to the Claims Processing Manual, Section IV, Warranty claim Data, Page 6, Item G). If the above information is not documented on the Repair Order and Warranty System, the claim may be rejected. If the Warranty Parts Center (WPC) generates a request, this repair order documentation must be sent back. Page 7541 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1857 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8403 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 385 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2427 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6924 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Service Precautions Fuel Rail: Service Precautions Fuel Rail Stop Bracket Installation Caution Caution: The fuel rail stop bracket must be installed onto the engine assembly. The stop bracket serves as a protective shield for the fuel rail in the event of a vehicle frontal crash. If the fuel rail stop bracket is not installed and the vehicle is involved in a frontal crash, fuel could be sprayed possibly causing a fire and personal injury from burns. Page 2275 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Fuel Level Sensor Replacement Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement Fuel Level Sensor Replacement Removal Procedure 1. Remove the fuel sender assembly. 2. Disconnect the fuel pump electrical connector. 3. Remove the retaining clip from the fuel level sensor connector. 4. Disconnect the electrical connector from under the fuel sender cover. 5. Remove the sensor retaining clip. 6. Squeeze the locking tangs and remove the fuel level sensor (3). Installation Procedure 1. Install the fuel level sensor (3). 2. Install the sensor retaining clip. 3. Connect the electrical connector to the fuel level sensor. 4. Install the retaining clip to the fuel level sensor electrical connector. 5. Connect the fuel pump electrical connector. 6. Install the fuel sender assembly. Page 9073 Page 2155 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 9136 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 433 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3209 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7772 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 2786 Power Window Switch: Diagrams Window Switch - LR Page 7398 Body Control Module: Diagrams Body Control Module (BCM) C2 Body Control Module (BCM) C2 Page 1658 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4370 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 5832 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5687 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2036 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7246 US English/Metric Conversion US English/Metric Conversion Page 4803 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6740 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 7179 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5191 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7486 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2830 Alignment: Description and Operation Toe Description Toe Description Toe Description Toe is a measurement of how much the front and/or rear wheels are turned in or out from a straight-ahead position. When the wheels are turned in, toe is positive (+). When the wheels are turned out, toe is negative (-). The actual amount of toe is normally only a fraction of a degree. The purpose of toe is to ensure that the wheels roll parallel. Toe also offsets the small deflections of the wheel support system that occur when the vehicle is rolling forward. In other words, with the vehicle standing still and the wheels set with toe-in, the wheels tend to roll parallel on the road when the vehicle is moving. Improper toe adjustment will cause premature tire wear and cause steering instability. Page 10338 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 4533 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5231 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1220 Combination Switch: Diagrams Turn Signal/Multifunction Switch C1 Page 4734 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, disconnect the body wiring extension (1) from the rear electrical center. 11. Remove the body wiring extension from the vehicle. INSTALLATION PROCEDURE 1. IMPORTANT: Ensure the sliding latch is fully extended before connecting the body wiring extension to the rear electrical center. Using a downward motion, install the body wiring extension (1) to the rear electrical center. 2. Connect the 24-way gray electrical connector (1) to the BCM. 3. Connect the 32-way tan electrical connector (2) to the BCM. 4. Connect the body wiring extension (1) to the BCM. Page 5431 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 4408 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 6346 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 8597 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 7918 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8596 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9845 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 1596 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8411 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4346 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10404 Shift Solenoid: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. Important: Do not remove the valve body for the following procedures. Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. 2. Remove the 1-2 accumulator if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ Torque converter clutch (TCC) pulse width modulation (PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer. 5. Remove the pressure control solenoid. 6. Remove the 1-2 and 2-3 shift solenoid retainers. 7. Remove the 1-2 and 2-3 shift solenoids. Page 6942 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 4329 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7986 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7112 Information Bus: Electrical Diagrams Body Control System Diagrams Body Control System Diagram 1 Page 6122 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10080 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8230 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2431 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 1414 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4148 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70 2 - Park/Neutral Position (PNP) Switch Page 10974 Page 9956 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10839 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6965 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Locations Control Module HVAC: Locations HVAC Component Views Instrument Panel, Center 1 - Radio 2 - HVAC Control Module 3 - I/P Harness Lower Console 1 - Lower Console 2 - HVAC Control Module - Auxiliary 3 - Auxiliary Power Outlet - Console Page 11196 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 10263 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ...................................................................AC 41-981 Page 1541 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9465 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6968 US English/Metric Conversion US English/Metric Conversion Locations Radiator Cooling Fan Motor Relay: Locations Fuse Block - Underhood (4.2L), Label Page 4716 1. Install the new muffler to the tail pipe. 2. Attach the muffler and tail pipe to the hanger insulators. Notice: Refer to Fastener Notice. 3. Install the muffler to the catalytic converter and secure with the nuts. Tighten the nuts to 45 N.m (33 lb ft). 4. Loosely install the clamp to secure the muffler to the tail pipe. 5. Align the tail pipe in the proper position. Tighten the clamp nuts to 50 N.m (37 lb ft). 6. Inspect the exhaust system for leaks and underbody contact. 7. Install the frame brace. Refer to Frame Brace Replacement (TrailBlazer EXT, Envoy XL) Frame Brace Replacement (TrailBlazer, Envoy, Bravada). 8. Lower the vehicle. Page 9399 Page 9268 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10347 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 4951 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 274 Driver Door Module (DDM) C4 (Memory Seat Switch - Driver) (w/Memory) Page 7993 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Cooling System - Inspecting Radiator/Heater Hose Clamps Heater Hose: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 3819 Disclaimer Page 761 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 8617 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 4673 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 1521 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 5775 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. OnStar(R) - Incorrect GPS Position Reported During Call Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Incorrect GPS Position Reported During Call Bulletin No.: 02-08-46-006C Date: January 08, 2008 INFORMATION Subject: Incorrect OnStar(R) Global Positioning System (GPS) Location Reported During OnStar(R) Call Models: 2000-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 02-08-46-006B (Section 08 - Body and Accessories). A small number of the above-mentioned vehicles may exhibit a condition in which the vehicle reports an inaccurate location to the OnStar(R) Call Center. This condition can only be identified via a button press to the OnStar(R) Call Center by the customer. Call Center personnel will be able to identify this inaccurate location condition. Customers will then be notified through the mail by OnStar(R) if their vehicle exhibits this condition. Once this condition has been identified OnStar(R) will instruct the customer to return to the dealership to have this condition corrected. It is not necessary to reconfigure the vehicle after the following procedure. In order to correct this condition you must cycle power to the OnStar(R) system. This can be done by either removing the fuses powering the OnStar(R) system or disconnecting the OnStar(R) module (VCIM) from the vehicle. As a last resort you can disconnect the vehicle's battery. The power needs to be removed from the system for approximately 15 minutes. After completing this procedure the vehicle should be taken to an area with an unobstructed view of the sky. The vehicle should be kept running for approximately 10 minutes to allow the vehicle to reacquire the global positioning system (GPS). Then contact the OnStar(R) Call Center via the blue OnStar(R) button and ask the advisor to verify the GPS position. If the OnStar(R) advisor still has an inaccurate GPS location refer to the Navigation Systems and Cellular Communications sub-sections in the Service Manual in order to diagnose and repair the concern. If the normal diagnostics lead to module replacement you will need to contact Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis and if appropriate order a replacement part. Replacement parts are usually shipped out within 24 hours and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part you will avoid a significant non-return core charge. Warranty Information (excluding Saab US Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) Page 8294 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7663 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7515 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 7945 Fuel Tank Pressure Sensor: Diagrams Engine Controls Connector End Views Fuel Tank Pressure (FTP) Sensor Page 3212 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5495 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 5211 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4772 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 7279 Page 9836 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 6896 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10492 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7639 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set Electronic Brake Control Module: All Technical Service Bulletins Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set TECHNICAL Bulletin No.: 04-05-25-002E Date: March 11, 2009 Subject: ABS Light On, DTCs C0265, C0201, U1041 Set and/or Loss of Communication with Brake Module (Reground EBCM Ground) Models Supercede: This bulletin is being revised to add step 2 to the procedure and update the Parts and Warranty Information. Please discard Corporate Bulletin Number 04-05-25-002D (Section 05 - Brakes). Condition Some customers may comment that the ABS light is on. Upon further inspection, DTCs C0265 and C0201 may be set in the brake module. It is also possible for DTC U1041 to set in other modules. There may also be a loss of communication with the brake module. Cause A poor connection at the EBCM ground is causing unnecessary replacement of brake modules. Important: The EBCM ground is different for each application. Refer to the list below for the proper ground reference: ^ Midsize Utilities = Ground 304 ^ SSR = Ground 400 ^ Fullsize Trucks and Utilities = Ground 110 Correction Important: Do not replace the brake module to correct this condition. Perform the following repair before further diagnosis of the EBCM. Perform the following steps to improve the connection of the EBCM Ground: 1. Remove the EBCM Ground. The EBCM Ground is located on the frame beneath the driver's side door. If multiple grounds are found in this location, the EBCM ground can be identified as the heavy (12-gauge) wire. 2. If the original fastener has a welded on nut, remove the nut from the frame, and if required, enlarge the bolt hole to accommodate the new bolt and nut. 3. Clean the area, front and back, using a tool such as a *3M(TM) Scotch-Brite Roloc disc or equivalent. Page 8103 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4160 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 1662 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 6674 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6457 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 1400 Utility/Van Zoning UTILITY/VAN ZONING Page 9367 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 8757 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Page 5762 Accelerator Pedal Position Sensor: Service and Repair Accelerator Pedal Position Sensor Replacement Removal Procedure 1. Disconnect the accelerator pedal position (APP) sensor electrical connector. 2. Remove the APP sensor retaining fasteners. 3. Remove the APP sensor (2) from the vehicle. Installation Procedure 1. Install the APP sensor (2) to vehicle. Notice: Refer to Fastener Notice. 2. Install the APP sensor retaining fasteners (1). Tighten the retaining fasteners to 10 N.m (89 lb in). 3. Connect the APP sensor electrical connector. Page 4152 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4254 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6479 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9265 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5406 Specifications Shift Solenoid: Specifications Shift Solenoid Valve State and Gear Ratio Shift Solenoid Valve State and Gear Ratio Page 6910 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 3172 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4550 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7171 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3727 5. Disconnect the fuel feed (1) and fuel return (2) pipes from the fuel rail. Refer to Metal Collar Quick Connect Fitting Service. 6. Disconnect the integral clip (3) from the wire harness bracket. 7. Remove the engine wire harness bracket bolt. 8. Position the engine electrical wire harness bracket with wires attached out of the way. 9. Remove the coolant heater cord from the heater (2). Important: Do not score the surface of the engine block hole when removing the coolant heater. 10. Remove the coolant heater from the block. Installation Procedure 1. Remove any burrs, sealer, paint or other foreign material from the threads/sealing surface of the engine block and from the old coolant heater if the heater is to be reused. 2. If reusing the old coolant heater, apply thread sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the threads. Page 8096 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9113 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5792 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9614 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1120 Wheel Speed Sensor - RR Page 3199 View of the connector when released from the component. View of another type of Micro 64 connector. Page 5709 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 7163 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 2553 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 4494 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 5292 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 4506 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5243 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Locations Traction Control Switch: Locations Antilock Brake System Component Views Floor Shift Control Knob 1 - Traction Control Switch Page 3394 Fuse Block - Underhood C1 (4.2L) Page 7053 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Fuel Pressure Gage Installation and Removal Fuel Pressure: Testing and Inspection Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 9493 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2556 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 3696 Crankshaft Main Bearing: Specifications Install new crankshaft main bearing bolts. Tighten the crankshaft main bearing cap bolts in equal increments. Crankshaft Main Bearing Cap Bolt First Pass ............................................................................................................................................. .................................................... 25 N.m (18 lb ft) Final Pass ............................................................ ............................................................................................................................................ 180 degrees Crankshaft Main Bearing Bore Diameter .............................................................................................................. 78.070-78.088 mm (3.0760-3.0766 in) Crankshaft Crankshaft Main Bearing Clearance ......................................................................................................................... 0.012-0.064 mm (0.0004-0.0025 in) Page 2345 Page 5935 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10599 13. Inspect the transmission fluid pressure manual valve position switch assembly for the following conditions: ^ Damage ^ Debris ^ Damaged or missing O-rings ^ Cracked connector ^ Loose electrical terminals ^ Poor terminal retention 14. Remove the manual detent spring retaining bolt. 15. Remove the manual detent spring. 16. Inspect the manual detent spring for cracks or damage. Important: Keep the control valve body level when lowering it from the vehicle. This will prevent the loss of checkballs located in the control valve body passages. 17. Remove the remaining control valve body bolts. Page 9223 View of the connector when released from the component. View of another type of Micro 64 connector. Page 6321 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9499 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6976 Powertrain Control Module (PCM) C2 (Pin 55 To 73) Powertrain Control Module (PCM) C3 Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels Wheels: All Technical Service Bulletins Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels TECHNICAL Bulletin No.: 05-03-10-003F Date: April 27, 2010 Subject: Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Cast Aluminum Wheels Supercede: This bulletin is being revised to update the model years and the bulletin reference information. Please discard Corporate Bulletin Number 05-03-10-003E (Section 03 - Suspension). Condition Some customers may comment on a low tire pressure condition. Diagnosis of the low tire pressure condition indicates an air leak through the cast aluminum wheel. Cause Porosity in the cast aluminum wheel may be the cause. Notice This bulletin specifically addresses issues related to the wheel casting that may result in an air leak. For issues related to corrosion of the wheel in service, please refer to Corporate Bulletin Number 08-03-10-006C - Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat). Correction 1. Remove the tire and wheel assembly from the vehicle. Refer to the appropriate service procedure in SI. 2. Locate the leaking area by inflating the tire to 276 kPa (40 psi) and dipping the tire/wheel assembly in a water bath, or use a spray bottle with soap and water to locate the specific leak location. Important - If the porosity leak is located in the bead area of the aluminum rim (where the tire meets the rim), the wheel should be replaced. - If two or more leaks are located on one wheel, the wheel should be replaced. 3. If air bubbles are observed, mark the location. - If the leak location is on the tire/rubber area, refer to Corporate Bulletin Number 04-03-10-001F Tire Puncture Repair Procedures for All Cars and Light Duty Trucks. - If the leak is located on the aluminum wheel area, continue with the next step. 4. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 5. Dismount the tire from the wheel. Refer to Tire Mounting and Dismounting. 6. Remove the tire pressure sensor. Refer to Tire Pressure Sensor removal procedure in SI. 7. Scuff the INSIDE rim surface at the leak area with #80 grit paper and clean the area with general purpose cleaner, such as 3M(R) General Purpose Adhesive Cleaner, P/N 08984, or equivalent. 8. Apply a 3 mm (0.12 in) thick layer of Silicone - Adhesive/Sealant, P/N 12378478 (in Canada, use 88900041), or equivalent, to the leak area. 9. Allow for the adhesive/sealant to dry. Notice Caution must be used when mounting the tire so as not to damage the sealer. Damaging the repair area may result in an air leak. Page 5486 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7969 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10874 Page 8054 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4246 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 8941 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5694 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4850 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8029 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5698 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 2665 1. Position the steering wheel sensor (3) to the steering column. 2. Position the steering wheel sensor retainer plate (2) to the steering column. Notice: Refer to Fastener Notice. 3. Install the steering wheel position sensor retainer screws (1). Tighten the screws to 10 N.m (89 lb in). 4. Remove the steering wheel position sensor anti-rotation pin from the sensor. 5. Connect the electrical connector to the steering wheel position sensor. 6. Install the intermediate shaft to the steering column. Refer to Upper Intermediate Steering Shaft Replacement. 7. Enable the SIR system. Refer to SIR Disabling and Enabling. Page 4809 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2636 For vehicles repaired under warranty, use the table. Disclaimer Page 8062 Page 1659 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 6426 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 431 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 11070 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2131 Page 1317 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5323 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4333 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Service and Repair Oil Filter Adapter: Service and Repair Oil Filter Adapter and Bypass Valve Assembly Replacement Removal Procedure 1. Remove the oil filter. Refer to Engine Oil and Oil Filter Replacement. 2. Remove the oil filter adapter. 3. Remove the oil filter bypass valve. Installation Procedure 1. Install the oil filter bypass valve. Page 1411 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 753 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2363 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 6922 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2174 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4582 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 1928 View of the connector when released from the component. View of another type of Micro 64 connector. Page 10967 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 10017 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4862 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7738 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 9991 Page 825 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8455 9. Connect the air inlet and air outlet pipe retaining clip to the frame rail. 10. Connect both the air inlet and air outlet hoses to the AIR pump. 11. Lower the vehicle. Page 2176 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5455 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 3638 * When lifting or jacking a vehicle, be certain that the lift pads do not contact the exhaust system, brake pipes, cables, HVAC lines, wiring harnesses, fuel lines, or underbody. Such contact may result in damage or unsatisfactory vehicle performance. * When using a frame-contact hoist, only place the pads on flat surfaces. Do not place pads within 50 mm (2 in) of any radius. * Before lifting the vehicle, verify that the vehicle loads are secure and equally distributed. * When major components are removed from the vehicle when supported on a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and secure the vehicle frame to the hoist pads nearest the component to be removed. Vehicle Jacking * Park the vehicle on a clean, hard, level surface before jacking the vehicle. * Any time you lift the vehicle on one end, chock the wheels at the opposite end. * Use jack stands in order to provide support. * When supporting the vehicle using jack stands, place the jack stands under the side rails or the axle. * When lifting under the rear differential, do not allow the jack pad to contact the rear stabilizer bar or mounting hardware. Page 9328 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 3235 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8277 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7972 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 698 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Mechanical Specifications Engine Oil: Mechanical Specifications Lubrication System Oil Capacity - with Filter ....................................................................................................................... ....................................................... 6.6L (7.0 qts) Oil Capacity - without Filter ................................... ...................................................................................................................................... 6.1L (6.5 qts) Page 8027 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6455 Utility/Van Zoning UTILITY/VAN ZONING Page 7215 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 9558 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9341 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7192 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2660 Ride Height Sensor: Diagrams Air Suspension Sensor - RR Air Suspension Sensor - RR Air Suspension Sensor - RR Page 117 networks, and will not require an upgrade in connection with the cellular industry's transition to the digital network. In order to verify the type of OnStar(R) Hardware in a vehicle, type the VIN into the VIN look-up tool, which is available at the OnStar(R) Online Enrollment website within GM GlobalConnect (for U.S. dealers) or InfoNet (for Canadian dealers). Disclaimer Page 9355 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 349 Page 7699 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 8946 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5291 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4359 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 6265 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4319 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2720 Four Wheel Drive Selector Switch: Service and Repair Transfer Case Shift Control Switch Replacement (Chevrolet) Removal Procedure 1. Remove the bezel cover. Refer to Instrument Panel Cluster Trim Plate Bezel Replacement (Chevrolet) Instrument Panel Cluster Trim Plate Bezel Replacement (GMC, Buick). 2. Push in on the two tabs on the side of the control switch. 3. Move the control switch toward the front of the trim plate. 4. Disconnect the electrical connector. 5. Remove the control switch. Installation Procedure 1. Install the electrical connector to the control switch. Important: When installing control switch in the trim bezel, a snap should be felt or heard. 2. Install the control switch in the bezel cover. Page 4006 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 6901 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 8627 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 1544 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7307 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1747 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 2529 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4870 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 2535 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 11088 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7775 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 4524 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 3836 The dexos (TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos (TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos (TM)specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 2(TM) engine oil. GM dexos 2(TM) Engine Oil Specification - dexos 2(TM) is approved and recommended by GM for use in Europe starting in model year 2010 vehicles, regardless of where the vehicle was manufactured. - dexos 2(TM) is the recommended service fill oil for European gasoline engines. Important The Duramax(TM) diesel engine is the exception and requires lubricants meeting specification CJ-4. - dexos 2(TM) is the recommended service fill oil for European light-duty diesel engines and replaces GM-LL-B-025 and GM-LL-A-025. - dexos 2(TM) protects diesel engines from harmful soot deposits and is designed with limits on certain chemical components to prolong catalyst life and protect expensive emission reduction systems. It is a robust oil, resisting degradation between oil changes and maintaining optimum performance longer. Disclaimer Page 5535 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6361 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 7984 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8055 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1582 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6482 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 287 Memory Seat Module - Driver C4 (w/Memory) Page 3229 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 6756 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 6001 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 709 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7278 Page 8752 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 2380 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4692 8. Remove the exhaust hanger from the catalytic converter pipe. Installation Procedure 1. Install the exhaust hanger to the catalytic converter pipe. 2. Install the catalytic converter pipe to the vehicle. 3. Install the transmission mount. Refer to Transmission Mount Replacement (4.2L) Transmission Mount Replacement (5.3L). 4. Install the converter pipe to the muffler. Notice: Refer to Fastener Notice. Important: The exhaust flange nuts must be tightened evenly to align the joint and prevent exhaust leaks. 5. Hand thread both nuts evenly until they contact the exhaust flange. Tighten the nuts to 45 N.m (33 lb ft). Page 9638 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9155 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2441 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 1955 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3065 All 2006 and future model transmissions that use DEXRON(R)-VI are to be serviced ONLY with DEXRON(R)-VI fluid. DEXRON(R)-VI is an improvement over DEXRON(R)-III in the following areas: * These ATF change intervals remain the same as DEXRON(R)-III for the time being. 2006-2008 Transmission Fill and Cooler Flushing Some new applications of the 6L80 six speed transmission will require the use of the J 45096 Flushing and Flow Tester to accomplish transmission fluid fill. The clean oil reservoir of the machine should be purged of DEXRON(R)-III and filled with DEXRON(R)-VI. Parts Information Disclaimer Page 5443 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9130 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 4061 Page 9582 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 4619 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 964 Control Module: Service and Repair Transmission Control Module Replacement Service of the transmission control module (TCM) should consist of reprogramming of the TCM. If the diagnostic procedures call for the TCM to be replaced, the replacement TCM should be checked to ensure that the correct part is being used. If the correct part is being used, remove the faulty TCM and install the new service TCM. The replacement TCM must be programmed. Removal Procedure 1. Disconnect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 2. Disconnect the cooling fan electrical connector for additional clearance while removing the TCM. 3. Depress the engine control module (ECM)/TCM cover retainers (2). 4. Remove the ECM/TCM cover from the ECM/TCM bracket (1). Notice: Refer to Handling Electrostatic Discharge Sensitive Parts Notice. Important: It is not necessary to disconnect the TCM electrical connectors in order to remove the TCM from the ECM/TCM bracket. Only disconnect the electrical connectors if servicing of component requires disconnecting of the electrical connectors. Important: Remove any debris from around the TCM connector surfaces before servicing the TCM. Inspect the TCM module connector gaskets when diagnosing or replacing the TCM. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the TCM. 5. Disconnect the TCM electrical connector (1) from the TCM (2) Page 9573 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1841 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 2446 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1372 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 687 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8249 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 198 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 3344 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 2079 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 4735 5. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 6. Install the rear electrical center cover. 7. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 8. If replacing the body wiring harness extension on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 9. Connect the negative battery cable. Page 6451 Page 8919 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 1396 Page 8272 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 483 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5742 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9379 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6069 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 2088 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 2025 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9790 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 2033 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2203 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Drivetrain - Transfer Case Grinds In 4WD/AWD Transfer Case Actuator: All Technical Service Bulletins Drivetrain - Transfer Case Grinds In 4WD/AWD TECHNICAL Bulletin No.: 08-04-21-001B Date: August 25, 2008 Subject: NVG 126/226 Transfer Case Grating/Grinding Noise When 4WD is Engaged, Service 4WD Lamp On, DTC C0327 Set (Replace Clutch Pressure Plate Bearing Assembly and Clutch Lever) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive and Active All-Wheel Drive (RPO NP4) or Active Two-Speed (NP8) Transfer Case Built Prior to September 18, 2007 (NVG 126) or September 21, 2007 (NVG 226) Supercede: This bulletin is being revised to update the correction information to include a procedure to reindex the transfer case encoder motor (actuator). This procedure is being provided to help reduce unnecessary warranty expenses. Please discard Corporate Bulletin Number 08-04-21-001A (Section 04 - Transmission/Transaxle). Condition Some customers may comment on a grinding type noise in the transfer case when 4WD is engaged in either AUTO or 4WD mode. This noise may also be accompanied by the SERVICE 4WD lamp being illuminated and DTC C0327 set. This condition is more prevalent on vehicles where 4WD is continuously used. Cause This noise may be caused by a faulty clutch pressure plate bearing. Correction A more robust clutch pressure plate bearing, inner plate and clutch lever has been released for service. Replace the clutch pressure plate bearing, inner plate and clutch lever. Refer to the Transfer Case Disassemble and Transfer Case Assemble procedures in SI. Former and new parts should not be intermixed during transfer case overhaul and they are to be used in sets only. DO NOT replace the transfer case assembly unless extensive internal damage has occurred. Important: When the clutch pressure plate bearing fails, it causes the clutch lever to over-travel, allowing the transfer case encoder motor (actuator) to rotate to an invalid position. Engineering has developed a tool and procedure to reindex the transfer case encoder motor (actuator) so it can be reused. Use the specific procedure listed below. NVG 126 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (2) J-356165 Terminal Test Adapter (Test Probe) Page 8558 Parts required to complete this service update are to be obtained from Saab Parts Distribution Center (PDC). Service Procedure Tools Required J 45722 or equivalent 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. (1) Fuel Tank Label (2) fuel Tank (3) Rear Axle 2. Locate the fuel tank label (1), which is on the backside of the fuel tank (2) below the fuel tank filler neck. 3. Inspect the fuel tank for a white "X" on the fuel tank and/or a green "C" on the barcode. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is found, the fuel sender assembly does not require replacement. No further action is required. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is not found, proceed to Step 4 for additional inspection. Page 1513 Page 6030 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 3258 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8021 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 3245 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 9937 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5015 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 5786 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Locations Fuel Pump Relay: Locations Fuse Block - Underhood (4.2L), Label Page 9542 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2664 Steering Angle Sensor: Service and Repair Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Removal Procedure Caution: Refer to SIR Caution. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. Notice: The wheels of the vehicle must be straight ahead and the steering column in the LOCK position before disconnecting the steering column or intermediate shaft from the steering gear. Failure to do so will cause the SIR coil assembly to become uncentered, which may cause damage to the coil assembly. 2. Position the front wheels straight ahead and lock the steering column to prevent rotation of the steering wheel. 3. Remove the intermediate shaft from the steering column. Refer to Upper Intermediate Steering Shaft Replacement. 4. Remove the steering wheel position sensor retainer screws (1). 5. Remove the steering wheel position sensor retainer (2) from the base of the steering column. 6. Disconnect the electrical connector from the steering wheel position sensor. 7. Remove the steering wheel position sensor (3) from the steering column. Installation Procedure Page 8667 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7882 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2151 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5185 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 5509 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Page 887 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Diagram Information and Instructions Radiator Cooling Fan Motor Relay: Diagram Information and Instructions Electrical Symbols Page 10793 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 345 Page 3304 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5104 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4326 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 1963 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 6007 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 8033 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 3182 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 9114 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7333 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6310 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Locations Knock Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 8169 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10694 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 9980 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8951 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 7313 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5146 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 1880 Oxygen Sensor: Service Precautions Heated Oxygen Sensor Resistance Learn Reset Notice Heated Oxygen Sensor Resistance Learn Reset Notice Notice: When replacing the HO2S perform the following: * A code clear with a scan tool, regardless of whether or not a DTC is set * HO2S heater resistance learn reset with a scan tool, where available Perform the above in order to reset the HO2S resistance learned value and avoid possible HO2S failure. Page 9226 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 9665 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7283 Utility/Van Zoning UTILITY/VAN ZONING Page 2038 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 740 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 5939 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5847 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 9429 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2403 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3922 Notice: Refer to Fastener Notice. Important: Every seventh link of the timing chain is darkened to aid in aligning the timing marks. 1. Install the timing chain tensioner and secure the tensioner with the bolts. Tighten the timing chain tensioner bolts to 25 N.m (18 lb ft). 2. Install the timing chain tensioner guide and secure the guide with the bolts. Tighten the timing chain tensioner guide to 10 N.m (89 lb in). Page 10508 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 11091 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 9090 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9940 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Initial Inspection and Diagnostic Overview Information Bus: Initial Inspection and Diagnostic Overview DIAGNOSTIC STARTING POINT - DATA COMMUNICATIONS Begin the system diagnosis with Diagnostic System Check - Vehicle. The Diagnostic System Check - Vehicle will provide the following information: - The identification of the control modules which are not communicating. - The identification of any stored diagnostic trouble codes (DTCs) and their status. The use of the Diagnostic System Check - Vehicle will identify the correct procedures to begin vehicle diagnosis. These must be performed before system DTC or symptom diagnosis. Page 1975 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 2907 Spark Plug: Specifications Spark Plug Gap ................................................................................................................................... ................................................... 1.08 mm (0.0425 in) Spark Plug Torque ......................................... ............................................................................................................................................. 18 N.m (13 lb ft) Page 34 In summary, whenever a vehicle subject to this program enters your vehicle inventory, or is in your dealership/facility for service through April 30, 2011, you must take the steps necessary to be sure the program correction has been made before selling or releasing the vehicle. Disclaimer Service Procedure Service Procedure Note Do NOT replace the inside rear view mirror in tandem with this concern. The mirror has no bearing on this specific issue. 1. Remove the OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module removal instructions. Note Inform customer that all Bluetooth devices must be paired with the new VCIM. Bluetooth devices that have not been paired to the new VCIM will not function properly. 2. Install the new OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module installation instructions. Page 5092 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1992 Page 8791 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10744 For vehicles repaired under warranty, use the table. Disclaimer Page 10066 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8804 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 8696 Fuel: Specifications GASOLINE OCTANE Use regular unleaded gasoline with a posted octane rating of 87 or higher. If the octane rating is less than 87, you may notice an audible knocking noise when you drive, commonly referred to as spark knock. If this occurs, use a gasoline rated at 87 octane or higher as soon as possible. If you are using gasoline rated at 87 octane or higher and you hear heavy knocking, your engine needs service. GASOLINE SPECIFICATIONS At a minimum, gasoline should meet ASTM specification D 4814 in the United States or CAN/CGSB-3.5 in Canada. Some gasolines may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT). General Motors recommends against the use of gasolines containing MMT. CALIFORNIA FUEL If your vehicle is certified to meet California Emission Standards, it is designed to operate on fuels that meet California specifications. See the underhood emission control label. If this fuel is not available in states adopting California emissions standards, your vehicle will operate satisfactorily on fuels meeting federal specifications, but emission control system performance may be affected. The malfunction indicator lamp may turn on and your vehicle may fail a smog-check test. If it is determined that the condition is caused by the type of fuel used, repairs may not be covered by your warranty. ADDITIVES To provide cleaner air, all gasolines in the United States are now required to contain additives that will help prevent engine and fuel system deposits from forming, allowing your emission control system to work properly. In most cases, you should not have to add anything to your fuel. However, some gasolines contain only the minimum amount of additive required to meet U.S. Environmental Protection Agency regulations. To help keep fuel injectors and intake valves clean, or if your vehicle experiences problems due to dirty injectors or valves, look for gasoline that is advertised as TOP TIER Detergent Gasoline. Also, your dealer has additives that will help correct and prevent most deposit-related problems. Gasolines containing oxygenates, such as ethers and ethanol, and reformulated gasolines may be available in your area. General Motors recommends that you use these gasolines if they comply with the specifications described earlier. However, E85 (85% ethanol) and other fuels containing more than 10% ethanol must not be used in vehicles that were not designed for those fuels. NOTICE: Your vehicle was not designed for fuel that contains methanol. Do not use fuel containing methanol. It can corrode metal parts in the fuel system and also damage plastic and rubber parts. That damage would not be covered under your warranty. Some gasolines that are not reformulated for low emissions may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT); ask the attendant where you buy gasoline whether the fuel contains MMT. General Motors recommends against the use of such gasolines. Fuels containing MMT can reduce the life of spark plugs and the performance of the emission control system may be affected. The malfunction indicator lamp may turn on. If this occurs, return to your dealer for service. NOTICE: Your vehicle was not designed for fuel that contains methanol. Do not use fuel containing methanol. It can corrode metal parts in your fuel system and also damage the plastic and rubber parts. That damage would not be covered under your warranty. Some gasolines that are not reformulated for low emissions may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT); ask the attendant where you buy gasoline whether the fuel contains MMT. General Motors does not recommend the use of such gasolines. Fuels containing MMT can reduce the life of spark plugs and the performance of the emission control system may be affected. The malfunction indicator lamp may turn on. FUELS IN FOREIGN COUNTRIES If you plan on driving in another country outside the United States or Canada, the proper fuel may be hard to find. Never use leaded gasoline or any other fuel not recommended in the previous text on fuel. Costly repairs caused by use of improper fuel would not be covered by your warranty. To check the fuel availability, ask an auto club, or contact a major oil company that does business in the country where you will be driving. OnStar(R) - Negative Impact of Cloth/Vinyl Roofs Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Negative Impact of Cloth/Vinyl Roofs INFORMATION Bulletin No.: 02-08-44-007D Date: May 12, 2009 Subject: Negative Impact of Dealer-Installed Cloth/Vinyl Roofs on XM Radio and/or OnStar(R) Systems Models: 2002-2009 Passenger Cars and Trucks (Including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with XM Radio (RPO U2K) and/or OnStar(R) (RPO UE1) .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to include the 2009 model year. Please discard Corporate Bulletin Number 02-08-44-007C (Section 08 - Body and Accessories). .............................................................................................................................................................. .................................................................................. Dealers should not install a cloth or vinyl roof on vehicles that have been ordered with the XM radio option (RPO U2K) and/or OnStar(R) (RPO UE1). The performance of these systems may be negatively impacted by the installation of the cloth/vinyl roof. Additionally, water leaks may result from installing a cloth or vinyl roof on vehicles with roof-mounted antenna systems. Relocating the antenna to another spot on the vehicle exterior, in order to install a cloth or vinyl roof, is not advised either. The performance of the OnStar(R) and XM Radio antennas has been optimized for their current locations. Relocating the antennas may result in a performance degradation. Disclaimer Page 7876 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 4005 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 4650 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2110 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8923 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 5442 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7751 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6955 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2642 For vehicles repaired under warranty, use the table. Disclaimer Page 2113 Page 4392 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 7126 Information Bus: Symptom Related Diagnostic Procedures Symptoms - Data Communications SYMPTOMS - DATA COMMUNICATIONS IMPORTANT: The following steps must be completed before using the symptom tables. 1. Perform the Diagnostic System Check - Vehicle , before using the symptom tables in order to verify that all of the following are true: - There are no DTCs set. - The control modules can communicate via the serial data links. 2. Review the system operation in order to familiarize yourself with the system functions. Refer to: - Data Link Communications Description and Operation - Body Control System Description and Operation Visual/Physical Inspection Inspect for aftermarket devices which could affect the operation of the systems. - Inspect the easily accessible or visible system components for obvious damage or conditions which could cause the symptom. Intermittent Faulty electrical connections or wiring may be the cause of intermittent conditions. Refer to Testing for Intermittent Conditions and Poor Connections. See: Testing and Inspection/Component Tests and General Diagnostics Symptom List Refer to a symptom diagnostic procedure from the following list in order to diagnose the symptom: Scan Tool Does Not Power Up - Scan Tool Does Not Communicate with Class 2 Device (4.2L w/o Immobilizer) Scan Tool Does Not Communicate with Class 2 Device (4.2L w/Immobilizer) Scan Tool Does Not Communicate with Class 2 Device (5.3L) - Scan Tool Does Not Communicate with High Speed GMLAN Device Scan Tool Does Not Communicate with High Speed GMLAN Device SCAN TOOL DOES NOT COMMUNICATE WITH HIGH SPEED GMLAN DEVICE Modules connected to the high speed GMLAN serial data circuits monitor for serial data communications on the high speed GMLAN network during normal vehicle operation. Operating information and commands are exchanged among the modules. When a module detects a bus-off condition, a DTC U2100 will be set. This DTC can be retrieved as history only. DIAGNOSTIC AIDS The high speed GMLAN serial data bus uses two 120 ohm terminating resistors that are in parallel with the high speed GMLAN (+) and (-) circuits. One of the resistors is connected at the data link connector (DLC) and the other is at the engine control module (ECM). When testing for a short between high speed GMLAN (+) and (-), a reading of 60 ohms is normal. If the high speed GMLAN serial data is open, testing the resistance between high speed GMLAN (+) and (-) will read about 120 ohms. The engine will not start when there is a total malfunction of the high speed GMLAN serial data circuits while the engine is not running. The following conditions may cause a total loss of high speed GMLAN data communication: A short between high speed GMLAN (+) and high speed GMLAN (-) circuits - Any of the high speed GMLAN serial data circuits shorted to ground or voltage - A module internal malfunction that causes a short to voltage or ground on the high speed GMLAN circuits - Any of the high speed GMLAN serial data circuits open TEST DESCRIPTION Page 1921 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 11190 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 10308 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Technician Safety Information Page 9965 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 1454 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1573 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 304 Memory Seat Module - Driver C4 (w/Memory) Page 1989 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 8253 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5116 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1491 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8888 Page 9549 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7123 Information Bus: Description and Operation DATA LINK COMMUNICATIONS DESCRIPTION AND OPERATION DATA LINK CONNECTOR (DLC) The data link connector (DLC) is a standardized 16 cavity connector. Connector design and location is dictated by an industry wide standard, and is required to provide the following: Scan tool power battery positive voltage at terminal 16 - Scan tool power ground at terminal 4 - Common signal ground at terminal 5 - Class 2 signal at terminal 2 - High speed GMLAN serial data bus (+) at terminal 6, w/5.3L - High speed GMLAN serial data bus (-) at terminal 14, w/5.3L CLASS 2 CIRCUIT DESCRIPTION The data link connector (DLC) allows a scan tool to communicate with the class 2 serial data circuit. Class 2 serial data is transmitted on a single wire at an average of 10.4 Kbps. The bus is active at 7.0 volts nominal and inactive at ground potential. Each module communicating on the class 2 serial data line sends a state of health (SOH) message every 2 seconds to ensure that the module is operating properly. When a module stops communicating on the class 2 serial data line, for example if the module loses power or ground, the SOH message it normally sends on the data line every 2 seconds disappears. Other modules on the class 2 serial data line, which expect to receive that SOH message, detect its absence; those modules in turn set an internal DTC associated with the loss of SOH of the non-communicating module. The DTC is unique to the module which is not communicating, for example, when the body control module (BCM) SOH message disappears, several modules set DTC U1064. Note that a loss of serial data DTC does not normally represent a failure of the module that set it. The class 2 serial data line on this vehicle is a star configuration. The powertrain control module (PCM) has an additional class 2 serial data circuit to BCM or to theft deterrent control module, if equipped. If one of the class 2 serial data circuits to the PCM opens, communication will not be interrupted. The following modules communicate on the class 2 serial data line: The BCM - The communication interface module (OnStar(R)), w/UE1 - The digital radio receiver (DRR), w/U2K - The driver door module (DDM) - The driver seat module (DSM), w/AAB - The DVD player - The electronic brake control module (EBCM) - The engine control module (ECM), w/5.3L - The HVAC control module - The HVAC control module - rear auxiliary - The inflatable restraint sensing and diagnostic module (SDM) - The instrument panel cluster (IPC) - The liftgate control module (LGM) - The passenger door module (PDM) - The powertrain control module (PCM), w/4.2L - The radio - The transfer case shift control module (TCSCM), w/4WD - The theft deterrent control module (VTD), w/BAE The class 2 serial data line allows a scan tool to communicate with these modules for testing purposes, checking for DTCs, and to activate/enable/disable functions. These class 2 serial data circuits are bused together via 2 splice packs: SP205-Located behind the instrument panel (I/P) near the headlamp switch connector - SP306-Located in the body harness near the rear of the right rear seat under the carpet Page 615 5. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 6. Install the rear electrical center cover. 7. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 8. If replacing the body wiring harness extension on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 9. Connect the negative battery cable. Page 7647 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 11053 Caster Description Alignment: Description and Operation Caster Description Caster Description Caster Description Caster is the tilting of the uppermost point of the steering axis either forward or backward, when viewed from the side of the vehicle. A backward tilt is positive (+) and a forward tilt is negative (-). Caster influences directional control of the steering but does not affect the tire wear. Caster is affected by the vehicle height, therefore it is important to keep the body at its designed height. Overloading the vehicle or a weak or sagging rear spring will affect caster. When the rear of the vehicle is lower than its designated trim height, the front suspension moves to a more positive caster. If the rear of the vehicle is higher than its designated trim height, the front suspension moves to a less positive caster. With too little positive caster, steering may be touchy at high speed and wheel returnability may be diminished when coming out of a turn. If one wheel has more positive caster than the other, that wheel will pull toward the center of the vehicle. This condition will cause the vehicle to pull or lead to the side with the least amount of positive caster. Page 841 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 1710 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4960 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 339 Step 1 - Step 3 Preliminary ProceduresRaise the vehicle. Refer to Lifting and Jacking the Vehicle. Page 3512 of vibration is normally felt more in the "seat of the pants" than the steering wheel. 5. Next, record the Hertz (Hz) reading as displayed by the EVA onto the tire data worksheet found at the end of this bulletin. This should be done after a tire break-in period of at least 16 km (10 mi) at 72 km/h (45 mph) or greater, in order to eliminate any possible tire flat-spotting. This reading confirms what the vehicle vibration frequency is prior to vehicle service and documents the amount of improvement occurring as the result of the various steps taken to repair. Completing the Steering Wheel Shake Worksheet below is required. A copy of the completed worksheet must be saved with the R.O. and a copy included with any parts returned to the Warranty Parts Center for analysis. A reading of 35 to 50 Hz typically indicates a first order propshaft vibration. If this is the situation, refer to Corporate Bulletin Number 08-07-30-044D. Generally, a reading between 10 and 20 Hz indicates a tire/wheel vibration and if this is the reading obtained, continue using this bulletin. If the tire 1st order vibration goes away and stays away during this evaluation, the cause is likely tire flat-spotting. Tire flat-spotting vibration may come and go at any speed over 72 km/h (45 mph) during the first 10 minutes of operation, if vibration continues after 10 minutes of driving at speeds greater than 72 km/h (45 mph), tire flat-spotting can be ruled out as the cause for vibration. 6. If flat-spotting is the cause, provide the explanation that this has occurred due to the vehicle being parked for long periods of time and that the nature of the tire is to take a set. Refer to Corporate Bulletin Number 03-03-10-007E: Information on Tire/Wheel Characteristics (Vibration, Balance, Shake, Flat Spotting) of GM Original Equipment Tires. 7. If the road test indicates a shake/vibration exists, check the imbalance of each tire/wheel assembly on a known, calibrated, off-car dynamic balancer.Make sure the mounting surface of the wheel and the surface of the balancer are absolutely clean and free of debris. Be sure to chose the proper cone/collet for the wheel, and always use the pilot bore for centering. Never center the wheel using the hub-cap bore since it is not a precision machined surface. If any assembly calls for more than 1/4 ounce on either rim flange, remove all balance weights and rebalance to as close to zero as possible. If you can see the vibration (along with feeling it) in the steering wheel (driving straight without your hands on the wheel), it is very likely to be a tire/wheel first order (one pulse per revolution) disturbance. First order disturbances can be caused by imbalance as well as non-uniformities in tires, wheels or hubs. This first order frequency is too low for a human to hear, but if the amplitude is high enough, it can be seen. If a vibration or shake still exists after balancing, any out of round conditions, of the wheel, and force variation conditions of the tire, must be addressed. Equipment such as the Hunter GSP9700 can address both (it is also a wheel balancer). Tire radial force vibration (RFV) can be defined as the amount of stiffness variation the tire will produce in one revolution under a constant load. Radial force variation is what the vehicle feels because the load (weight) of the vehicle is always on the tires. Although free runout of tires (not under load) is not always a good indicator of a smooth ride, it is critical that total tire/wheel assembly runout be within specification. Equipment such as the Hunter GSP9700 loads the tire, similar to on the vehicle, and measures radial force variation of the tire/wheel assembly. Note that the wheel is affecting the tire's RFV measurement at this point. To isolate the wheel, its runout must be measured. This can be easily done on the Hunter, without the need to set up dial indicators. If the wheel meets the runout specification, the tire's RFV can then be addressed. After measuring the tire/wheel assembly under load, and the wheel alone, the machine then calculates (predicts) the radial force variation of the tire. However, because this is a prediction that can include mounting inaccuracies, and the load wheel is much smaller in diameter than used in tire production, this type of service equipment should NOT be used to audit new tires. Rather, it should be used as a service diagnostic tool to minimize radial force variation of the tire/wheel assembly. Equipment such as the Hunter GSP9700 does an excellent job of measuring wheel runout, and of finding the low point of the wheel (for runout) and the high point of the tire (for radial force variation). This allows the tire to be matched mounted to the wheel for lowest tire/wheel assembly force variation. The machine will simplify this process into easy steps. The following assembly radial force variation numbers should be used as a guide: When measuring RFV and match mounting tires perform the following steps. Measuring Wheel Runout and Assembly Radial Force Variation Important The completed worksheet at the end of this bulletin must be attached to the hard copy of the repair order. - Measure radial force variation and radial runout. - If a road force/balancing machine is used, record the radial force variation (RFV) on the worksheet at the end of this bulletin. It may be of benefit to have the lowest RFV assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires onto the subject vehicle. - If a runout/balancing machine is used, record the radial runout of the tire/wheel assemblies on the worksheet at the end of this bulletin. If one or more of the tire/wheel assemblies are more than.040 in (1.02 mm), match mount the tire to the wheel to get below.040 in (1.02 mm). For sensitive customers, readings of 0.030 inch (0.76 mm) or less are preferable, it may also be of benefit to have the lowest runout assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires Page 3395 Fuse Block - Underhood C1 (4.2L) Page 7971 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10107 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 2447 US English/Metric Conversion US English/Metric Conversion Page 8695 Fuel: Technical Service Bulletins Fuel System - E85 Refueling Station Information Bulletin No.: 06-06-04-030 Date: May 15, 2006 INFORMATION Subject: Locations of E85 Refueling Stations and Expanded E85 Information Models: 2007 and Prior GM Cars and Trucks Equipped for Flexible Fuel (E85) Attention: U.S. dealers - This bulletin should be directed to the Sales Manager as well as the Service Manager. Copies of this bulletin may be given to customers purchasing or considering the purchase of E85 capable vehicles, and may be left or posted in customer waiting areas. Canadian dealers - This bulletin is intended for the U.S. Market and provides only limited information relevant to the Canadian market. Customer Questions, Concerns and Refueling Locations for E85 Fuel Extensive information on E85 Ethanol based fuels can be found at www.livegreengoyellow.com . This General Motors site contains vital information that anticipates and answers customer questions and concerns about E85 fuel. Part of the information is a useful link that provides the location nationally of all E85 refueling stations. Disclaimer Page 770 Powertrain Control Module (PCM) C1 (Pin 25 To 56) Powertrain Control Module (PCM) C2 Page 236 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7747 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 11187 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2017 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 7659 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 6525 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Page 5810 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2925 Disclaimer Page 2445 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9668 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 8818 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Front Suspension Wheel Fastener: Service and Repair Front Suspension Wheel Stud Replacement Tools Required J 43631 Ball Joint Remover Removal Procedure 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire and the wheel. Refer to Tire and Wheel Removal and Installation. 3. Remove the rotor. Refer to Front Brake Rotor Replacement. Important: Do not hammer on a wheel stud. 4. Remove the wheel stud bolt using J 43631. Installation Procedure 1. Install the wheel stud to the wheel hub and bearing. Notice: Refer to Fastener Notice. 2. Install 4 washers and the nut to the wheel stud. Tighten the wheel stud nut to 140 N.m (103 lb ft), drawing in the wheel stud. 3. Remove the nut and the washers. 4. Install the rotor. Refer to Front Brake Rotor Replacement. 5. Install the tire and the wheel. Refer to Tire and Wheel Removal and Installation. Page 9133 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7570 Powertrain Control Module (PCM) C2 (Pin 55 To 73) Powertrain Control Module (PCM) C3 Page 9920 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 8097 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10759 Page 8987 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 3366 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 6247 Ignition Switch Lock Cylinder: Service and Repair Ignition Lock Cylinder Replacement IGNITION LOCK CYLINDER REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the negative battery cable. CAUTION: Refer to SIR Caution. 2. Disable the SIR system. Refer to SIR Disabling and Enabling. 3. Lower the hush and knee bolster. Refer to Knee Bolster Replacement. 4. Remove the steering column trim covers. 5. With the key installed, turn the key to the RUN position. 6. Install an allen wrench into the hole on top of the lock cylinder housing. Push down on the allen wrench to release the tab on the lock cylinder inside the lock cylinder housing. 7. Slide the lock cylinder out of the lock cylinder housing. INSTALLATION PROCEDURE 1. Install the key into the lock cylinder. IMPORTANT: The gears between the ignition switch and the lock cylinder housing must be in the correct position. Failure to do so will cause a misalignment of the gears in the ignition switch and the lock cylinder housing, which may result in a NO START or BATTERY DRAIN. Page 4170 Page 8219 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4318 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 5829 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8339 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1368 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 4147 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Diagram Information and Instructions Information Bus: Diagram Information and Instructions Electrical Symbols Page 9800 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5226 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10102 Page 8599 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10602 8. Install the transmission fluid pressure switch. 9. Install but do not tighten the control valve body bolts which retain the transmission fluid pressure switch to the control valve body. Notice: Refer to Fastener Notice. Notice: Torque valve body bolts in a spiral pattern starting from the center. If the bolts are torqued at random, valve bores may be distorted and inhibit valve operation. 10. Tighten the control valve body bolts in a spiral pattern starting from the center, as indicated by the arrows. Tighten the control valve body bolts (in sequence) to 11 N.m (97 lb in). 11. Ensure that the manual detent spring is aligned properly with the detent lever. Tighten the manual detent spring bolt to 31 N.m (23 lb ft). Page 4828 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6138 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 7481 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9464 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 323 For vehicles repaired under warranty, use the table. Disclaimer Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Page 11192 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 6406 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 65 For vehicles repaired under warranty, use the table. Disclaimer Page 7624 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 419 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9944 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 8645 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 3820 Idler Pulley: Specifications Drive Belt Idler Pulley Bolt ................................................................................................................... ..................................................... 50 N.m (37 lb ft) Page 763 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9968 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................345-395 kPa (50-57 psi) Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 1339 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 3218 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8789 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8741 Utility/Van Zoning UTILITY/VAN ZONING Page 273 Driver Door Module (DDM) C3 (Outside Rearview Mirror - Driver) (DS3/DL2) Page 6973 Powertrain Control Module (PCM) C1 (Pin 25 To 56) Powertrain Control Module (PCM) C2 Page 2295 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5022 Page 6680 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4895 Powertrain Control Module (PCM) C3 (Pin 21 To 56) Page 7446 Disclaimer Page 10234 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4520 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5273 Page 7477 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9340 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 3760 4. Remove the EN-47945 from the cylinder head and repeat as required. 5. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 860 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 10516 Page 204 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 2108 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9560 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 7208 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 7629 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 2125 Page 9466 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 2695 8. Install the transmission fluid pressure switch. 9. Install but do not tighten the control valve body bolts which retain the transmission fluid pressure switch to the control valve body. Notice: Refer to Fastener Notice. Notice: Torque valve body bolts in a spiral pattern starting from the center. If the bolts are torqued at random, valve bores may be distorted and inhibit valve operation. 10. Tighten the control valve body bolts in a spiral pattern starting from the center, as indicated by the arrows. Tighten the control valve body bolts (in sequence) to 11 N.m (97 lb in). 11. Ensure that the manual detent spring is aligned properly with the detent lever. Tighten the manual detent spring bolt to 31 N.m (23 lb ft). Page 5018 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 1977 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2254 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 7716 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 8378 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 3102 Fluid - Transfer Case: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Fluid Replacement (TrailBlazer, Envoy, Rainier, Bravada) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 3. Remove the fill plug. 4. Remove the drain plug. Installation Procedure 1. Apply pipe sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent to the drain plug threads. Notice: Refer to Fastener Notice. 2. Install the drain plug. Tighten the plug to 27 N.m (20 lb ft). 3. Fill the transfer case with the proper fluid. Refer to Approximate Fluid Capacities. Page 6653 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9733 US English/Metric Conversion US English/Metric Conversion Page 7381 Page 10303 Utility/Van Zoning UTILITY/VAN ZONING Page 4123 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 10882 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 3532 Do not use cleaning solutions that contain hydrofluoric, oxalic and most other acids on chrome wheels (or any wheels). If the customer is unsure of the chemical make-up of a particular wheel cleaner, it should be avoided. For wheels showing signs of milky staining from acidic cleaners, refer to Customer Assistance and Instructions below. Warranty of Stained Chrome Wheels Stained wheels are not warrantable. Most acid based cleaners will permanently stain chrome wheels. Follow-up with dealers has confirmed that such cleaners were used on wheels that were returned to the Warranty Parts Center (WPC). Any stained wheels received by the WPC will be charged back to the dealership. To assist the customer, refer to Customer Assistance and Instructions below. Pitting or Spotted Appearance of Chrome Wheels Figure 2 A second type or staining or finish disturbance may result from road chemicals, such as calcium chloride used for dust control of unpaved roads. The staining will look like small pitting (refer to Figure 2). This staining will usually be on the leading edges of each wheel spoke, but may be uniformly distributed. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Important Road chemicals, such as calcium chloride used for dust control of unpaved roads, can also stain chrome wheels. The staining will look like small pitting. This staining will usually be on the leading edges of each wheel spoke. This is explained by the vehicle traveling in the forward direction while being splashed by the road chemical. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Warranty of Pitted or Spotted Chrome Wheels Wheels returned with pitting or spotting as a result of road chemicals may be replaced one time. Damage resulting from contact with these applied road chemicals is corrosive to the wheels finish and may cause damage if the wheels are not kept clean. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean if they are operating the vehicle in an area that applies calcium chloride or other dust controlling chemicals! "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). "Stardust" Corrosion of Chrome Wheels Figure 3 A third type of finish disturbance results from prolonged exposure to brake dust and resultant penetration of brake dust through the chrome. As brakes are applied hot particles of brake material are thrown off and tend to be forced through the leading edge of the wheel spoke windows by airflow. These Page 1683 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 4336 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 10460 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8224 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8852 Fuel Injector: Testing and Inspection Fuel Injector Diagnosis (With CH 47976) Fuel Injector Diagnosis (w/CH47976) Diagnostic Instructions * Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. * Review Strategy Based Diagnosis for an overview of the diagnostic approach. * Diagnostic Procedure Instructions provides an overview of each diagnostic category. Circuit/System Description The control module enables the appropriate fuel injector pulse for each cylinder. The ignition voltage is supplied directly to the fuel injectors. The control module controls each fuel injector by grounding the control circuit via a solid state device called a driver. A fuel injector coil winding resistance that is too high or too low will affect the engine driveability. A fuel injector control circuit DTC may not set, but a misfire may be apparent. The fuel injector coil windings are affected by temperature. The resistance of the fuel injector coil windings will increase as the temperature of the fuel injector increases. The Active Fuel Injector Tester (AFIT), CH 47976, is used to test the fuel pump, fuel system leak down, and the fuel injectors. Following the User Guide, CH 47976-11, and the on screen prompts or selections, will indicate the steps required to perform each of the available tests. The tester will perform all of the tests automatically and display results of the test. The results can also be down loaded for storage and printing. Component Testing Fuel Injector Coil Test Verify the resistance of each fuel injector with one of the following methods: * If the engine coolant temperature (ECT) sensor is between 10-32°C (50-90°F), the resistance of each fuel injector should be 11-14 ohms. ‹› If the injectors measure OK, perform the AFIT Test Procedure. ‹› If not within the specified range, replace the fuel injector. * If the ECT sensor is not between 10-32°C (50-90°F), measure and record the resistance of each fuel injector with a DMM. Subtract the lowest resistance value from the highest resistance value. The difference between the lowest value and the highest value should be equal to or less than 3 ohms. ‹› If the difference is equal to or less than 3 ohms, refer to the AFIT Test Procedure. ‹› If the difference is more than 3 ohms, add all of the fuel injector resistance values to obtain a total resistance value. Divide the total resistance value by the number of fuel injectors to obtain an average resistance value. Subtract the lowest individual fuel injector resistance value from the average resistance value. Compute the difference between the highest individual fuel injector resistance value and the average resistance value. Replace the fuel injector that displays the greatest difference above or below the average. Important: * DO NOT perform this test if the engine coolant temperature (ECT) is above 94°C (201°F). Irregular fuel pressure readings may result due to hot soak fuel boiling. * Verify that adequate fuel is in the fuel tank before proceeding with this diagnostic. AFIT Test Procedure 1. Turn OFF all accessories. 2. Turn OFF the ignition. 3. Install the AFIT. 4. Turn ON the AFIT and select the vehicle. 5. Turn ON the ignition and perform the Injector Test. ‹› If the AFIT aborts testing due to fuel pressure or fuel leak down, refer to Fuel System Diagnosis. See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics 6. View the test results. ‹› If any injector exceeds the recommended tolerance, perform the following procedure: * Perform the Fuel Injector Cleaning procedure. See: Service and Repair/Procedures * Perform the Fuel Injector Balance Test. See: Page 8849 Fuel Injector: Testing and Inspection Fuel Injector Diagnosis (w/J 39021 or Tech 2) Fuel Injector Diagnosis (w/J39021 or Tech 2) Diagnostic Instructions * Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. * Review Strategy Based Diagnosis for an overview of the diagnostic approach. * Diagnostic Procedure Instructions provides an overview of each diagnostic category. Circuit/System Description The control module enables the appropriate fuel injector pulse for each cylinder. The ignition voltage is supplied directly to the fuel injectors. The control module controls each fuel injector by grounding the control circuit via a solid state device called a driver. A fuel injector coil winding resistance that is too high or too low will affect the engine driveability. A fuel injector control circuit DTC may not set, but a misfire may be apparent. The fuel injector coil windings are affected by temperature. The resistance of the fuel injector coil windings will increase as the temperature of the fuel injector increases. When performing the fuel injector balance test, the scan tool is first used to energize the fuel pump relay. The fuel injector tester or the scan tool is then used to pulse each injector for a precise amount of time, allowing a measured amount of the fuel to be injected. This causes a drop in the system fuel pressure that can be recorded and used to compare each injector. Diagnostic Aids * Monitoring the misfire current counters, or misfire graph, may help to isolate the fuel injector that is causing the condition. * Operating the vehicle over a wide temperature range may help isolate the fuel injector that is causing the condition. * Perform the fuel injector coil test within the conditions of the customer's concern. A fuel injector condition may only be apparent at a certain temperature, or under certain conditions. Component Testing Fuel Injector Coil Test Verify the resistance of each fuel injector with one of the following methods: * If the engine coolant temperature (ECT) sensor is between 10-32°C (50-90°F), the resistance of each fuel injector should be 11-14 ohms. ‹› If the injectors measure OK, perform the Fuel Injector Balance Test-Fuel Pressure Test. ‹› If not within the specified range, replace the fuel injector. * If the ECT sensor is not between 10-32°C (50-90°F), measure and record the resistance of each fuel injector with a DMM. Subtract the lowest resistance value from the highest resistance value. The difference between the lowest value and the highest value should be equal to or less than 3 ohms. ‹› If the difference is equal to or less than 3 ohms, refer to the Fuel Injector Balance Test-Fuel Pressure Test for further diagnosis of the fuel injectors. ‹› If the difference is more than 3 ohms, add all of the fuel injector resistance values to obtain a total resistance value. Divide the total resistance value by the number of fuel injectors to obtain an average resistance value. Subtract the lowest individual fuel injector resistance value from the average resistance value. Compute the difference between the highest individual fuel injector resistance value and the average resistance value. Replace the fuel injector that displays the greatest difference above or below the average. Important: * DO NOT perform this test if the engine coolant temperature (ECT) is above 94°C (201°F). Irregular fuel pressure readings may result due to hot soak fuel boiling. * Verify that adequate fuel is in the fuel tank before proceeding with this diagnostic. * Before proceeding with this test review the User Manual CH 48027-5 for Safety Information and Instructions. Fuel Injector Balance Test-Fuel Pressure Test 1. Install a fuel pressure gage. 2. Turn ON the ignition, with the engine OFF. Important: Page 5076 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 2168 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 2701 Transmission Position Switch/Sensor: Adjustments Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the parking brake. ^ The engine must start in the P (Park) or N (Neutral) positions only. ^ Check the switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the N (Neutral) position. 2. With an assistant in the drivers seat, raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Loosen the park/neutral position switch mounting bolts. 4. With the vehicle in the N (Neutral) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. Notice: Refer to Fastener Notice. 6. Tighten the bolts securing the switch to the transmission. Tighten the bolts to 25 N.m (18 lb ft). 7. Lower the vehicle. 8. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. 9. Replace the park/neutral position switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Page 1784 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 4652 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4289 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7366 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7195 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Locations Canister Purge Solenoid: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 11149 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 7297 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9837 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 8546 Disclaimer Page 2321 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6268 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 8232 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6170 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4872 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5179 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 6345 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 9633 Page 5153 Page 8954 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8990 Page 8604 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9220 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 1320 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 9609 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 1656 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9295 Page 7755 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1191 4. Compare the fuel tank serial number printed on the fuel tank label (1) to the fuel tank serial number (sequencing) range shown. ^ If the serial number of the tank is not within the ranges above, lower the vehicle. No further action is required. ^ If the serial number of the tank is within the ranges above, remove and replace the fuel sender assembly. Proceed to Step 5 in this bulletin. 5. Remove the fuel tank from the vehicle. Remove the fuel sender assembly from the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. Notice: Ensure that the fuel level sensor pigtail wires are routed through the anti-chafing conduit of the fuel sender assembly to avoid damaging the fuel level sensor pigtail wires. Route the fuel level sensor pigtail wires through the anti-chafing conduit the same way the wires were routed in the old fuel sender assembly. 6. Remove the fuel level sensor from the old fuel sender assembly and install it to the new fuel sender assembly. Refer to Fuel Level Sensor Replacement in SI. 7. Install the fuel sender assembly into the fuel tank and install the fuel tank. Refer to Fuel Sender Assembly Replacement in SI. 8. Lower the vehicle. Claim Information - GM and Saab Canada Only For vehicles repaired under this service update, use the table. Claim Information - US Saab Only Page 9914 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8041 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8128 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Service and Repair Power Mirror Switch: Service and Repair POWER MIRROR SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Carefully use a flat-bladed tool in order to release the outside mirror switch retaining tabs from the trim panel. 2. Remove the outside mirror switch from the trim panel. 3. Disconnect the electrical connector from the power folding mirror switch. INSTALLATION PROCEDURE 1. Connect the electrical connector to the power folding mirror switch. 2. Position the power folding mirror switch to the door trim panel. 3. Apply downward pressure to the power folding mirror switch, ensuring the retaining tabs are fully seated. Page 2927 Drive Belt: Description and Operation Drive Belt System Description The drive belt system consists of the following components: ^ The drive belt ^ The drive belt tensioner ^ The drive belt idler pulley ^ The crankshaft balancer pulley ^ The accessory drive component mounting brackets ^ The accessory drive components The power steering pump, if belt driven - The generator - The A/C compressor, if equipped - The engine cooling fan, if belt driven - The water pump, if belt driven - The vacuum pump, if equipped - The air compressor, if equipped The drive belt system may use one belt or two belts. The drive belt is thin so that it can bend backwards and has several ribs to match the grooves in the pulleys. There also may be a V-belt style belt used to drive certain accessory drive components. The drive belts are made of different types of rubbers (chloroprene or EPDM) and have different layers or plys containing either fiber cloth or cords for reinforcement. Both sides of the drive belt may be used to drive the different accessory drive components. When the back side of the drive belt is used to drive a pulley, the pulley is smooth. The drive belt is pulled by the crankshaft balancer pulley across the accessory drive component pulleys. The spring loaded drive belt tensioner keeps constant tension on the drive belt to prevent the drive belt from slipping. The drive belt tensioner arm will move when loads are applied to the drive belt by the accessory drive components and the crankshaft. The drive belt system may have an idler pulley, which is used to add wrap to the adjacent pulleys. Some systems use an idler pulley in place of an accessory drive component when the vehicle is not equipped with the accessory. Page 457 Page 10914 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 7597 Page 8960 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 11095 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6812 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 1598 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1145 Ambient Temperature Sensor / Switch HVAC: Diagrams HVAC Connector End Views Ambient Air Temperature Sensor Page 5284 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 1731 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Locations Starter Relay: Locations Fuse Block - Underhood (4.2L), Label Page 7896 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Body Control Module (BCM) C1 Body Control Module (BCM) C1 Page 1291 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 10603 12. Install the TCC solenoid with a new O-ring seal to the valve body. 13. Install the TCC solenoid bolts. Tighten the TCC solenoid retaining bolts to 11 N.m (97 lb in). 14. Install the internal wiring harness to the valve body. The internal wiring harness has a tab (1) on the edge of the conduit. 15. Place the tab between the valve body and the pressure switch in the location shown (2). Press the harness into position on the valve body bolt bosses (1, 3). Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: Customer Interest Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 9519 Page 1324 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 9228 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 5263 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 707 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 3368 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2905 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 4205 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5805 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10494 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2318 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2547 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3373 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8338 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 11229 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5884 Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 10796 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Page 9955 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 5470 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 754 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4321 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 4106 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 2126 Page 1819 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 6868 Page 380 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 8038 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 11058 Page 8298 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 8081 Page 6515 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 5944 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 834 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 2142 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5265 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 212 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8758 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 3308 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 7049 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 4157 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Coolant: Technical Service Bulletins Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Bulletin No.: 05-06-02-002B Date: January 18, 2008 INFORMATION Subject: DEX-COOL(R) Coolant - New Leak Detection Dye J 46366 - Replaces J 29545-6 Models: 1996-2008 GM Passenger Cars and Light/Medium Duty Trucks* (including Saturn) 1997-2008 Isuzu T-Series Medium Duty Tilt Cab Models Built in Janesville and Flint 1999-2008 Isuzu N-Series Medium Duty Commercial Models with 5.7L or 6.0L Gas Engine 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X *EXCLUDING 2006 and Prior Chevrolet Aveo, Epica, Optra, Vivant and Pontiac Matiz, Wave Supercede: This bulletin is being revised to include additional model years. Please discard Corporate Bulletin Number 05-06-02-002A (Section 06 - Engine/Propulsion System). Leak detection dye P/N 12378563 (J 29545-6) (in Canada P/N 88900915) may cause DEX-COOL(R) coolant to appear green in a black vessel making it appear to be conventional (green) coolant. This may cause a technician to add conventional coolant to a low DEX-COOL(R) system thus contaminating it. The green DEX-COOL(R) appearance is caused by the color of the leak detection dye which alters the color of the DEX-COOL(R) coolant. A new leak detection dye P/N 89022219 (J 46366) (in Canada P/N 89022220) has been released that does not alter the appearance of the DEX-COOL(R) coolant. When adding the new leak detection dye the color of the DEX-COOL(R) coolant will not change. For detecting leaks on any system that uses DEX-COOL(R) leak detection dye P/N 89022219 (in Canada P/N 89022220) should be used. The new leak detection dye can be used with both conventional and DEX-COOL(R) coolant. Disclaimer Page 9963 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Electrical - Proper Jump Starting Procedure Jump Starting: Technical Service Bulletins Electrical - Proper Jump Starting Procedure Bulletin No.: 04-06-03-005A Date: May 17, 2006 INFORMATION Subject: Proper Connection Information to Avoid Blown 125 Amp Fuse and Various Interior Electrical System Conditions When Jump Starting Vehicle Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer, TrailBlazer EXT 2002-2007 GMC Envoy, Envoy XL 2004-2005 GMC Envoy XUV 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-06-03-005 (Section 06 - Engine/Propulsion System). It has been found that some dealers may be using the IP battery positive stud at the underhood fuse block to jump start the vehicle. This bulletin is being issued to inform dealers that investigation has indicated the 125 amp mega fuse (no. 48) located in the engine compartment fuse block may be blown resulting in various electrical system conditions due to using this improper connection. To properly jump start the vehicle, you must always use the following connections. For the positive connection, use the battery terminal. For the negative connection, use the remote terminal located on the front engine lift bracket (marked "GND"). Page 6160 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 3731 Engine Block Heater: Service and Repair Coolant Heater Cord Replacement Coolant Heater Cord Replacement Removal Procedure 1. If equipped with a 4.2L engine, remove the powertrain control module (PCM). Refer to Powertrain Control Module Replacement. 2. Remove the coolant heater cord from the engine harness bracket (1). 3. Remove the coolant heater cord from the coolant heater (2). 4. If equipped with a 5.3L or 6.0L engine, disconnect the coolant heater cord from the coolant heater (1). 5. Remove the coolant heater cord clip from the engine harness. 6. Disconnect the coolant heater cord retainers (1) from the battery cover. Installation Procedure Page 9973 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 8180 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6116 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 572 4 - Console Mode Actuator - Auxiliary 5 - C309 6 - C307 Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70 2 - Park/Neutral Position (PNP) Switch Page 8749 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 1479 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8700 Fuel: Testing and Inspection Alcohol/Contaminants-in-Fuel Diagnosis (Without Special Tool) Alcohol/Contaminants-in-Fuel Diagnosis (without Special Tool) Test Description Water contamination in the fuel system may cause driveability conditions such as hesitation, stalling, no start, or misfires in one or more cylinders. Water may collect near a single fuel injector at the lowest point in the fuel injection system and cause a misfire in that cylinder. If the fuel system is contaminated with water, inspect the fuel system components for rust or deterioration. Ethanol concentrations of greater than 10 percent can cause driveability conditions and fuel system deterioration. Fuel with more than 10 percent ethanol could result in driveability conditions such as hesitation, lack of power, stalling, or no start. Excessive concentrations of ethanol used in vehicles not designed for it may cause fuel system corrosion, deterioration of rubber components, and fuel filter restriction. Alcohol in Fuel Testing Procedure The fuel sample should be drawn from the bottom of the tank so that any water present in the tank will be detected. The sample should be bright and clear. If alcohol contamination is suspected then use the following procedure to test the fuel quality. 1. Using a 100 ml (3.38 oz) specified cylinder with 1 ml (0.034 oz) graduation marks, fill the cylinder with fuel to the 90 ml (3.04 oz) mark. 2. Add 10 ml (0.34 oz) of water in order to bring the total fluid volume to 100 ml (3.38 oz) and install a stopper. 3. Shake the cylinder vigorously for 10-15 seconds. 4. Carefully loosen the stopper in order to release the pressure. 5. Re-install the stopper and shake the cylinder vigorously again for 10-15 seconds. 6. Put the cylinder on a level surface for approximately 5 minutes in order to allow adequate liquid separation. If alcohol is present in the fuel, the volume of the lower layer, which would now contain both alcohol and water, will be more than 10 ml (0.34 oz). For example, if the volume of the lower layer is increased to 15 ml (0.51 oz), this indicates at least 5 percent alcohol in the fuel. The actual amount of alcohol may be somewhat more because this procedure does not extract all of the alcohol from the fuel. Particulate Contaminants in Fuel Testing Procedure The fuel sample should be drawn from the bottom of the tank so that any water present in the tank will be detected. The sample should be bright and clear. If the sample appears cloudy, or contaminated with water, as indicated by a water layer at the bottom of the sample, use the following procedure to diagnose the fuel. 1. Using an approved fuel container, draw approximately 0.5 liter (0.53 qt) of fuel. 2. Place the container on a level surface for approximately 5 minutes in order to allow settling of the particulate contamination. Particulate contamination will show up in various shapes and colors. Sand will typically be identified by a white or light brown crystals. Rubber will appear as black and irregular particles. 3. Observe the fuel sample. If any physical contaminants or water are present, clean the fuel system. Refer to Fuel System Cleaning. See: Service and Repair Page 2514 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 1905 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 8240 View of the connector when released from the component. View of another type of Micro 64 connector. Page 5720 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8412 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 7399 Body Control Module (BCM) C2 Page 10641 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor (2) from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps (1-5) to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. Page 10032 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4503 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8342 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 4936 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7698 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 7287 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1811 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 10459 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 5437 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 1794 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 3937 Important: The engine front cover must be installed within 10 minutes from when the sealer was applied. 2. Apply a 3 mm (0.12 in) bead of sealer to the trace grooves on back side of the engine front cover (1). Refer to Sealers, Adhesives, and Lubricants for the correct part number. 3. Also apply sealant on the inside 3 bolt hole bosses on the cover. 4. Align the oil pump to the crankshaft sprocket splines. 5. Install the front cover. Notice: Refer to Fastener Notice. 6. Install the front cover bolts, tightening the center bolt (1) last. Tighten the front cover bolts to 10 N.m (89 lb in). 7. Remove the J 44219. 8. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 9. Install the oil pan. Refer to Oil Pan Replacement. 10. Lower the vehicle. 11. Install the power steering pump. Refer to Power Steering Pump Replacement (4.2L) Power Steering Pump Replacement (Except 4.2L). 12. Install the crankshaft balancer. Refer to Crankshaft Balancer Replacement. 13. Install the water pump. Refer to Water Pump Replacement (LH6 and LS2). 14. Install the drive belt. Refer to Drive Belt Replacement. 15. Install the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. 16. Fill the engine with coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 1646 Page 1437 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 2102 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 3327 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 4150 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 11078 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 2179 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 3766 8. Install the A/C line bracket to the oil level indicator tube stud and secure the bracket with the nut. Tighten the A/C line bracket nut to 7 N.m (62 lb in). 9. Install the engine lift bracket and secure the lift hook with the bolts. Tighten the lift bracket bolts to 50 N.m (37 lb ft). 10. Install the A/C line bracket to the engine lift bracket and secure the A/C bracket with the bolt. Tighten the A/C bracket bolt to 10 N.m (89 lb in). 11. Install the intake manifold. Refer to Intake Manifold Replacement. Page 8112 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1807 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4643 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 2171 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8963 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 10783 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 697 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 8949 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 5981 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10375 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 983 1. Install the transfer case control module (1) to the mounting bracket. 2. Connect the 3 electrical connectors to the transfer case control module. 3. Install the transfer case control module and mounting bracket to the instrument panel mag beam. 4. Install the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 5. Install the access panel. 6. Program the transfer case shift control module. Refer to Control Module References. Page 10928 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9428 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9926 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8026 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9162 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9433 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 3124 Disclaimer Page 9160 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Diagram Information and Instructions Shift Solenoid: Diagram Information and Instructions Electrical Symbols Page 8580 Page 5282 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1899 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Testing and Inspection Radiator Cap: Testing and Inspection Pressure Cap Testing Tools required ^ J 24460-01 Cooling System Pressure Tester ^ J 42401 Radiator Cap / Surge Tank Test Adapter Pressure Cap Testing Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if radiator cap or surge tank cap is removed while the engine and radiator are still hot. 1. Remove the pressure cap. 2. Wash the pressure cap sealing surface with water. 3. Use the J 24460-01 (1) with J 42401 (2) in order to test the pressure cap. 4. Test the pressure cap for the following conditions: ^ Pressure release when the J 24460-01 exceeds the pressure rating of the pressure cap. ^ Maintain the rated pressure for at least 10 seconds. Note the rate of pressure loss. 5. Replace the pressure cap under the following conditions: ^ The pressure cap does not release pressure which exceeds the rated pressure of the cap. ^ The pressure cap does not hold the rated pressure. Page 5529 Page 6533 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 5542 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 2877 Disclaimer Page 11057 Shift Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 1771 Page 4485 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3499 Notice: Refer to Fastener Notice. 3. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 N.m (62 lb in). Important: Before reinstalling the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting. ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting. Important: A service replacement tire pressure sensor is shipped in OFF mode. In this mode the sensor's unique identification code cannot be learned into the passenger door modules (PDMs) memory. The sensor must be taken out of OFF mode by spinning the tire/wheel assembly above 32 km/h (20 mph) in order to close the sensors internal roll switch for at least 10 seconds. 4. Install the tire/wheel assembly on the vehicle. Refer to Tire and Wheel Removal and Installation. 5. Lower the vehicle. 6. Learn the tire pressure sensors. Refer to Tire Pressure Sensor Learn. Page 6297 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 148 Important The following information MUST be documented on the repair order. Failure to do so may result in a chargeback. - Customer vehicle condition. - Was a Service Lamp or Service Message illuminated? If yes, specify which Service Lamp or Service Message. - Was a DTC(s) set? If yes, specify which DTC(s) were set. - After following the procedure contained within this bulletin, could the condition be duplicated? ‹› If the condition was not duplicated, then document the affected module/component connector name and number on the repair order. - If the condition was duplicated after the procedure contained within this bulletin was followed, and additional diagnosis led to the replacement of a module or component, the SI Document ID Number MUST be written on the repair order. Parts Information Alternate Distributor For All of North America Note NyoGel(R) 760G Lubricant* is equivalent to GMSPO P/N 12377900, and P/N 10953529 (Canada), specified for use to correct the condition in this bulletin. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to: Warranty Information (Saab Models) Specifications Oil Pan: Specifications Oil Pan Bolt Ends .................................................................................................................................................... .................................................... 10 N.m (89 lb in) Sides ................................................................... ..................................................................................................................................... 25 N.m (18 lb ft) Oil Pan Drain Plug ............................................................................................................................... ....................................................... 26 N.m (19 lb ft) Oil Pan Nut ....................................................... .......................................................................................................................................... 25 N.m (18 lb ft) Oil Pan Stud ................................................................................................................................ ............................................................... 11 N.m (97 lb in) Page 9303 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8950 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 448 Page 8655 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1933 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 4617 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9959 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 194 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 11026 8. Remove the 3-2 control solenoid retainer. 9. Remove the 3-2 control solenoid. Installation Procedure 1. Install the 3-2 control solenoid. 2. Install the 3-2 control solenoid retainer. 3. Install the 1-2 and 2-3 shift solenoids. 4. Install the 1-2 and 2-3 shift solenoid retainers. 5. Install the pressure control solenoid. Page 10801 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 3042 For vehicles repaired under warranty, use the table above. Disclaimer Page 512 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 3812 13. Graphic shows left, right is similar. Remove the right engine mount bracket bolts. 14. Remove the right engine mount bracket. 15. Graphic shows left, right is similar. Remove the right frame engine mount bracket bolts, if required. 16. Remove the right frame engine mount bracket, if required. Installation Procedure 1. Graphic shows left, right is similar. Install the right frame engine mount bracket, if removed. Notice: Refer to Fastener Notice. 2. Install the right frame engine mount bracket bolts, if removed. Tighten the mount bracket bolts to 110 N.m (81 lb ft). Page 745 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8355 View of the connector when released from the component. View of another type of Micro 64 connector. Page 1604 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Diagrams Oil Pressure Sender: Diagrams Displays and Gages Connector End Views Engine Oil Pressure (EOP) Switch (4.2L) Page 9267 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 7129 Step 1 - Step 4 The number below refers to the step number on the diagnostic table. 4. If the battery positive voltage and ground circuits of the DLC are functioning properly, the malfunction must be due to the scan tool. Scan Tool Does Not Communicate With Class 2 Device (4.2L W/O Immobilizer) SCAN TOOL DOES NOT COMMUNICATE WITH CLASS 2 DEVICE (4.2L W/O IMMOBILIZER) CIRCUIT DESCRIPTION Modules connected to the class 2 serial data circuit monitor for serial data communications during normal vehicle operation. Operating information and commands are exchanged among the modules. Connecting a scan tool to the data link connector (DLC) allows communication with the modules for diagnostic purposes. DTCs may be set due to this symptom and during this diagnostic procedure. Complete the diagnostic procedure in order to ensure all the DTCs are diagnosed and cleared from memory. DIAGNOSTIC AIDS - The body control module (BCM) detects that the ignition is ON and sends the appropriate power mode message to the other modules. Therefore, the BCM must be connected to the DLC for any other module to communicate with the scan tool. - When the class 2 serial data circuit is shorted to ground or to voltage, the following DTCs may set: U1300 - U1301 - U1305 TEST DESCRIPTION Page 6717 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 8907 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9418 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 2491 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 2572 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6608 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 5483 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 3764 8. Remove the ignition control module. 9. Disconnect the engine electrical harness housing from the camshaft cover (1) taking care not to damage the clips that hold the housing in place. 10. Disconnect the fuel injection harness electrical connector. 11. Loosen and remove the camshaft cover bolts. 12. Remove the camshaft cover. 13. Clean and inspect the camshaft cover. Refer to Camshaft Cover Cleaning and Inspection. Page 8578 Page 4458 Page 10049 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5290 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5154 Engine Controls - A/C Not Cold/MIL ON/DTC P0116 Set PROM - Programmable Read Only Memory: All Technical Service Bulletins Engine Controls - A/C Not Cold/MIL ON/DTC P0116 Set Bulletin No.: 06-01-39-012 Date: November 09, 2006 TECHNICAL Subject: Air Conditioning Not Cold, Malfunction Indicator Lamp On, DTC P0116 (Reprogram PCM) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy Models 2007 Saab 9-7X with 4.2L Engine (VIN S - RPO LL8) Condition Some customers may comment that the Air Conditioning (A/C) does not get cold enough. Others may comment that the Malfunction Indicator Lamp (MIL) is on. Technicians may find that Diagnostic Trouble Code (DTC) P0116 (Engine Coolant Temperature Sensor Performance) has been set in the Powertrain Control Module (PCM). Cause This condition may be caused by the software in the PCM that allows the P0116 to set. While the P0116 is active, the PCM will not allow the A/C compressor to engage. Correction Technicians are to reprogram the PCM in vehicles built prior to the VIN breakpoints shown. The updated PCM calibrations were released to dealerships that use the TIS2web application on August 23, 2006. They are contained in the new calibration entitled "New software with diagnostic enhancements for DTC P0483". The TIS satellite data update version 9.0 was broadcast to the field on September 3, 2006. For dealerships that use DVDs, the update will be included with version 9.0 that was mailed on September 13, 2006. As always, make sure your Tech 2(R) is updated with the latest software version. Refer to the Engine and Powertrain Control Module Programming and Setup procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 11171 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Wheels - Changing Procedures/Precautions Wheels: All Technical Service Bulletins Wheels - Changing Procedures/Precautions INFORMATION Bulletin No.: 06-03-10-010A Date: June 09, 2010 Subject: Information on Proper Wheel Changing Procedures and Cautions Models: 2011 and Prior GM Passenger Cars and Trucks 2010 and Prior HUMMER Models 2005-2009 Saab 9-7X 2005-2009 Saturn Vehicles Attention: Complete wheel changing instructions for each vehicle line can be found under Tire and Wheel Removal and Installation in Service Information (SI). This bulletin is intended to quickly review and reinforce simple but vital procedures to reduce the possibility of achieving low torque during wheel installation. Always refer to SI for wheel lug nut torque specifications and complete jacking instructions for safe wheel changing. Supercede: This bulletin is being revised to include the 2011 model year and update the available special tool list. Please discard Corporate Bulletin Number 06-03-10-010 (Section 03 Suspension). Frequency of Wheel Changes - Marketplace Driven Just a few years ago, the increasing longevity of tires along with greater resistance to punctures had greatly reduced the number of times wheels were removed to basically required tire rotation intervals. Today with the booming business in accessory wheels/special application tires (such as winter tires), consumers are having tire/wheel assemblies removed - replaced - or installed more than ever. With this increased activity, it opens up more of a chance for error on the part of the technician. This bulletin will review a few of the common concerns and mistakes to make yourself aware of. Proper Servicing Starts With the Right Tools The following tools have been made available to assist in proper wheel and tire removal and installation. - J 41013 Rotor Resurfacing Kit (or equivalent) - J 42450-A Wheel Hub Resurfacing Kit (or equivalent) Corroded Surfaces One area of concern is corrosion on the mating surfaces of the wheel to the hub on the vehicle. Excessive corrosion, dirt, rust or debris built up on these surfaces can mimic a properly tightened wheel in the service stall. Once the vehicle is driven, the debris may loosen, grind up or be washed away from water splash. This action may result in clearance at the mating surface of the wheel and an under-torqued condition. Caution Before installing a wheel, remove any buildup on the wheel mounting surface and brake drum or brake disc mounting surface. Installing wheels with poor metal-to-metal contact at the mounting surfaces can cause wheel nuts to loosen. This may cause a wheel to come off when the vehicle is moving, possibly resulting in a loss of control or personal injury. Whenever you remove the tire/wheel assemblies, you must inspect the mating surfaces. If corrosion is found, you should remove the debris with a die grinder equipped with a fine sanding pad, wire brush or cleaning disc. Just remove enough material to assure a clean, smooth mating surface. The J 41013 (or equivalent) can be used to clean the following surfaces: - The hub mounting surface - The brake rotor mounting surface - The wheel mounting surface Use the J 42450-A (or equivalent) to clean around the base of the studs and the hub. Lubricants, Grease and Fluids Page 6754 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 8784 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2424 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 4279 Page 7930 Crankshaft Position Sensor: Connector Views engine Controls Connector End Views Crankshaft Position (CKP) Sensor Page 4012 To prevent a repeat occurrence of the above condition, Do Not return the vehicle to the customer without replacing the AIP seal if water intrusion was determined to be the cause. If water intrusion was determined to be the cause for the replacement of the spark plug(s) and/or coil(s), the AIP seal should be replaced. Installation of AIP Seal To prevent a reoccurrence, the revised AIP seal will redirect the rain water flow away from the engine cam cover area. The following repair information outlined in this bulletin will assist technicians in the replacement of the revised AIP seal. Remove the original rear hood (AIP) seal to the air inlet grille panel staked studs. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Cut three or four slits through the original rear hood (AIP) seal to the air inlet grille panel plastic staked studs. Carefully remove the rear hood (AIP) seal from the staked plastic studs. Do Not cut off the top or staked portion of the plastic studs holding the rear hood (AIP) seal to the air inlet grille panel. If removed, the air inlet grille panel will have to be replaced. Refer to the above illustration (1). DO NOT remove the air inlet grille panel from vehicle, Illustration purpose Only. Page 5357 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6695 Coolant Temperature Sensor/Switch (For Computer): Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 2169 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 7983 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9071 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10314 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 3363 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 8969 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7242 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 5636 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Radiator Inlet Hose Replacement Radiator Hose: Service and Repair Radiator Inlet Hose Replacement Radiator Inlet Hose Replacement (LL8) Tools Required J 38185 Hose Clamp Pliers Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the air cleaner outlet resonator. Refer to Air Cleaner Outlet Resonator Replacement. 3. Using J 38185 reposition the radiator inlet hose clamp (1) from the engine. 4. Remove the radiator outlet hose from the engine. 5. Using J 38185 reposition the radiator inlet hose clamp (2) from the radiator. 6. Remove the radiator inlet hose from the radiator. Installation Procedure 1. Install the radiator inlet hose to the radiator. 2. Using J 38185 reposition the radiator inlet hose clamp to the radiator. 3. Install the radiator inlet hose to the engine. 4. Using J 38185 reposition the radiator inlet hose clamp to the engine. 5. Install the air cleaner outlet resonator. Refer to Air Cleaner Outlet Resonator Replacement. 6. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 2428 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2534 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1569 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 541 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7445 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Parts Center (WPC) Request Form IMPORTANT NOTE WHEN PRINTING THIS FORM: If the form prints out on two pages, make certain you fax BOTH pages so that the WPC receives all the needed information. Missing information will delay or prevent the part from being shipped. Page 8063 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Page 7190 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 9438 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4526 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 9245 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7217 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 3029 Disclaimer Page 1842 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9161 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1976 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7854 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 409 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 10499 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 8083 Page 1941 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1891 Page 10154 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7563 Page 6623 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 9713 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4854 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5439 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 6634 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4384 Radiator Cooling Fan Motor Relay: Service and Repair Cooling Fan Relay Replacement Tools Required J 43244 Relay Puller Pliers Removal Procedure 1. Remove the underhood electrical center cover. 2. Using the J 43244, remove the cooling fan relay (3). Installation Procedure Notice: Installation of the proper relay is critical. If an enhanced relay - equipped with a diode - is installed into a position requiring a standard relay - equipped without a diode - excessive current will damage any components associated with the relay or its associated circuits. 1. Install the cooling fan relay (3). 2. Install the underhood electrical center cover. Page 1377 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 5109 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 8739 Page 2936 Drive Belt: Testing and Inspection Drive Belt Rumbling and Vibration Diagnosis Drive Belt Rumbling and Vibration Diagnosis Diagnostic Aids The accessory drive components can have an affect on engine vibration. Vibration from the engine operating may cause a body component or another part of the vehicle to make rumbling noise. Vibration can be caused by, but not limited to the A/C system over charged, the power steering system restricted or the incorrect fluid, or an extra load on the generator. To help identify an intermittent or an improper condition, vary the loads on the accessory drive components. The drive belt may have a rumbling condition that can not be seen or felt. Sometimes replacing the drive belt may be the only repair for the symptom. If replacing the drive belt, completing the diagnostic table, and the noise is only heard when the drive belts are installed, there might be an accessory drive component with a failure. Varying the load on the different accessory drive components may aid in identifying which component is causing the rumbling noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This test is to verify that the symptom is present during diagnosing. Other vehicle components may cause a similar symptom. 3. This test is to verify that one of the drive belts is causing the rumbling noise or vibration. Rumbling noise may be confused with an internal engine noise due to the similarity in the description. Remove only one drive belt at a time if the vehicle has multiple drive belts. When removing the drive belts the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspecting the drive belts is to ensure that they are not causing the noise. Small cracks across the ribs of the drive belt will not cause the noise. Belt separation is identified by the plys of the belt separating and may be seen at the edge of the belt our felt as a lump in the belt. 5. Small amounts of pilling is normal condition and acceptable. When the pilling is severe the drive belt does not have a smooth surface for proper operation. 9. Inspecting of the fasteners can eliminate the possibility that the wrong bolt, nut, spacer, or washer was installed. 11. This step should only be performed if the water pump is driven by the drive belt. Inspect the water pump shaft for being bent. Also inspect the water pump bearings for smooth operation and excessive play. Compare the water pump with a known good water pump. 12. Accessory drive component brackets that are bent, cracked, or loose may put extra strain on that accessory component causing it to vibrate. Page 641 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 10568 Control Module: Service and Repair Transmission Control Module Replacement Service of the transmission control module (TCM) should consist of reprogramming of the TCM. If the diagnostic procedures call for the TCM to be replaced, the replacement TCM should be checked to ensure that the correct part is being used. If the correct part is being used, remove the faulty TCM and install the new service TCM. The replacement TCM must be programmed. Removal Procedure 1. Disconnect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 2. Disconnect the cooling fan electrical connector for additional clearance while removing the TCM. 3. Depress the engine control module (ECM)/TCM cover retainers (2). 4. Remove the ECM/TCM cover from the ECM/TCM bracket (1). Notice: Refer to Handling Electrostatic Discharge Sensitive Parts Notice. Important: It is not necessary to disconnect the TCM electrical connectors in order to remove the TCM from the ECM/TCM bracket. Only disconnect the electrical connectors if servicing of component requires disconnecting of the electrical connectors. Important: Remove any debris from around the TCM connector surfaces before servicing the TCM. Inspect the TCM module connector gaskets when diagnosing or replacing the TCM. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the TCM. 5. Disconnect the TCM electrical connector (1) from the TCM (2) Page 5023 Page 9283 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8161 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 1058 Seat Position Sensor - Rear (w/Memory) Page 5591 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2992 Disclaimer Page 4237 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 1566 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1378 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 8635 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5749 Page 10838 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1021 Steering Mounted Controls Assembly: Service and Repair Steering Wheel Control Switch Assembly Replacement Removal Procedure 1. Remove the steering wheel. 2. Remove the shroud retaining screws from the back of the steering wheel. 3. Remove the shroud from the steering wheel. 4. Position a blunt ended tool into the wire harness cavity (1) and apply moderate pressure in order to partially remove the steering wheel control switch from the steering wheel. 5. Disconnect the steering wheel control switch electrical connector. Important: The bulbs in the steering wheel control switches are not serviceable. The switches should be replaced only as an assembly. 6. Remove the steering wheel control switch from the steering wheel. Installation Procedure 1. Position the steering wheel control switch to the steering wheel. 2. Connect the electrical connector to the steering wheel control switch. 3. Install the steering wheel control switch into the steering wheel, ensuring the retaining tabs are fully seated. Page 6535 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 873 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Service and Repair Coolant Reservoir: Service and Repair Coolant Recovery Reservoir Replacement Removal Procedure 1. Remove the air cleaner assembly. Refer to Air Cleaner Assembly Replacement for the 4.2L engine or Air Cleaner Assembly Replacement for the 5.3L engine, or Air Cleaner Assembly Replacement for the 6.0L engine. 2. Remove the accumulator. Refer to Accumulator Replacement. 3. Remove the coolant hoses from the coolant recovery reservoir and plug the hoses and the coolant recovery reservoir outlets with suitable plugs (2). 4. Remove the nut and bolt securing the coolant recovery reservoir. 5. Remove the coolant recovery reservoir. Installation Procedure 1. Install the coolant recovery reservoir. Notice: Refer to Fastener Notice. 2. Install the coolant recovery reservoir bolt. Tighten the bolt to 12 N.m (106 lb in). 3. Install the coolant recovery reservoir nut. Tighten the nut to 10 N.m (89 lb in). 4. Install the coolant hose to the coolant recovery reservoir (2). 5. Install the accumulator. Refer to Accumulator Replacement. 6. Install the air cleaner assembly. Refer to Air Cleaner Assembly Replacement for the 4.2L engine or Air Cleaner Assembly Replacement for the 5.3L engine, or Air Cleaner Assembly Replacement for the 6.0L engine. Page 8792 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5747 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7199 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Locations Air Injection Control Valve Relay: Locations Fuse Block - Underhood (4.2L), Label Page 5094 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6350 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9323 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8688 Fuel: Technical Service Bulletins Fuel System - TOP TIER Detergent Gasoline (Canada) INFORMATION Bulletin No.: 05-06-04-022G Date: October 27, 2010 Subject: TOP TIER Detergent Gasoline Information and Available Brands (Deposits, Fuel Economy, No Start, Power, Performance, Stall Concerns) - Canada ONLY Models: 2011 and Prior GM Passenger Cars and Trucks (Canada Only) Supercede: This bulletin is being revised to update the model years and include an additional gasoline brand as a TOP TIER source. Please discard Corporate Bulletin Number 05-06-04-022F (Section 06 - Engine/Propulsion System). In the U.S., refer to the latest version of Corporate Bulletin Number 04-06-04-047I. A new class of fuel called TOP TIER Detergent Gasoline is appearing at retail stations of some fuel marketers. This gasoline meets detergency standards developed by six automotive companies. All vehicles will benefit from using TOP TIER Detergent Gasoline over gasoline containing the "Lowest Additive Concentration" recommended by the Canadian General Standards Board (CGSB). Those vehicles that have experienced deposit related concerns may especially benefit from use of TOP TIER Detergent Gasoline. Intake valve: 16,093 km (10,000 mi) with TOP TIER Detergent Gasoline Intake valve: 16,093 km (10,000 mi) with Minimum Additive recommended by the CGSB Top Tier Fuel Availability Chevron was the first to offer TOP TIER Detergent Gasoline in Canada. Shell became the first national gasoline retailer to offer TOP TIER Detergent Gasoline across Canada. Petro-Canada began offering TOP TIER Detergent Gasoline nationally as of October 1, 2006. Sunoco began offering TOP TIER Detergent Gasoline in March of 2007. Esso began offering TOP TIER Detergent Gasoline in May of 2010. Page 5662 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5177 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6307 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 10706 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 5484 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 724 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5689 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8471 Important: Do NOT reuse the old exhaust seal. ALWAYS replace the exhaust seal to prevent exhaust leaks. 6. Install the converter pipe to the exhaust manifold with a NEW exhaust seal. 7. Hand thread the nuts evenly against the exhaust flange until the pipe is secure. Tighten the nuts to 50 N.m (37 lb ft). 8. Install the H2OS. Refer to Heated Oxygen Sensor 2 Replacement. 9. Lower the vehicle. Page 6080 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4490 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6077 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 334 For vehicles repaired under warranty, use the table. Disclaimer Page 10863 8. Remove the 3-2 control solenoid retainer. 9. Remove the 3-2 control solenoid. Installation Procedure 1. Install the 3-2 control solenoid. 2. Install the 3-2 control solenoid retainer. 3. Install the 1-2 and 2-3 shift solenoids. 4. Install the 1-2 and 2-3 shift solenoid retainers. 5. Install the pressure control solenoid. Page 2041 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8310 4. Position the tool J 41364-A onto the park/neutral position switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. Notice: Refer to Fastener Notice. 5. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts securing the switch to 25 N.m (18 lb ft). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Connect the electrical connectors to the switch. 8. Install the transmission control lever to the manual shaft with the nut. Tighten the control lever nut to 25 N.m (18 lb ft). 9. Lower the vehicle. 10. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. If proper operation of the switch can not be obtained, replace the switch. Page 10802 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Sensor: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Page 5875 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 5503 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3730 Tighten the nuts to 8 N.m (71 lb in). 14. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 5239 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 9190 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 5181 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 10027 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 3262 Page 357 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Bulletin No.: 04-03-10-012B Date: February 01, 2008 INFORMATION Subject: Pitting and Brake Dust on Chrome wheels Models: 2008 and Prior GM Passenger Cars and Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 04-03-10-012A (Section 03 - Suspension). Analysis of Returned Wheels Chrome wheels returned under the New Vehicle Limited Warranty for pitting concerns have recently been evaluated. This condition is usually most severe in the vent (or window) area of the front wheels. This "pitting" may actually be brake dust that has been allowed to accumulate on the wheel. The longer this accumulation builds up, the more difficult it is to remove. Cleaning the Wheels In all cases, the returned wheels could be cleaned to their original condition using GM Vehicle Care Cleaner Wax, P/N 12377966 (in Canada, P/N 10952905). When using this product, you should confine your treatment to the areas of the wheel that show evidence of the brake dust build-up. This product is only for use on chromed steel or chromed aluminum wheels. Parts Information Warranty Information Wheel replacement for this condition is NOT applicable under the terms of the New Vehicle Limited Warranty. Disclaimer Page 10221 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 6353 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6613 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 10952 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8643 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3214 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9210 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8916 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Locations Headlamp Switch Page 8790 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 7498 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 3628 Models Supercede: This bulletin is being revised to add model years, models and additional information. Please discard Corporate Bulletin Number 00-00-89-008E (Section 00 - General Information). Some customers may want to tow their vehicle behind another vehicle with all FOUR tires on the ground. This is referred to as "dinghy" towing. Towing in this manner is acceptable only on the certain vehicles. The vehicle should be properly equipped and prepared as described below. The passenger cars listed above are the vehicles that CAN be dinghy towed. Passenger cars not listed above are vehicles where dinghy towing is not permitted or recommended. Certain 4WD trucks can be dinghy towed depending on the transfer case option. Rear wheel drive and AWD trucks should NOT be dinghy towed. Refer to the truck models and transfer case options below. Please refer to the applicable vehicle Owner's Manual before towing. Passenger Cars Page 3269 Fuse Block - Rear, Label Usage Page 1455 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 6926 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10428 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 6744 View of the connector when released from the component. View of another type of Micro 64 connector. Page 1740 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 513 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5063 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70 2 - Park/Neutral Position (PNP) Switch Page 530 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 3227 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 7740 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 1367 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 4365 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 9430 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8996 1. Install the fuel injector harness (2) to the fuel rail (1). 2. Install the fuel injectors (3) to the fuel rail. Installation Procedure 1. Lubricate the new lower injector O-ring seals with clean engine oil. 2. Install the new O-ring seals on the spray tip end of each injector. 3. Install the fuel rail assembly (1). Page 10019 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 447 US English/Metric Conversion US English/Metric Conversion Page 6191 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1485 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6554 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 8653 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 11154 Shift Solenoid: Connector Views 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side Page 7462 Page 3407 Fuse Block - Underhood C9 Page 7431 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 843 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 9478 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 10179 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 6541 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9211 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 3961 Step 1 - Step 6 Page 4609 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 1194 Fuel Gauge Sender: Service and Repair Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. 4. Clean the fuel sender sealing surfaces (4). Page 8924 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7245 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 871 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Fuel Pressure Gage Installation and Removal Fuel Pressure: Testing and Inspection Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 6112 Page 381 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 2326 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 9219 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10233 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 2194 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 7650 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 3293 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 11185 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 6171 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8831 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 9158 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9137 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 5661 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 1742 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 5936 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6015 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 610 Body Control Module: Diagrams Body Control Module (BCM) C3 Body Control Module (BCM) C3 Page 3332 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9154 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 8657 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 8794 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7464 Page 2494 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Campaign - Possible Fuel Sender Port Fracture Fuel Gauge Sender: Recalls Campaign - Possible Fuel Sender Port Fracture Subject: Service Update for Inventory and Customer Vehicles-Fuel Sending Unit Port Fracture-Extended Start/Sluggish Acceleration/Check Engine Light-Expires with Base Warranty # 07005 - (02/16/2007) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 Saab 9-7X THIS SERVICE UPDATE INCLUDES VEHICLES IN DEALER INVENTORY AND CUSTOMER VEHICLES THAT RETURN FOR ANY TYPE OF SERVICE, AND WILL EXPIRE AT THE END OF THE INVOLVED VEHICLE'S NEW VEHICLE LIMITED WARRANTY PERIOD. Purpose This bulletin provides a service procedure to determine if a fuel tank sending unit requires replacement on certain 2007 Buick Rainier, Chevrolet Trailblazer, GMC Envoy, and Saab 9-7X vehicles. The fuel tank sending unit on these vehicles may have a fractured internal port. A fractured port will not deliver fuel to the engine at the designed pressure. If this were to occur, it could result in an extended start, sluggish acceleration, and/or the illumination of the check engine light. This service procedure should be completed as soon as possible on involved vehicles currently in dealer inventory and customer vehicles that return to the dealer/retailer for any type of service during the New Vehicle Limited Warranty coverage period. Vehicles Involved A list of involved vehicles currently in dealer inventory is attached to the Administrative Message (GM US), Dealer Communication (Canada), or IRIS (Saab U.S.), used to release this bulletin. Customer vehicles that return for service, for any reason, and are still covered under the vehicle's base warranty, and are within the VIN breakpoints shown, should be checked for vehicle eligibility in the appropriate system listed below. Important: Dealers are to confirm vehicle eligibility prior to beginning repairs by using the system(s) below. Not all vehicles within the above breakpoints may be involved. -- GM dealers and Canadian Saab retailers should use GMVIS. -- US Saab dealers should use IRIS On-Line Recall/Campaign Inquiry. Parts Information - GM and Saab Canada Only Parts required to complete this service update are to be obtained from General Motors Service Parts Operations (GMSPO). Please refer to your "involved vehicles listing" before ordering parts. Normal orders should be placed on a DRO = Daily Replenishment Order. In an emergency situation, parts should be ordered on a CSO = Customer Special Order. Parts Information - Saab US Only Page 8874 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Page 11018 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor (2) from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps (1-5) to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. Page 2078 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 2681 3. Insert the sensor in the wheel hole with the air passage facing away from the wheel. Notice: Refer to Fastener Notice. 4. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 N.m (62 lb in). Important: Before installing the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting . ^ Install the tire/wheel assembly on the vehicle. Refer to Tire and Wheel Removal and Installation. ^ Lower the vehicle. Page 7836 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 2497 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 1433 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 7043 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 1966 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 10968 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1812 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 4304 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 3315 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 2504 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5610 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10505 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 5833 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 4127 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Input Speed Sensor (ISS) Harness Transmission Speed Sensor: Diagrams Input Speed Sensor (ISS) Harness Input Speed Sensor (ISS) Harness Input Speed Sensor (ISS) Harness Page 7618 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6470 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 5246 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1043 Front Passenger Door Module (FPDM) Page 10420 Torque Converter Clutch Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8738 Brakes - Squeak Noise On Brake Pedal Application Brake Fluid: Customer Interest Brakes - Squeak Noise On Brake Pedal Application TECHNICAL Bulletin No.: 08-05-22-002C Date: April 07, 2009 Subject: Squeak Noise On Brake Apply (Remove Brake Fluid from Master Cylinder and Refill) Models: 2004-2007 Buick Rainier 2008 Buick Enclave 2004-2008 Chevrolet Colorado, TrailBlazer, TrailBlazer EXT, TrailBlazer SS 2008 Chevrolet Malibu 2009 Chevrolet Malibu (VIN position 11, 4 Orion MI. build with Build Date Prior to April 20, 2009) 2004-2008 GMC Canyon, Envoy, Envoy XL, Envoy XUV 2007-2008 GMC Acadia 2008 Pontiac G6 2009 Pontiac G6 (VIN position 11, 4 Orion MI. build with Build Date Prior to April 20, 2009) 2007-2008 Saturn OUTLOOK 2008 Saturn AURA 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to update model years. Please discard Corporate Bulletin Number 08-05-22-002B (Section 05 - Brakes). Condition Some customers may comment on a squeak noise when the brake pedal is applied or when released. This noise is normally heard when the brake pedal is slowly applied with the engine on or off, but can occur when the brake pedal is released. The noise may be isolated to the master cylinder area. Correction To correct this concern, remove as much of the old brake fluid from the master cylinder as possible and refill with a new DOT 3 brake fluid, P/N 88862806 (in Canada, use P/N 88862807). Start the vehicle and fully cycle the brake pedal until the noise diminishes to allow the new fluid to enter the system. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Warranty Information (Saab U.S. Models) Page 10642 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Notice: Refer to Fastener Notice. 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). Page 7715 Page 9423 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 1874 Oxygen Sensor: Connector Views Engine Controls Connector End Views Heated Oxygen Sensor (HO2S) Sensor 1 Heated Oxygen Sensor (HO2S) Sensor 2 Page 3084 Fluid - Differential: Fluid Type Specifications AXLE LUBRICANT FRONT AXLE SAE 75W-90 Synthetic Axle Lubricant (GM Part No. U.S. 89021677, in Canada 89021678) meeting GM Specification 9986115. REAR AXLE (EXCEPT SS MODEL) SAE 75W-90 Synthetic Axle Lubricant (GM Part No. U.S. 89021677, in Canada 89021678) meeting GM Specification 9986115. REAR AXLE (SS MODEL) SAE 75W-90 Synthetic Axle Lubricant (GM Part No. U.S. 89021677, in Canada 89021678) meeting GM Specification 9986115. With a complete drain and refill add 5.5 ounces (163 ml) of Limited-Slip Axle Lubricant Additive (GM Part No. U.S. 1052358, in Canada 992694) where required. Page 5330 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9097 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4375 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4256 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 5910 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7802 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 5909 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 7086 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10034 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 1072 Power Seat Switch: Service and Repair Driver Seat Adjuster Memory Switch Replacement DRIVER SEAT ADJUSTER MEMORY SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Lift up on the front edge of the door lock and side window switch (1) in order to release the front retaining clip. 2. Lift up on the rear edge of the switch panel in order to release the 2 rear retaining clips. 3. Remove the electrical connector (2) from the memory seat switch. 4. Remove the memory seat switch from the lock and door lock and side window switch (1). INSTALLATION PROCEDURE 1. Position the memory seat switch to the lock and door lock and side window switch (1). 2. Connect the electrical connector (2) to the memory seat switch. 3. Install the door lock and side window switch (1). Verify that the front retaining clips and the rear retaining clips are fully seated. Page 7865 View of the connector when released from the component. View of another type of Micro 64 connector. Page 4270 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10771 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 8909 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 11081 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 232 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7372 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5867 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 10746 Shift Interlock Solenoid: Service and Repair Automatic Transmission Shift Lock Actuator Replacement Important: After assembling the shift lock actuator, turn the ignition forward but do not start (auxiliary position) and attempt to pull the lever from PARK with and without the brake pedal depressed to verify there is no gear access without the brake pedal depressed. Important: Ensure the key cannot be removed from the ignition unless both the shiftier is in PARK and the shift knob button has been depressed. Removal Procedure 1. Remove the console. Refer to Console Replacement. 2. Disconnect the shift lock actuator (3) electrical connector. Page 11011 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 10083 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt: Testing and Inspection Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt Chirping, Squeal, and Whine Diagnosis Diagnostic Aids ^ A chirping or squeal noise may be intermittent due to moisture on the drive belts or the pulleys. It may be necessary to spray a small amount of water on the drive belts in order to duplicate the customers concern. If spraying water on the drive belt duplicates the symptom, cleaning the belt pulleys may be the probable solution. ^ If the noise is intermittent, verify the accessory drive components by varying their loads making sure they are operated to their maximum capacity. An overcharged A/C system, power steering system with a pinched hose or wrong fluid, or a generator failing are suggested items to inspect. ^ A chirping, squeal or whine noise may be caused by a loose or improper installation of a body or suspension component. Other items of the vehicle may also cause the noise. ^ The drive belts will not cause a whine noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. The noise may not be engine related. This step is to verify that the engine is making the noise. If the engine is not making the noise do not proceed further with this table. 3. The noise may be an internal engine noise. Removing the drive belts one at a time and operating the engine for a brief period will verify the noise is related to the drive belt. When removing the drive belt the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspect all drive belt pulleys for pilling. Pilling is the small balls or pills or it can be strings in the drive belt grooves from the accumulation of rubber dust. 6. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found, refer to that accessory drive component for the proper installation procedure for that pulley. 10. Inspecting of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. 12. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 14. This test is to verify that the drive belt tensioner operates properly. If the drive belt tensioner is not operating properly, proper belt tension may not be achieved to keep the drive belt from slipping which could cause a squeal noise. 15. This test is to verify that the drive belt is not too long, which would prevent the drive belt tensioner from working properly. Also if an incorrect length drive belt was installed, it may not be routed properly and may be turning an accessory drive component in the wrong direction. 16. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure for that pulley. 17. This test is to verify that the pulleys are the correct diameter or width. Using a known good vehicle compare the pulley sizes. 19. Replacing the drive belt when it is not damaged or there is not excessive pilling will only be a temporary repair. Page 5796 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 5429 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9689 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4793 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 663 Page 8295 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4366 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 6934 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4273 Page 4648 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6743 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 10778 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 10353 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7077 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9657 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4230 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1868 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 3737 torque. Make sure to follow the installation procedure to prevent damage. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the torque converter access plug in the dry part of the oil pan. 3. Use the torque converter holding tool from the J 44226 kit and secure the torque converter while tightening the crankshaft balancer. 4. Install a new crankshaft balancer shim GM P/N 12573950 over the crankshaft snout, against the crankshaft gear. 5. Using the J 41478 install and seat the crankshaft balancer. 6. Remove the J 41478. Notice: Refer to Fastener Notice. 7. While still holding the flywheel, install the balancer washer and the bolt. Tighten the crankshaft balancer bolt to 150 N.m (110 lb ft). Use the J 36660-A in order to tighten the balancer bolt an additional 180 degrees. 8. Remove the torque converter holding tool. 9. Install the torque converter access plug into the oil pan. 10. Lower the vehicle. 11. Install the drive belt. Refer to Drive Belt Replacement. 12. Install the cooling fan and shroud. Refer to Cooling Fan and Shroud Replacement. Page 7375 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2307 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 10332 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10053 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7839 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5068 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1432 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7915 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 10534 Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Disclaimer Page 5497 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 5224 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 8600 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. OnStar(R) - Incorrect GPS Position Reported During Call Emergency Contact Module: Customer Interest OnStar(R) - Incorrect GPS Position Reported During Call Bulletin No.: 02-08-46-006C Date: January 08, 2008 INFORMATION Subject: Incorrect OnStar(R) Global Positioning System (GPS) Location Reported During OnStar(R) Call Models: 2000-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 02-08-46-006B (Section 08 - Body and Accessories). A small number of the above-mentioned vehicles may exhibit a condition in which the vehicle reports an inaccurate location to the OnStar(R) Call Center. This condition can only be identified via a button press to the OnStar(R) Call Center by the customer. Call Center personnel will be able to identify this inaccurate location condition. Customers will then be notified through the mail by OnStar(R) if their vehicle exhibits this condition. Once this condition has been identified OnStar(R) will instruct the customer to return to the dealership to have this condition corrected. It is not necessary to reconfigure the vehicle after the following procedure. In order to correct this condition you must cycle power to the OnStar(R) system. This can be done by either removing the fuses powering the OnStar(R) system or disconnecting the OnStar(R) module (VCIM) from the vehicle. As a last resort you can disconnect the vehicle's battery. The power needs to be removed from the system for approximately 15 minutes. After completing this procedure the vehicle should be taken to an area with an unobstructed view of the sky. The vehicle should be kept running for approximately 10 minutes to allow the vehicle to reacquire the global positioning system (GPS). Then contact the OnStar(R) Call Center via the blue OnStar(R) button and ask the advisor to verify the GPS position. If the OnStar(R) advisor still has an inaccurate GPS location refer to the Navigation Systems and Cellular Communications sub-sections in the Service Manual in order to diagnose and repair the concern. If the normal diagnostics lead to module replacement you will need to contact Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis and if appropriate order a replacement part. Replacement parts are usually shipped out within 24 hours and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part you will avoid a significant non-return core charge. Warranty Information (excluding Saab US Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) Page 7520 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 7456 Disclaimer Page 5641 Oxygen Sensor: Service and Repair Heated Oxygen Sensor 2 Replacement Heated Oxygen Sensor 2 Replacement Tools Required J39194-B Heated Oxygen Sensor Wrench Removal Procedure Notice: Refer to Heated Oxygen Sensor Resistance Learn Reset Notice. Notice: Refer to Heated Oxygen and Oxygen Sensor Notice. 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect the heated oxygen sensor (HO2S) electrical connector (1). Notice: Refer to Excessive Force and Oxygen Sensor Notice. 3. Remove the HO2S (2) using a J39194-B. Installation Procedure Important: Use special anti-seize compound on the heated oxygen sensor threads. The compound consists of graphite suspended in fluid and glass beads. The graphite burns away, but the glass beads remain, making the sensor easier to remove. New or service sensors already have the compound applied to the threads. If you remove an oxygen sensor and if for any reason you must reinstall the same oxygen sensor, apply the anti-seize compound to the threads before reinstallation. 1. Coat the threads of the heated oxygen sensor with the anti-seize compound P/N 5613695, or the equivalent if necessary. Notice: Refer to Component Fastener Tightening Notice. 2. Install the heated oxygen sensor (2) using a J39194-B. Tighten the HO2S to 41 N.m (30 lb ft). 3. Connect the HO2S electrical connector (1). 4. Lower the vehicle. Page 5696 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 8279 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10165 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 802 Page 7619 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 10185 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 5615 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 2503 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8850 * The fuel pump relay may need to be commanded ON a few times in order to obtain the highest possible fuel pressure. * DO NOT start the engine. Command the fuel pump relay ON with a scan tool. 3. Observe the fuel pressure gage with the fuel pump commanded ON. The fuel pressure should be 345-395 kPa (50-57 psi). ‹› If the fuel pressure is not 345-395 kPa (50-57 psi), refer to Fuel System Diagnosis. See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics 4. Monitor the fuel pressure gage for one minute. The fuel pressure should not decrease more than 34 kPa (5 psi). ‹› If the fuel pressure decreases more than 34 kPa (5 psi), refer to Fuel System Diagnosis. See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics 5. Perform the Fuel Injector Balance Test with Special Tool or the Fuel Injector Balance Test with Tech 2. Fuel Injector Balance Test with Special Tool 1. Set the amperage supply selector switch on the fuel injector tester to the Balance Test 0.5-2.5 amp position. 2. Disconnect the multi-way harness connector C101 of the fuel injectors. 3. Connect the J39021 using the J35616 to the ignition circuit terminal A and the control circuit of the appropriate fuel injector listed below: * Injector 1 terminal F * Injector 2 terminal G * Injector 3 terminal H * Injector 4 terminal B * Injector 5 terminal C * Injector 6 terminal D 4. Command the fuel pump relay ON and then OFF three times with a scan tool. On the last command, as the fuel pressure begins to slowly degrade and stabilize, select a fuel pressure within 34 kPa (5 psi) of the maximum pump pressure. Record this fuel pressure. This is the starting pressure at which you will pulse each injector. 5. Command the fuel pump relay ON one more time and energize the fuel injector by depressing the Push to Start Test button on the J39021 at the previously selected pressure. 6. After the injector stops pulsing, select Min from the Display Mode and record the Min pressure. Important: New test results will not be recorded if the Min/Max results are not cleared after each injector is tested. 7. Clear the Min/Max results. 8. Select Normal from the Display Mode. 9. Repeat steps 3 and 5 through 8 for each fuel injector. 10. Perform the Pressure Drop Calculation. Fuel Injector Balance Test with Tech 2 1. Command the fuel pump relay ON and then OFF three times with a scan tool. On the last command, as the fuel pressure begins to slowly degrade and stabilize, select a fuel pressure within 34 kPa (5 psi) of the maximum pump pressure. Record this fuel pressure. This is the starting pressure at which you will pulse each injector. 2. With a scan tool, select the Fuel Injector Balance Test function within the Special Functions menu. 3. Select an injector to be tested. 4. Press Enter to prime the fuel system. 5. Energize the fuel injector by depressing the Pulse Injector button on the scan tool at the previously selected pressure. 6. After the injector stops pulsing, select Min from the Display Mode on the CH-48027 and record the Min pressure. Important: New test results will not be recorded if the Min/Max results are not cleared after each injector is tested. 7. Clear the Min/Max results on the CH-48027. 8. Select Normal from the Display Mode on the CH-48027. 9. Press Enter on the scan tool to bring you back to the Select Injector screen. 10. Repeat steps 3 through 9 for each fuel injector. 11. Perform the Pressure Drop Calculation. Pressure Drop Calculation 1. Subtract the minimum pressure from the starting pressure for one fuel injector. The result is the pressure drop value. 2. Obtain a pressure drop value for each fuel injector. 3. Add all of the individual pressure drop values except for the injector suspected of being faulty. This is the total pressure drop. 4. Divide the total pressure drop by the number of fuel injectors that were added together. This is the average pressure drop. If the difference between Page 7661 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 3195 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10379 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 577 Control Module HVAC: Diagrams HVAC - Automatic HVAC Connector End Views Blower Motor Control Module Page 9153 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6658 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9120 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9205 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 4664 Radiator Cooling Fan Motor Relay: Service and Repair Cooling Fan Relay Replacement Tools Required J 43244 Relay Puller Pliers Removal Procedure 1. Remove the underhood electrical center cover. 2. Using the J 43244, remove the cooling fan relay (3). Installation Procedure Notice: Installation of the proper relay is critical. If an enhanced relay - equipped with a diode - is installed into a position requiring a standard relay - equipped without a diode - excessive current will damage any components associated with the relay or its associated circuits. 1. Install the cooling fan relay (3). 2. Install the underhood electrical center cover. Page 8129 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7538 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 5826 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 7712 Utility/Van Zoning UTILITY/VAN ZONING Page 8788 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 2189 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7829 Page 6107 Locations Variable Valve Timing Solenoid: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 1290 Page 10186 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5620 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 7379 US English/Metric Conversion US English/Metric Conversion Page 6093 US English/Metric Conversion US English/Metric Conversion Page 2796 Washer Fluid Level Switch: Service and Repair WASHER SOLVENT CONTAINER LEVEL SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the washer solvent container. 2. Using 2 flat-bladed tools, gently pry the level sensor switch (2) from the container (1). 3. Remove the level sensor switch grommet and discard. INSTALLATION PROCEDURE 1. Install a new level sensor switch grommet into the washer solvent container (1). 2. Lubricate the grommet with washer fluid to aid in the installation of the level sensor switch. 3. Ensure the square tab (3) is positioned vertical to the washer container. 4. Push inward in order to seat the level sensor (2) into the grommet. 5. Install the washer solvent container. Page 4573 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 4098 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 1692 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7766 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9012 1. Position the fuel feed pipe (1) to the EVAP purge pipe (2). 2. Install the EVAP/fuel hose/pipe assembly clips as noted during disassembly. 3. Position the EVAP/fuel hose/pipe assembly along the engine and transmission. 4. Connect the chassis fuel feed pipe (1) to the fuel tank. 5. Connect the chassis EVAP purge pipe (2) to the fuel tank. 6. Install the EVAP/fuel hose/pipe assembly (4) to the fuel pipe clip at the rear of the engine. 7. Use the following procedure with 2WD: Page 1020 Page 7773 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6728 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10953 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4489 View of the connector when released from the component. View of another type of Micro 64 connector. Page 4271 US English/Metric Conversion US English/Metric Conversion Page 11060 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1661 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 7310 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 1820 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 1355 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5013 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3789 Step 14 - Step 20 Diagrams Steering Angle Sensor: Diagrams Antilock Brake System Connector End Views Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Page 8828 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8251 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7107 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 11137 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10490 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 8815 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 7911 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 9774 Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 10217 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2382 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 4162 US English/Metric Conversion US English/Metric Conversion Page 10235 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 5475 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 11183 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3057 Contamination Mixing conventional green coolant with DEX-COOL(R) will degrade the service interval from 5 yrs./150,000 miles (240,000 km) to 2 yrs./30,000 miles (50,000 km) if left in the contaminated condition. If contamination occurs, the cooling system must be flushed twice immediately and re-filled with a 50/50 mixture of DEX-COOL(R) and clean water in order to preserve the enhanced properties and extended service interval of DEX-COOL(R). After 5 years/150,000 miles (240,000 km) After 5 yrs/150,000 miles (240,000 km), the coolant should be changed, preferably using a coolant exchanger. If the vehicle was originally equipped with DEX-COOL(R) and has not had problems with contamination from non-DEX-COOL(R) coolants, then the service interval remains the same, and the coolant does not need to be changed for another 5 yrs/150,000 miles (240,000 km) Equipment (Coolant Exchangers) The preferred method of performing coolant replacement is to use a coolant exchanger. A coolant exchanger can replace virtually all of the old coolant with new coolant. Coolant exchangers can be used to perform coolant replacement without spillage, and facilitate easy waste collection. They can also be used to lower the coolant level in a vehicle to allow for less messy servicing of cooling system components. It is recommended that you use a coolant exchanger with a vacuum feature facilitates removing trapped air from the cooling system. This is a substantial time savings over repeatedly thermo cycling the vehicle and topping-off the radiator. The vacuum feature also allows venting of a hot system to relieve system pressure. Approved coolant exchangers are available through the GMDE (General Motors Dealer Equipment) program. For refilling a cooling system that has been partially or fully drained for repairs other than coolant replacement, the Vac-N-Fill Coolant Refill Tool (GE-47716) is recommended to facilitate removal of trapped air from the cooling system during refill. Disclaimer Page 4568 Page 9247 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 4082 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. OnStar(R) - Loss of GPS Signal/Hands Free Issues Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Loss of GPS Signal/Hands Free Issues Bulletin No.: 02-08-46-007C Date: November 19, 2007 INFORMATION Subject: Information on OnStar(R) System - Possible Loss of GPS Signal, Hands-Free Calling Minutes Expire Prematurely and/or Inability to Add Hands-Free Calling Minutes Models: 2001-2008 GM Passenger Cars and Light Duty Trucks (Including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) System (RPO UE1) Supercede: This bulletin is being revised to add the 2008 model year, warranty information and to provide GPS signal recovery steps (under Dealer Action heading) to do PRIOR to determining if the VIU/VCIM needs replacement. Please discard Corporate Bulletin Number 02-08-46-007B (Section 08 - Body & Accessories). If the vehicle currently has analog-upgradable OnStar(R) hardware, then the customer should be made aware of the digital upgrade program per the latest version of Service Bulletin # 05-08-46-006. Any analog OnStar system that is not upgraded prior to the end of 2007 will be deactivated due to the upcoming phase-out of the analog cellular network in the U.S. and Canada. If the vehicle has recently been upgraded or has had a service replacement unit installed, this bulletin may not be applicable. Certain 2001-2008 model year vehicles equipped with OnStar(R) may exhibit a condition with the Global Positioning System (GPS) that causes inaccuracies in the GPS clock. The GPS system is internal to the OnStar(R) Vehicle Interface Unit (VIU) or the Vehicle Communication Interface Module (VCIM). This inaccuracy can result in a symptom where the OnStar(R) Call Center is unable to obtain an accurate GPS signal, hands-Free Calling minutes expire prematurely and/or the inability to add Hands-Free calling minutes. Customer Notification OnStar(R) will notify the customer by mail with instructions to contact their dealership service department. Dealer Action Not all vehicles will require VIU/VCIM replacement. The GPS signal in some vehicles may be recoverable. To determine if the signal is recoverable, simply connect the Tech2(R) and using the GPS information data display option, observe the GPS date and time. If the date/time stamps are equal to a date approximately 19 years in the future, the GPS clock has exceeded its capacity and the VIU/VCIM will need to be replaced. If the date/time stamp is in the past or near future, the GPS clock has simply generated an inaccurate value and may be recoverable by performing the following power-up reset. To initiate a power-up reset, battery voltage (batt. +) must be removed from the VIU/VCIM. The preferred methods, in order, of initiating the reset are outlined below. Remove the fuse that supplies Battery positive (Batt. +) voltage to the module (refer to the applicable Service Information schematics for the appropriate fuse). The next preferred method is to remove the connector to the OnStar(R) unit that Batt + is contained. The least preferable method is to remove the negative terminal of the vehicle battery. This will not only initiate the power-up reset, but it may also result in the loss of radio presets and other stored personalization information/settings in other modules as well. After initiating the power-up reset, the GPS data will be set to the defaulted date and time and will require an acquisition of the GPS signal in order to gain the proper date and time. Acquiring the GPS signal requires running the vehicle in an open/unobstructed view of the sky. First, contact OnStar(R) Technical Support by pressing the blue button. Allow the OnStar(R) Technical Advisor to activate the GPS recovery process. This should take approximately 10 minutes. Continue to Page 9364 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7648 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9468 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4537 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8694 Repairs to non-FlexFuel vehicles that have been fueled with E85 are not covered under the terms of the New Vehicle Warranty. A complete list of GM's FlexFuel vehicles can be found in this Service Bulletin, or at www.livegreengoyellow.com. E85 Compatible Vehicles The only E85 compatible vehicles produced by General Motors are shown. Only vehicles that are listed in the E85 Compatible Vehicles section of this bulletin and/or www.livegreengoyellow.com are E85 compatible. All other gasoline and diesel engines are NOT E85 compatible. Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion. Repairs to non-FlexFuel vehicles that have been fueled with E85 are not covered under the terms of the New Vehicle Warranty. Disclaimer Page 4151 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 2932 Step 14 - Step 20 Page 7202 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 5967 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 8394 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7479 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 9692 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 4204 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 5481 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 6497 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5331 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5005 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 1945 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 805 Utility/Van Zoning UTILITY/VAN ZONING Page 4631 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Specifications Axle Nut: Specifications Tighten the drive axle nut to ................................................................................................................ ................................................... 140 N.m (103 lb ft). Page 10351 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6277 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 9893 Utility/Van Zoning UTILITY/VAN ZONING Page 6945 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1471 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2220 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 811 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 696 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 5365 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5740 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 10210 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8141 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 297 Beneath Driver Seat Cushion Page 9663 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 3074 11. Grasp firmly while pulling down with a twisting motion in order to remove the filter. 12. Remove the filter seal. The filter seal may be stuck in the pump. If necessary, carefully use pliers or another suitable tool to remove the seal. 13. Discard the seal. 14. Inspect the fluid color. 15. Inspect the filter. Pry the metal crimping away from the top of the filter and pull apart. The filter may contain the following evidence for root cause diagnosis: ^ Clutch material ^ Bronze slivers indicating bushing wear ^ Steel particles 16. Clean the transmission case and the oil pan gasket surfaces with solvent, and air dry. You must remove all traces of the old gasket material. Installation Procedure 1. Coat the new filter seal with automatic transmission fluid. 2. Install the new filter seal into the transmission case. Tap the seal into place using a suitable size socket. 3. Install the new filter into the case. Page 4103 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 10342 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Service and Repair Blower Motor Relay: Service and Repair Blower Motor Relay Replacement Removal Procedure 1. Remove the cover of the under hood fuse block. 2. Remove the blower motor relay (1) from the under hood fuse block (2). Installation Procedure 1. Install the blower motor relay (1) to the under hood fuse block. 2. Install the cover of the under hood fuse block. Page 7805 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 5995 Page 3793 Drive Belt: Testing and Inspection Drive Belt Rumbling and Vibration Diagnosis Drive Belt Rumbling and Vibration Diagnosis Diagnostic Aids The accessory drive components can have an affect on engine vibration. Vibration from the engine operating may cause a body component or another part of the vehicle to make rumbling noise. Vibration can be caused by, but not limited to the A/C system over charged, the power steering system restricted or the incorrect fluid, or an extra load on the generator. To help identify an intermittent or an improper condition, vary the loads on the accessory drive components. The drive belt may have a rumbling condition that can not be seen or felt. Sometimes replacing the drive belt may be the only repair for the symptom. If replacing the drive belt, completing the diagnostic table, and the noise is only heard when the drive belts are installed, there might be an accessory drive component with a failure. Varying the load on the different accessory drive components may aid in identifying which component is causing the rumbling noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This test is to verify that the symptom is present during diagnosing. Other vehicle components may cause a similar symptom. 3. This test is to verify that one of the drive belts is causing the rumbling noise or vibration. Rumbling noise may be confused with an internal engine noise due to the similarity in the description. Remove only one drive belt at a time if the vehicle has multiple drive belts. When removing the drive belts the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspecting the drive belts is to ensure that they are not causing the noise. Small cracks across the ribs of the drive belt will not cause the noise. Belt separation is identified by the plys of the belt separating and may be seen at the edge of the belt our felt as a lump in the belt. 5. Small amounts of pilling is normal condition and acceptable. When the pilling is severe the drive belt does not have a smooth surface for proper operation. 9. Inspecting of the fasteners can eliminate the possibility that the wrong bolt, nut, spacer, or washer was installed. 11. This step should only be performed if the water pump is driven by the drive belt. Inspect the water pump shaft for being bent. Also inspect the water pump bearings for smooth operation and excessive play. Compare the water pump with a known good water pump. 12. Accessory drive component brackets that are bent, cracked, or loose may put extra strain on that accessory component causing it to vibrate. Service and Repair Cabin Air Filter: Service and Repair This vehicle is not equipped with a factory installed passenger compartment air filter. Page 2236 Page 5223 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 4579 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4487 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7382 Oxygen Sensor: Connector Views Engine Controls Connector End Views Heated Oxygen Sensor (HO2S) Sensor 1 Heated Oxygen Sensor (HO2S) Sensor 2 Page 8669 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 10037 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 8006 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1591 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9489 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 6746 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 3959 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 6075 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 544 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4833 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Page 3103 4. Apply pipe sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent to the fill plug threads. 5. Install the fill plug. Tighten the plug to 27 N.m (20 lb ft). 6. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 7. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 1031 Hood Sensor/Switch (For Alarm): Diagrams Immobilizer Connector End Views Hood Ajar Switch (UA2) Page 7905 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 4859 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 3477 Frequently Asked Questions Disclaimer Page 1674 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Page 6193 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 3637 Vehicle Lifting: Service and Repair Lifting and Jacking the Vehicle Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and strap the vehicle to the hoist. Caution: To avoid any vehicle damage, serious personal injury or death, always use the jackstands to support the vehicle when lifting the vehicle with a jack. Notice: Perform the following steps before beginning any vehicle lifting or jacking procedure: * Remove or secure all of the vehicle's contents in order to avoid any shifting or any movement that may occur during the vehicle lifting or jacking procedure. * The lifting equipment or the jacking equipment weight rating must meet or exceed the weight of the vehicle and any vehicle contents. * The lifting equipment or the jacking equipment must meet the operational standards of the lifting equipment or jacking equipment's manufacturer. * Perform the vehicle lifting or jacking procedure on a clean, hard, dry, level surface. * Perform the vehicle lifting or jacking procedure only at the identified lift points. DO NOT allow the lifting equipment or jacking equipment to contact any other vehicle components. Failure to perform the previous steps could result in damage to the lifting equipment or the jacking equipment, the vehicle, and/or the vehicle's contents. Vehicle Lifting * Ensure that the lifting equipment meets weight requirements and is in good working order. Always follow the lift manufacturer's instructions. * You may lift and support the front of the vehicle at the front suspension near the wheel assemblies. Ensure that the arms of the front cradle are extended as close to the steering knuckle as possible. * Ensure that the vehicle is centered on the hoist before attempting to lift. * When using a suspension-contact hoist, ensure that the rear cradle has adequate clearance for the rear stabilizer bar. Page 6481 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 846 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 1848 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 9431 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 5438 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7669 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 6578 6. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 7. Install the rear electrical center cover. 8. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 9. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 10. Connect the negative battery cable. 11. If installing a replacement BCM, program the BCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 1858 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 9846 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 8484 Canister Vent Valve: Service and Repair Evaporative Emission Canister Vent Solenoid Valve Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect the harness connector (2) from the evaporative emission (EVAP) canister vent valve. 3. Disconnect the EVAP vent pipe (3) from the EVAP canister vent valve (1). 4. Disengage the bracket retaining tab (2) and remove the EVAP canister vent valve. Installation Procedure 1. Install the EVAP canister vent valve (1) on the bracket (2). 2. Inspect for proper retention of the EVAP vent valve (1) on the bracket (2). 3. Connect the EVAP vent pipe (3) to the EVAP canister vent valve (1). 4. Connect the harness connector (2) to the EVAP canister vent valve. 5. Lower the vehicle. Page 7720 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 2464 For vehicles repaired under warranty, use the table. Disclaimer Page 3028 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 293 Electronic Adjustable Pedals (EAP) Relay Page 6408 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 8736 Page 1911 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 8143 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Locations Parking Lamp Relay: Locations Fuse Block - Rear, Label Page 6801 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 4547 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 6772 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4634 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 5917 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10183 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5841 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9370 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 4885 US English/Metric Conversion US English/Metric Conversion Page 8817 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5674 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2190 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 4033 4. Fill the cooling system, if necessary. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 6187 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6032 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 8352 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 7754 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5202 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5152 Page 8248 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9214 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10785 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6059 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9148 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 10961 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 6662 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 4356 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 3193 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7688 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 5080 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6798 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5126 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Body Control Module (BCM) C1 Body Control Module (BCM) C1 Page 1131 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 8904 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Service and Repair Rocker Arm Assembly: Service and Repair Valve Rocker Arm and Valve Lash Adjuster Replacement Tools Required EN-47945 Valve Spring Compressor Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Rotate the crankshaft until the affected cylinder valve is fully open (cam lobe fully depressing the spring). Important: Engine design and packaging does not allow all cylinder locations to use both fasteners for holding the tool to the cylinder head. One fastener is sufficient in these locations. 3. Install the EN-47945 on the engine cylinder head using either one or two of the supplied fasteners installed in the coil fastener hole. Important: DO NOT rotate the engine with the tool installed. It is possible to damage the valves if they contact the piston. Rotate the engine enough to come back to the base circle of the cam. 4. Rotate the engine clockwise enough to ensure the cam is on the base circle (spring will stay compressed by the tool). This will allow the lash adjuster and rocker to be removed. 5. Remove the valve rocker arm and valve lash adjuster. 6. Clean and inspect the valve rocker arm and valve lash adjuster. Refer to Valve Rocker Arm and Valve Lash Adjuster Cleaning and Inspection. Installation Procedure 1. Lubricate the valve rocker arm and fill the valve lash adjuster with oil. 2. Install the valve rocker arm and valve lash adjuster. 3. When the valve rocker arm and valve lash adjuster are in place, slowly rotate the engine counterclockwise enough that the cam lobe fully depresses the spring again. Page 4980 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Body Control Module (BCM) C1 Body Control Module (BCM) C1 Page 8742 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9578 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8720 For vehicles repaired under warranty, use the table above. Disclaimer Page 9143 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 8805 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 9581 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 6880 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9087 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10909 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 1698 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1421 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 7769 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 3924 7. Install the intake camshaft sprocket into the timing chain. Refer to Camshaft Position Actuator Diagnosis. 8. Align the dark link of the timing chain with the timing mark on the intake camshaft sprocket (1). 9. Feed the timing chain down through the opening in the head. 10. Install the timing chain on the crankshaft sprocket. Align the dark link of the timing chain with the timing mark on to the crankshaft sprocket. Important: It may be necessary to remove J 44221 to rotate and hold the camshaft (hex) to align the pin to the camshaft sprocket. 11. Install the intake camshaft sprocket onto the intake camshaft. 12. Install the intake camshaft sprocket washer and bolt. 13. Install the exhaust camshaft actuator into the timing chain. 14. Align the dark link of the timing chain with the timing mark on the exhaust camshaft actuator (1). Important: It may be necessary to remove the J 44221 to rotate and hold the camshaft hex to align the pin to the camshaft sprocket. 15. Install the exhaust camshaft actuator onto the exhaust camshaft. Notice: The camshaft actuator must be fully advanced during installation. Engine damage may occur if the camshaft actuator is not fully advanced. Important: Rotate the camshaft actuator clockwise relative to the camshaft prior to tightening the bolt. 16. Install the exhaust camshaft actuator bolt. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use J 36660-A to tighten the exhaust camshaft actuator bolt the final pass an additional 135 degrees. 17. Install the intake camshaft sprocket bolt. ^ Tighten the intake camshaft sprocket bolt the first pass to 20 N.m (15 ft lb). ^ Use J 36660-A to tighten the intake camshaft sprocket bolt the final pass an additional 100 degrees. Page 980 Transfer Case Shift Control Module C3 Page 9877 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 4480 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10792 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6546 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 6911 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 10814 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1769 Page 10478 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. A/C - Refrigerant Recovery/Recycling/Equipment Refrigerant: Technical Service Bulletins A/C - Refrigerant Recovery/Recycling/Equipment Bulletin No.: 08-01-38-001 Date: January 25, 2008 INFORMATION Subject: Information On New GE-48800 CoolTech Refrigerant Recovery/Recharge Equipment Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Attention: This bulletin is being issued to announce the release of GM approved Air Conditioning (A/C) Refrigerant Recovery and Recharging Equipment that meets the new Society of Automotive Engineers (SAE) J2788 Refrigerant Recovery Standards. The ACR2000 (J-43600) cannot be manufactured in its current state after December 2007 and will be superseded by GE-48800. The new J2788 standard does not require that GM Dealers replace their ACR2000 units. ACR2000's currently in use are very capable of servicing today's refrigerant systems when used correctly and can continue to be used. Details regarding the new SAE J2788 standard are outlined in GM Bulletin 07-01-38-004. Effective February 1 2008, new A/C Refrigerant Recovery/Recharging equipment (P/N GE-48800) will be released as a required replacement for the previously essential ACR2000 (J-43600). This equipment is SAE J2788 compliant and meets GM requirements for A/C Refrigerant System Repairs on all General Motors vehicles, including Hybrid systems with Polyolester (POE) refrigerant oil. This equipment will not be shipped as an essential tool to GM Dealerships. In addition, this equipment is Hybrid compliant and designed to prevent oil cross contamination when servicing Hybrid vehicles with Electric A/C Compressors that use POE refrigerant oil. The ACR2000 (J-43600) will need to be retrofitted with a J-43600-50 (Hose - ACR2000 Oil Flush Loop) to be able to perform Hybrid A/C service work. All Hybrid dealers will receive the J-43600-50, with installation instructions, as a component of the Hybrid essential tool package. Dealerships that do not sell Hybrids, but may need to service Hybrids, can obtain J-43600-50 from SPX Kent Moore. Refer to GM Bulletin 08-01-39-001 for the ACR2000 Hose Flush procedure. The High Voltage (HV) electric A/C compressor used on Two Mode Hybrid vehicles uses a Polyolester (POE) refrigerant oil instead of a Polyalkylene Glycol (PAG) synthetic refrigerant oil. This is due to the better electrical resistance of the POE oil and its ability to provide HV isolation. Failure to flush the hoses before adding refrigerant to a Hybrid vehicle with an electric A/C compressor may result in an unacceptable amount of PAG oil entering the refrigerant system. It may cause a Battery Energy Control Module Hybrid Battery Voltage System Isolation Lost Diagnostic Trouble Code (DTC P1AE7) to be set. Additionally, the A/C system warranty will be voided. Warranty Submission Requirements The Electronically Generated Repair Data (snapshot summary) and printer functions have been eliminated from the GE-48800. The VGA display and temperature probes were eliminated to reduce equipment costs. As a result, effective immediately the 18 digit "Snapshot/Charge Summary" code is no longer required for Air Conditioning (A/C) refrigerant system repairs that are submitted for warranty reimbursement. The charge summary data from before and after system repairs will continue to required, but documented on the repair order only. Both high and low pressures and the recovery and charge amounts should be noted during the repair and entered on the repair order. If using ACR2000 (J-43600), the "Snapshot/Charge Summary" printouts should continue to be attached to the shops copy of the repair order. The labor codes that are affected by this requirement are D3000 through D4500. Disclaimer Page 8042 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 3257 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 9086 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 1182 Parts required to complete this service update are to be obtained from Saab Parts Distribution Center (PDC). Service Procedure Tools Required J 45722 or equivalent 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. (1) Fuel Tank Label (2) fuel Tank (3) Rear Axle 2. Locate the fuel tank label (1), which is on the backside of the fuel tank (2) below the fuel tank filler neck. 3. Inspect the fuel tank for a white "X" on the fuel tank and/or a green "C" on the barcode. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is found, the fuel sender assembly does not require replacement. No further action is required. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is not found, proceed to Step 4 for additional inspection. Page 4754 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 9931 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1496 US English/Metric Conversion US English/Metric Conversion Page 2496 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Instruments - Erratic Speedometer Operation Engine Control Module: All Technical Service Bulletins Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 779 since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Page 10717 The updated PCM calibrations were released to dealerships that use the TIS2web application on August 23, 2006. The TIS satellite data update version 9.0 will be broadcast to the field on September 3, 2006. For dealerships that use DVDs, the update will be included with version 9.0 that will be mailed on September 13, 2006. As always make sure your Tech 2(R) is updated with the latest software version. Refer to the Engine and Powertrain Control Module Programming and Setup procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 10784 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6495 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 2728 Notice: Refer to Fastener Notice 7. Install motor/encoder mounting bolts to the transfer case. Tighten the bolts to 16 N.m (12 lb ft). 8. Connect the motor/encoder electrical connector (1). 9. Install the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 10. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Page 7604 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Service and Repair Exhaust Resonator: Service and Repair Resonator Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. Important: Do not reuse any component of the exhaust system that is corroded or damaged. 2. Inspect the exhaust system components to determine if they can be reused. 3. Cut (1) the resonator pipe as close to the exhaust hanger as possible. 4. Separate the resonator and tailpipe assembly from the hanger insulators. 5. Remove the resonator and tailpipe assembly. Installation Procedure 1. Install the new resonator and tailpipe assembly to the muffler. 2. Attach the resonator and tailpipe to the hanger insulators. 3. Loosely install the clamp to secure the resonator to the muffler. Notice: Refer to Fastener Notice. 4. Align the tailpipe in the proper position. Tighten the clamp nuts to 50 N.m (37 lb ft). 5. Inspect the exhaust system for leaks and underbody contact. 6. Lower the vehicle. Page 2339 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 1358 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 338 Electronic Brake Control Module: Service and Repair Electronic Brake Control Module Replacement Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 2784 Window Switch - LR Page 7356 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 2356 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10298 Page 3839 Engine Oil: Capacity Specifications Engine Oil with Filter ............................................................................................................................ ............................................... 7.0 quarts (6.6 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Page 979 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module - C3 Page 4374 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1222 Turn Signal/Multifunction Switch C3 Page 6534 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9051 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Page 1335 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3255 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 2003 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 7238 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5950 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 4626 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 676 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10329 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 5849 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9899 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Diagrams Steering Angle Sensor: Diagrams Antilock Brake System Connector End Views Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Page 7630 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10461 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9435 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 5531 Page 7482 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 9227 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 4874 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 11065 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9212 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 10816 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 4985 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 1284 Page 5168 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7565 Engine Control Module: Connector Views Powertrain Control Module Connector End Views Powertrain Control Module (PCM) C1 Page 1845 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9576 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 549 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1418 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4169 Page 10823 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 6732 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 3667 Camshaft: Description and Operation Exhaust Camshaft Position Actuator Description Camshaft phasing allows the further optimization of performance, fuel economy and emissions without compromising overall engine response and driveability. Variable valve timing also contributes to a reduction in exhaust emissions. It optimizes exhaust and inlet valve overlap and eliminates the need for an exhaust gas recirculation (EGR) system. The camshaft position actuator is a hydraulic vane-type actuator that changes the camshaft lobe timing relative to the camshaft drive sprocket. Engine oil is directed by a camshaft position actuator oil control valve to the appropriate passages in the camshaft position actuator. Oil acting on the vane in the camshaft position actuator, rotates the camshaft relative to the sprocket. At idle, the camshaft is at the default or "home" position. At this position, the exhaust camshaft is fully advanced to minimize valve overlap for smooth idle. The camshaft position actuator incorporates an integral trigger wheel, which is sensed by the camshaft position sensor to accurately determine the position of the camshaft. The camshaft position actuator control valve directs oil from the oil feed in the head to the camshaft position actuator. A filter screen protects each oil port from any contamination in the oil supply. During start-up, when little oil pressure is available, an internal spring loaded locking pin keeps the rotor and stator locked together in the home position. When phasing is desired oil pressure is applied to the phaser unlocking the pin. The camshaft front journal has a drilled oil hole to allow camshaft position actuator control oil to transfer from the cylinder head to the camshaft position actuator. Oil in this oil passage is used to move the camshaft position actuator to the default or home position. The camshaft position actuator is mounted to the front end of the camshaft and the timing notch in the nose of the camshaft aligns with the dowel pin in the camshaft position actuator to ensure proper cam timing and camshaft position actuator oil hole alignment. Page 3361 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5440 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3260 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4933 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9858 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5256 Page 6271 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 6124 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 7548 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9694 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 4621 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 4974 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 7975 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) HVAC - Manual Control Module HVAC: Diagrams HVAC - Manual HVAC Connector End Views HVAC Control Module C1 Page 1835 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 7175 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 9645 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9667 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Locations Outside Temperature Display Sensor: Locations Displays and Gages Component Views Body Front End 1 - Ambient Air Temperature Sensor Page 6762 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9918 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2561 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 2237 Page 1575 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 1718 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Power Seat Switch Replacement Power Seat Switch: Service and Repair Power Seat Switch Replacement POWER SEAT SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the switch bezel assembly from the seat assembly. 2. Remove the buttons from the switch. 3. Release the tabs that retain the seat switch to the seat bezel assembly. 4. Disconnect the electrical connector from the switch. 5. Remove the seat switch from the seat bezel assembly. INSTALLATION PROCEDURE 1. Connect the electrical connector to the switch. 2. Install the seat switch to the seat bezel assembly. Verify that the retaining tabs are fully seated. 3. Install the buttons on the switch. 4. Install the switch bezel assembly to the seat assembly. Page 3048 For vehicles repaired under warranty, use the table above. Disclaimer Page 6465 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7236 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2346 Page 679 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9163 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: Customer Interest A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Page 2300 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4086 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Specifications Compression Check: Specifications Engine Compression Test ................................................................................................................... ..................................................... 1482 kPa (215 psi) Record the compression readings from all of the cylinders. A normal reading should be approximately 1482 kPa (215 psi). The lowest reading should not be less than 70 percent of the highest reading. Page 4199 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2998 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 6818 Page 11209 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 1729 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5727 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 9725 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: All Technical Service Bulletins A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Page 2473 Ignition Switch Lock Cylinder: Service and Repair Ignition Lock Cylinder Replacement IGNITION LOCK CYLINDER REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the negative battery cable. CAUTION: Refer to SIR Caution. 2. Disable the SIR system. Refer to SIR Disabling and Enabling. 3. Lower the hush and knee bolster. Refer to Knee Bolster Replacement. 4. Remove the steering column trim covers. 5. With the key installed, turn the key to the RUN position. 6. Install an allen wrench into the hole on top of the lock cylinder housing. Push down on the allen wrench to release the tab on the lock cylinder inside the lock cylinder housing. 7. Slide the lock cylinder out of the lock cylinder housing. INSTALLATION PROCEDURE 1. Install the key into the lock cylinder. IMPORTANT: The gears between the ignition switch and the lock cylinder housing must be in the correct position. Failure to do so will cause a misalignment of the gears in the ignition switch and the lock cylinder housing, which may result in a NO START or BATTERY DRAIN. Page 440 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2172 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10140 Utility/Van Zoning UTILITY/VAN ZONING Page 3369 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 3929 Install the timing chain tensioner shoe and secure the shoe with the bolt. Tighten the timing chain tensioner shoe bolt to ...................................................................................................................................... 26 N.m (19 lb ft). Timing Chain Tensioner Bolt ............................................................................................................... ....................................................... 25 N.m (18 lb ft) Timing Chain Tensioner Guide Bolt ........................................................................................................................................................ 12 N.m (107 lb in) Timing Chain Tensioner Shoe Bolt ............................................................................................................................................................. 25 N.m (18 lb ft) Page 3310 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 826 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 7514 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10038 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 5646 Page 10881 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10007 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Description and Operation Electronic Throttle Actuator: Description and Operation Throttle Actuator Control (TAC) System Description Throttle Actuator Control (TAC) Overview The throttle actuator control (TAC) system uses vehicle electronics and components to calculate and control the position of the throttle blade. This eliminates the need for a mechanical cable attachment from the accelerator pedal to the throttle body. This system also performs the cruise control functions as well. The TAC system components include, but are not limited to the following: * The accelerator pedal position (APP) sensors * The throttle body * The powertrain control module (PCM) Each of these components interface together to ensure accurate calculations and control of the throttle position (TP). Accelerator Pedal Position (APP) Sensor The APP sensor is mounted on the accelerator pedal assembly. The APP is actually 2 individual APP sensors within 1 housing. There are 2 separate signal, low reference, and 5-volt reference circuits. APP sensor 1 voltage increases as the accelerator pedal is depressed. APP sensor 2 voltage decreases as the accelerator pedal is depressed. Throttle Body Assembly The throttle body for the throttle actuator control (TAC) system is similar to a conventional throttle body with several exceptions. One exception being the use of a motor to control the throttle position instead of a mechanical cable. Another exception is the throttle position (TP) sensor. The TP sensor is mounted in the throttle body assembly. The TP sensor is 2 individual TP sensors within the throttle body assembly. Two separate signal, low reference, and 5-volt reference circuits are used to connect the TP sensors and the powertrain control module (PCM). TP sensor 2 signal voltage increases as the throttle opens. TP sensor 1 signal voltage decreases as the throttle opens. Modes of Operation Battery Saver Mode If the powertrain control module (PCM) detects the ignition ON for 10 seconds without the engine running, the PCM will allow the throttle blade to return to the default position. This removes the draw that is present while holding the throttle blade at the calculated idle position. Reduced Engine Power Mode When the PCM detects a problem with the throttle actuator control (TAC) system the PCM enters one of the following Reduced Engine Power Modes: * Acceleration Limiting-The control module will continue to use the accelerator pedal for throttle control, however the vehicle acceleration is limited. * Limited Throttle Mode-The control module will continue to use the accelerator pedal for throttle control, however the maximum throttle opening is limited. * Throttle Default Mode-The control module will turn off the throttle actuator. * Forced Idle Mode-The control module will perform the following actions: - Limit engine speed to idle by positioning throttle position, or by controlling fuel and spark if throttle is turned off. - Ignore accelerator pedal input. * Engine Shutdown Mode-The control module will disable fuel and de-energize the throttle actuator. Page 4698 1. Install a new exhaust manifold gasket. 2. Install the exhaust manifold. Notice: Refer to Fastener Notice. 3. With threadlock GM P/N 12345493 (Canadian P/N 10953488) on the manifold bolts, install the bolts onto the manifold. 1. Tighten the exhaust manifold bolts first pass in sequence to 20 N.m (15 lb ft). 2. Tighten the exhaust manifold bolts second pass in sequence to 20 N.m (15 lb ft). 3. Tighten the exhaust manifold bolts final pass in sequence to 20 N.m (15 lb ft). 4. Install the exhaust manifold heat shield studs, if required. Page 10196 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 3841 Engine Oil: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure 1. Remove the oil fill cap. 2. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Remove the oil pan drain plug and drain the oil into a suitable container. 4. Remove the oil filter using a suitable wrench. 5. Inspect the old oil filter to ensure the filter seal is not left on the engine block. Installation Procedure 1. Wipe the excess oil from the oil filter housing. 2. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice. 3. Install the new oil filter. Tighten the oil filter to 17 N.m (22 lb ft) plus 150 degrees. 4. Install the oil pan drain plug. Tighten the oil pan drain plug to 26 N.m (19 lb ft). 5. Lower the vehicle. Page 11181 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 3781 2. Remove the serpentine belt from the accessory drive system. 3. Install the tool onto the power steering pulley. Position the legs of the tool into the outer grooves of the pulley, farthest from the front of the engine. 4. Install the retaining cord around the pulley and to the legs of the tool. 5. Put on the laser safety glasses provided with the tool. 6. Depress the switch on the rear of the tool to activate the light beam. 7. Rotate the power steering pulley as required to project the light beam onto the crankshaft balancer pulley grooves. 8. Inspect for proper power steering pulley alignment. - If the laser beam projects onto the second rib or raised area (1), the pulleys are aligned properly. - If the laser beam projects more than one-quarter rib 0.9 mm (0.035 in) mis-alignment, adjust the position of the power steering pulley as required. - Refer to SI for Power Steering Pulley Removal and Installation procedures. 9. Install the serpentine belt to the accessory drive system in the original orientation. 10. Operate the vehicle and verify that the belt noise concern is no longer present. Tool Information Please visit the GM service tool website for pricing information or to place your order for this tool. Page 2552 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5803 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7280 Page 1996 Transmission Position Switch/Sensor: Adjustments Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the parking brake. ^ The engine must start in the P (Park) or N (Neutral) positions only. ^ Check the switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the N (Neutral) position. 2. With an assistant in the drivers seat, raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Loosen the park/neutral position switch mounting bolts. 4. With the vehicle in the N (Neutral) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. Notice: Refer to Fastener Notice. 6. Tighten the bolts securing the switch to the transmission. Tighten the bolts to 25 N.m (18 lb ft). 7. Lower the vehicle. 8. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. 9. Replace the park/neutral position switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Page 1149 Cabin Temperature Sensor / Switch: Service and Repair Inside Air Temperature Sensor Assembly Replacement Removal Procedure Important: Recline the driver seat rearward to access the left center trim pillar. 1. Remove the upper portion of the left center trim pillar. 2. Disconnect the electrical connector. 3. Remove the retaining clips from the B pillar. 4. Remove the inside air temperature sensor assembly (1) from the B pillar. Installation Procedure 1. Connect the electrical connector to the inside air temperature sensor assembly (1). 2. Install the inside air temperature sensor assembly (1) to the B pillar. 3. Install the retaining clips to the B pillar. 4. Install the upper portion of the left center trim pillar. Page 7872 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 5277 Utility/Van Zoning UTILITY/VAN ZONING Page 1577 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2978 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 7487 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 4439 6. Heater outlet hose to engine (6). 7. Heater inlet hose to front of dash (7). 8. Heater outlet hose to front of dash (8). Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Page 2440 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10434 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 10005 Utility/Van Zoning UTILITY/VAN ZONING Page 5670 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3352 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 7342 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 6459 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7864 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 133 Method 3 The Gen 6.1 version of OnStar(R) does not require the use of the Service Programming System (SPS) to change the voice recognition system. However, there are three ways to change the language. Disclaimer Page 1526 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 10557 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 8003 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 3794 Step 1 - Step 5 Page 5498 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8358 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 502 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 8689 Gasoline Brands That Currently Meet TOP TIER Detergent Gasoline Standards The following gasoline brands meet the TOP TIER Detergent Gasoline Standards in all octane grades : Chevron Canada (markets in British Columbia and western Alberta) - Shell Canada (nationally) - Petro-Canada (nationally) - Sunoco-Canada (Ontario) - Esso-Canada (nationally) What is TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline is a new class of gasoline with enhanced detergency and no metallic additives. It meets new, voluntary deposit control standards developed by six automotive companies that exceed the detergent recommendations of Canadian standards and does not contain metallic additives, which can damage vehicle emission control components. Where Can TOP TIER Detergent Gasoline Be Purchased? The TOP TIER program began in the U.S. and Canada on May 3, 2004. Some fuel marketers have already joined and introduced TOP TIER Detergent Gasoline. This is a voluntary program and not all fuel marketers will offer this product. Once fuel marketers make public announcements, they will appear on a list of brands that meet the TOP TIER standards. Who developed TOP TIER Detergent Gasoline standards? TOP TIER Detergent Gasoline standards were developed by six automotive companies: BMW, General Motors, Honda, Toyota, Volkswagen and Audi. Why was TOP TIER Detergent Gasoline developed? TOP TIER Detergent Gasoline was developed to increase the level of detergent additive in gasoline. In the U.S., government regulations require that all gasoline sold in the U.S. contain a detergent additive. However, the requirement is minimal and in many cases, is not sufficient to keep engines clean. In Canada, gasoline standards recommend adherence to U.S. detergency requirements but do not require it. In fact, many brands of gasoline in Canada do not contain any detergent additive. In order to meet TOP TIER Detergent Gasoline standards, a higher level of detergent is needed than what is required or recommended, and no metallic additives are allowed. Also, TOP TIER was developed to give fuel marketers the opportunity to differentiate their product. Why did the six automotive companies join together to develop TOP TIER? All six corporations recognized the benefits to both the vehicle and the consumer. Also, joining together emphasized that low detergency and the intentional addition of metallic additives is an issue of concern to several automotive companies. What are the benefits of TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline will help keep engines cleaner than gasoline containing the "Lowest Additive Concentration" recommended by Canadian standards. Clean engines help provide optimal fuel economy and engine performance, and also provide reduced emissions. Also, the use of TOP TIER Detergent Gasoline will help reduce deposit related concerns. Who should use TOP TIER Detergent Gasoline? All vehicles will benefit from using TOP TIER Detergent Gasoline over gasoline containing the "Lowest Additive Concentration" recommended by Canadian standards. Those vehicles that have experienced deposit related concerns may especially benefit from use of TOP TIER Detergent Gasoline. More information on TOP TIER Detergent Gasoline can be found at this website, http://www.toptiergas.com/. Page 6266 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 9590 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 2674 Tire Pressure Sensor: Technical Service Bulletins Tire Monitor System - TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Page 9984 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 7672 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1426 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8203 Page 5300 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6761 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 1597 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 4645 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 3160 Page 5568 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 8289 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 712 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6499 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10470 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 6152 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 716 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5016 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9345 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 6478 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 898 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Diagram Information and Instructions Radiator Cooling Fan Control Module: Diagram Information and Instructions Electrical Symbols Page 9349 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5937 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 1833 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 10155 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 8257 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 5247 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 11125 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 2731 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. 4. Ensure that the hex on the rotary position sensor (2) fits in the hex of the motor/encoder housing (3). 5. Install the motor/encoder baseplate/gasket (1). Important: When performing this service procedure, make sure that the motor/encoder unit is flat against the transfer case for proper installation. 6. Install the motor/encoder to the transfer case. Page 670 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 1505 Coolant Temperature Sensor/Switch (For Computer): Diagrams Engine Controls Connector End Views Engine Coolant Temperature (ECT) Sensor Page 10588 Control Module: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Shift Control Module Replacement Transfer Case Shift Control Module Replacement Removal Procedure Important: The access panel is removed in order to visually see the electrical connectors and the location of the transfer case control module. It will also be easier to see the mounting and alignment slots for the transfer case control module mounting bracket. 1. Remove the access panel. 2. Remove the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 3. Remove the transfer case control module (1) and mounting bracket from the instrument panel mag beam. 4. Disconnect the three electrical connectors from the transfer case control module. 5. Remove the transfer case control module from the mounting bracket. Page 8820 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8616 View of the connector when released from the component. View of another type of Micro 64 connector. Page 7960 Page 4303 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Engine/Transmission - Aftermarket Calibrations PROM - Programmable Read Only Memory: All Technical Service Bulletins Engine/Transmission Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 6555 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 2696 12. Install the TCC solenoid with a new O-ring seal to the valve body. 13. Install the TCC solenoid bolts. Tighten the TCC solenoid retaining bolts to 11 N.m (97 lb in). 14. Install the internal wiring harness to the valve body. The internal wiring harness has a tab (1) on the edge of the conduit. 15. Place the tab between the valve body and the pressure switch in the location shown (2). Press the harness into position on the valve body bolt bosses (1, 3). Page 6049 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 10372 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 4509 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6058 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8748 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 6654 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9278 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10601 4. Install one bolt (M6 X 1.0 X 47.5) hand tight in the center (1) of the valve body to hold it in place. Important: When installing bolts throughout this procedure, be sure to use the correct bolt size and length in the correct location as specified. 5. Do not install the transmission fluid indicator stop bracket and bolt at this time. Install but do not tighten the control valve body bolts which retain only the valve body directly. Each numbered bolt location corresponds to a specific bolt size and length, as indicated by the following: ^ M6 X 1.0 X 65.0 (1) ^ M6 X 1.0 X 54.4 (2) ^ M6 X 1.0 X 47.5 (3) ^ M6 X 1.0 X 35.0 (4) ^ M8 X 1.0 X 20.0 (5) ^ M6 X 1.0 X 12.0 (6) ^ M6 X 1.0 X 18.0 (7) 6. Install the manual detent spring. 7. Install but do not tighten the manual detent spring retaining bolt. Page 378 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 11116 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6646 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1336 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 1732 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 9648 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 5932 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 10401 Body Wiring Harness Extension Replacement Body Control Module: Service and Repair Body Wiring Harness Extension Replacement BODY WIRING HARNESS EXTENSION REPLACEMENT - BCM REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the body wiring harness extension on a Chevrolet Trail Blazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the body wiring extension (1) from the BCM. Page 817 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 10343 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7801 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Diagram Information and Instructions Fuse Block: Diagram Information and Instructions Electrical Symbols Page 4209 View of the connector when released from the component. View of another type of Micro 64 connector. Page 3196 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6291 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10358 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5673 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8423 Transmission Position Switch/Sensor: Adjustments Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the parking brake. ^ The engine must start in the P (Park) or N (Neutral) positions only. ^ Check the switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the N (Neutral) position. 2. With an assistant in the drivers seat, raise the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Loosen the park/neutral position switch mounting bolts. 4. With the vehicle in the N (Neutral) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. Notice: Refer to Fastener Notice. 6. Tighten the bolts securing the switch to the transmission. Tighten the bolts to 25 N.m (18 lb ft). 7. Lower the vehicle. 8. Check the switch for proper operation. The engine must start in the P (Park) or N (Neutral) positions only. 9. Replace the park/neutral position switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Page 5980 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4677 Thermostat: Service and Repair Thermostat Replacement (4.2L Engine) Tools Required J 38185 Hose Clamp Pliers Removal Procedure 1. Remove the necessary coolant from the radiator. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the generator. Refer to Generator Replacement (4.2L Engine) Generator Replacement (5.3L and 6.0L Engines). 3. Loosen the outlet hose clamp at the thermostat housing (1). Remove the outlet hose from the thermostat housing. 4. Remove the thermostat housing bolts. 5. Remove the thermostat housing from the engine block. 6. Clean all of the surfaces of the thermostat housing. 7. Clean the sealing surface of the engine block. Installation Procedure Page 8047 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 6128 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10542 Warranty Information (excluding Saab U.S. Models) Warranty Information (Saab U.S. Models) Disclaimer Page 9216 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Locations Fuse Block: Locations Fuse Block - Underhood Fuse Block - Rear Page 5418 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 1405 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4613 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9482 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 5111 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 7628 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 10144 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6047 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3317 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2298 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 5011 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2646 2. Use a screwdriver to rotate the lock cylinder housing gear clockwise to the start position allowing it to spring return into the RUN position. 3. Align the lock cylinder and install into the lock cylinder housing. 4. Install the steering column trim covers. 5. Install the hush and knee bolster. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. 7. Connect the negative battery cable. Page 833 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 10022 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 5616 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 1930 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7334 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 7902 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1190 Parts required to complete this service update are to be obtained from Saab Parts Distribution Center (PDC). Service Procedure Tools Required J 45722 or equivalent 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. (1) Fuel Tank Label (2) fuel Tank (3) Rear Axle 2. Locate the fuel tank label (1), which is on the backside of the fuel tank (2) below the fuel tank filler neck. 3. Inspect the fuel tank for a white "X" on the fuel tank and/or a green "C" on the barcode. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is found, the fuel sender assembly does not require replacement. No further action is required. ^ If a white "X" on the fuel tank and/or a green "C" on the barcode is not found, proceed to Step 4 for additional inspection. Page 535 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 832 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 3336 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6632 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10366 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6407 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 9471 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 397 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 5729 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10831 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5042 Page 8126 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 10136 Page 8280 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 428 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5090 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 9149 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9871 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 45 Disclaimer Page 6706 Page 1614 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 669 Utility/Van Zoning UTILITY/VAN ZONING Page 5234 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1990 US English/Metric Conversion US English/Metric Conversion Page 5534 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 5807 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 6222 For vehicles repaired under warranty, use the table. Disclaimer Page 9336 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1744 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 7232 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9184 Page 4078 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 11201 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6039 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8094 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2885 * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 11. Disconnect the CH-48027-3 (4) from the J42242. 12. Disconnect the J42242 from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Without CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Page 2165 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 1325 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 3574 Do not use cleaning solutions that contain hydrofluoric, oxalic and most other acids on chrome wheels (or any wheels). If the customer is unsure of the chemical make-up of a particular wheel cleaner, it should be avoided. For wheels showing signs of milky staining from acidic cleaners, refer to Customer Assistance and Instructions below. Warranty of Stained Chrome Wheels Stained wheels are not warrantable. Most acid based cleaners will permanently stain chrome wheels. Follow-up with dealers has confirmed that such cleaners were used on wheels that were returned to the Warranty Parts Center (WPC). Any stained wheels received by the WPC will be charged back to the dealership. To assist the customer, refer to Customer Assistance and Instructions below. Pitting or Spotted Appearance of Chrome Wheels Figure 2 A second type or staining or finish disturbance may result from road chemicals, such as calcium chloride used for dust control of unpaved roads. The staining will look like small pitting (refer to Figure 2). This staining will usually be on the leading edges of each wheel spoke, but may be uniformly distributed. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Important Road chemicals, such as calcium chloride used for dust control of unpaved roads, can also stain chrome wheels. The staining will look like small pitting. This staining will usually be on the leading edges of each wheel spoke. This is explained by the vehicle traveling in the forward direction while being splashed by the road chemical. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Warranty of Pitted or Spotted Chrome Wheels Wheels returned with pitting or spotting as a result of road chemicals may be replaced one time. Damage resulting from contact with these applied road chemicals is corrosive to the wheels finish and may cause damage if the wheels are not kept clean. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean if they are operating the vehicle in an area that applies calcium chloride or other dust controlling chemicals! "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). "Stardust" Corrosion of Chrome Wheels Figure 3 A third type of finish disturbance results from prolonged exposure to brake dust and resultant penetration of brake dust through the chrome. As brakes are applied hot particles of brake material are thrown off and tend to be forced through the leading edge of the wheel spoke windows by airflow. These Page 6928 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Locations Pressure Regulating Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 1403 Page 7133 - The HVAC control module - The HVAC control module - rear auxiliary - The inflatable restraint sensing and diagnostic module (SDM) - The instrument panel cluster (IPC) - The liftgate control module (LGM) - The passenger door module (PDM) - The powertrain control module (PCM) - The radio - The transfer case shift control module (TCSCM), w/4WD 3. The following DTCs may be retrieved with a history status, but are not the cause of the present condition. - U1300 - U1301 - U1305 6. A state of health (SOH) DTC with a history status may be present along with a U1000 code having a current status. This indicates that the malfunction occurred when the ignition was ON. 7. Data link connector terminals 2 and 5 provide the connection to the class 2 serial data circuit and the signal ground circuit respectively. 10. A poor connection at DLC terminal of the splice pack SP205 would cause this condition but will not set a DTC. 11. An open in the class 2 serial data circuit between the DLC and splice pack SP205 will prevent the scan tool from communicating with any module. This condition will not set a DTC. 12. The class 2 serial data circuit is shorted to voltage or ground. The condition may be due to the wiring or due to a malfunction in one of the modules. When testing the wire for a short, make sure there is not a module connected to the wire being tested. This test isolates the BCM and the PCM class 2 serial data circuits. 13. This test isolates the BCM class 2 serial data circuits. 16. The BCM detects that the ignition is ON and sends the appropriate power mode message to the other modules. Therefore, the BCM must remain connected to the DLC for any other module to communicate with the scan tool. This test isolates the splice pack SP306 serial data circuits. 21. This test isolates the rest of the splice pack SP205 serial data circuits. 25. If there are no current DTCs that begin with a "U", the communication malfunction has been repaired. 26. The communication malfunction may have prevented diagnosis of the customer complaint. Scan Tool Does Not Communicate with Class 2 Device (4.2L w/Immobilizer) SCAN TOOL DOES NOT COMMUNICATE WITH CLASS 2 DEVICE (4.2L W/O IMMOBILIZER) CIRCUIT DESCRIPTION Modules connected to the class 2 serial data circuit monitor for serial data communications during normal vehicle operation. Operating information and commands are exchanged among the modules. Connecting a scan tool to the data link connector (DLC) allows communication with the modules for diagnostic purposes. DTCs may be set due to this symptom and during this diagnostic procedure. Complete the diagnostic procedure in order to ensure all the DTCs are diagnosed and cleared from memory. DIAGNOSTIC AIDS - The body control module (BCM) detects that the ignition is ON and sends the appropriate power mode message to the other modules. Therefore, the BCM must be connected to the DLC for any other module to communicate with the scan tool. - When the class 2 serial data circuit is shorted to ground or to voltage, the following DTCs may set: U1300 - U1301 - U1305 TEST DESCRIPTION Page 5172 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 3646 7. Remove the exhaust camshaft position actuator bolt. 8. Remove the exhaust camshaft position actuator. Installation Procedure 1. Install the exhaust camshaft actuator into the timing chain. 2. Align the marked link of the timing chain with the timing mark on the exhaust camshaft position actuator sprocket (1). Important: Ensure the alignment pin is engaged between the camshaft and the exhaust camshaft position actuator. 3. Install the exhaust camshaft actuator onto the exhaust camshaft. Page 9070 Utility/Van Zoning UTILITY/VAN ZONING NVG 126-NP4 - Transfer Case Speed Sensor: Diagrams NVG 126-NP4 - Transfer Case Propshaft Speed Sensor - Front Transfer Case Control Connector End Views Propshaft Speed Sensor - Front Propshaft Speed Sensor - Front Propshaft Speed Sensor - Rear Propshaft Speed Sensor - Rear Page 7180 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 9824 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 9791 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 6182 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 8858 1. Lubricate the new injector O-ring seals (2, 4) with clean engine oil. 2. Install the new injector O-ring seals on the fuel injector (3). 3. Install a new retainer clip (1) on the injector (3). 4. Push the fuel injectors (3) into the fuel rail (1) injector socket with the electrical connector facing outward. The retainer clip locks on to a flange on the fuel rail injector socket. 5. Connect the fuel injector electrical harness (2) connectors to the fuel injectors (3). 6. Install the fuel rail assembly (1). Page 10589 Installation Procedure 1. Install the transfer case control module (1) to the mounting bracket. 2. Connect the three electrical connectors to the transfer case control module. 3. Install the transfer case control module and mounting bracket to the instrument panel mag beam. 4. Install the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 5. Install the access panel. 6. Program the transfer case shift control module. Refer to Transfer Case Control Module Reprogramming. Transfer Case Control Module Reprogramming Transfer Case Control Module Reprogramming Set-up for Module Programming/Reprogramming Important: Ensure that the vehicle battery is fully charged and that a battery charger is no longer connected. If performing this procedure for module replacement, install new module before proceeding. Before reprogramming close the doors and wait two minutes to allow other modules to stop communicating via the class 2 data line. Failure to due so could result in a failed reprogramming procedure. Page 6475 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 406 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 916 Caution When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Failure to observe the correct procedure could cause deployment of the SIR components. Serious injury can occur. Failure to observe the correct procedure could also result in unnecessary SIR system repairs. 1. Perform the Diagnostic System Check-Vehicle. 2. Identify the DTC that is set AND review the DTC Descriptor in the corresponding diagnostic procedure. Refer to Diagnostic Trouble Code (DTC) List-Vehicle in SI. 3. Using the information from the DTC Descriptor, determine the location of the affected electrical connector. Refer to SIR Identification Views and the Master Electrical Component List in SI. 4. Turn OFF the ignition and disable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 5. BEFORE removing, INSPECT the CPA retainer at the electrical connector. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. ‹› If the CPA retainer is loose, damaged, or will not seat in the connector, replace it with a new one. Reinstall the CPA correctly by first pushing the connector body in completely, and then pushing the CPA retainer in completely. ‹› If the CPA retainer is not loose or damaged and is properly seated, proceed to Step 6. 6. Remove the CPA retainer and disconnect the electrical connector. Inspect the terminals for the following conditions: - Corrosion - Contamination - Terminal tension - Damage Important The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. DO NOT substitute any other terminals for those in the repair kit. ‹› If the terminals are damaged, corrosion is observed, or have poor tension, repair or replace as necessary. Apply dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins and terminals when reassembling. Refer to SIR/SRS Wiring Repairs in SI. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. 7. Connect the electrical connector, and install the CPA retainer. 8. Enable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 9. Clear the DTC with a scan tool. 10. Verify that the DTC does not reset by performing the Diagnostic Repair Verification in SI. ‹› If any DTC resets, then refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. Parts Information Note If the CPA retainer P/N 54590003 (Orange CPA) cannot be located in the J-38125 SIR/SRS terminal repair kit, contact Kent Moore Tools and order P/N 54590003-PKG to obtain a package of 5. Page 10761 Utility/Van Zoning UTILITY/VAN ZONING Page 9903 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5512 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 2480 Page 6570 Body Control Module: Diagrams Body Control Module (BCM) C3 Body Control Module (BCM) C3 Page 1774 Page 3139 2. Pressure bleed the hydraulic brake system in order to purge any air that may still be trapped in the system. 22. Turn the ignition key ON, with the engine OFF. Check to see if the brake system warning lamp remains illuminated. Important: If the brake system warning lamp remains illuminated, DO NOT allow the vehicle to be driven until it is diagnosed and repaired. 23. If the brake system warning lamp remains illuminated, refer to Symptoms - Hydraulic Brakes. Pressure Hydraulic Brake System Bleeding (Pressure) Tools Required ^ J 29532 Diaphragm Pressure Bleeder, or equivalent ^ J 35589-A Brake Pressure Bleeder Adapter Caution: Refer to Brake Fluid Irritant Caution. Notice: Refer to Brake Fluid Effects on Paint and Electrical Components Notice. Notice: When adding fluid to the brake master cylinder reservoir, use only Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. The use of any type of fluid other than the recommended type of brake fluid, may cause contamination which could result in damage to the internal rubber seals and/or rubber linings of hydraulic brake system components. 1. Place a clean shop cloth beneath the brake master cylinder to prevent brake fluid spills. 2. With the ignition OFF and the brakes cool, apply the brakes 3-5 times, or until the brake pedal effort increases significantly, in order to deplete the brake booster power reserve. 3. If you have performed a brake master cylinder bench bleeding on this vehicle, or if you disconnected the brake pipes from the master cylinder, you must perform the following steps: 1. Ensure that the brake master cylinder reservoir is full to the maximum-fill level. If necessary add Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. If removal of the reservoir cap and diaphragm is necessary, clean the outside of the reservoir on and around the cap prior to removal. 2. With the rear brake pipe installed securely to the master cylinder, loosen and separate the front brake pipe from the front port of the brake master cylinder. 3. Allow a small amount of brake fluid to gravity bleed from the open port of the master cylinder. 4. Reconnect the brake pipe to the master cylinder port and tighten securely. 5. Have an assistant slowly depress the brake pedal fully and maintain steady pressure on the pedal. 6. Loosen the same brake pipe to purge air from the open port of the master cylinder. 7. Tighten the brake pipe, then have the assistant slowly release the brake pedal. 8. Wait 15 seconds, then repeat steps 3.3-3.7 until all air is purged from the same port of the master cylinder. 9. With the front brake pipe installed securely to the master cylinder, after all air has been purged from the front port of the master cylinder, loosen and separate the rear brake pipe from the master cylinder, then repeat steps 3.3-3.8. 10. After completing the final master cylinder port bleeding procedure, ensure that both of the brake pipe-to-master cylinder fittings are properly tightened. 4. Fill the brake master cylinder reservoir to the maximum-fill level with Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. Clean the outside of the reservoir on and around the reservoir cap prior to removing the cap and diaphragm. 5. Install the J 35589-A to the brake master cylinder reservoir. 6. Check the brake fluid level in the J 29532, or equivalent. Add Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container as necessary to bring the level to approximately the half-full point. 7. Connect the J 29532, or equivalent, to the J 35589-A. 8. Charge the J 29532, or equivalent, air tank to 175-205 kPa (25-30 psi). 9. Open the J 29532, or equivalent, fluid tank valve to allow pressurized brake fluid to enter the brake system. 10. Wait approximately 30 seconds, then inspect the entire hydraulic brake system in order to ensure that there are no existing external brake fluid leaks. Any brake fluid leaks identified require repair prior to completing this procedure. 11. Install a proper box-end wrench onto the RIGHT REAR wheel hydraulic circuit bleeder valve. 12. Install a transparent hose over the end of the bleeder valve. 13. Submerge the open end of the transparent hose into a transparent container partially filled with Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 14. Loosen the bleeder valve to purge air from the wheel hydraulic circuit. Allow fluid to flow until air bubbles stop flowing from the bleeder, then tighten the bleeder valve. 15. With the right rear wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the right rear hydraulic circuit, install a proper box-end wrench onto the LEFT REAR wheel hydraulic circuit bleeder valve. 16. Install a transparent hose over the end of the bleeder valve, then repeat steps 13-14. Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 6802 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 3234 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1435 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 10682 2. Connect the transfer case front speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer, Envoy, Rainier) Transfer Case Front Output Shaft Speed Sensor Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy). 3. Remove the transfer case front speed sensor electrical connector. 4. Remove the transfer case front speed sensor. Installation Procedure Page 7289 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 7085 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 1518 Page 9304 Page 7757 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 6894 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7875 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2256 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6351 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1734 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1305 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6969 Instruments - Erratic Speedometer Operation Engine Control Module: Customer Interest Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 6908 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 347 Page 5097 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4522 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 3623 * The black negative (-) cable must be first disconnected from the vehicle that was boosted (4). * Disconnect the black negative (-) cable from the negative (-) terminal (3) of the booster battery. Notice: Do not let the cable end touch any metal. Damage to the battery and other components may result. * Disconnect the red positive (+) cable from the positive (+) terminal (1) of the booster battery. * Disconnect the red positive (+) cable from the remote positive (+) terminal (2) of the vehicle with the discharged battery. Page 7894 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9670 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4894 Powertrain Control Module (PCM) C3 (Pin 1 To 20) Page 7505 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 1967 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7499 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 4137 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 6989 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement Fuel Sender Assembly Replacement Tools Required J45722 Fuel Tank Sending Unit Wrench Removal Procedure 1. Remove the fuel tank. Notice: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. Notice: Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. Important: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 2. Use the J45722 and a long breaker-bar in order to unlock the fuel sender lock ring. Turn the fuel sender lock ring in a counterclockwise direction. 3. Remove the fuel sender assembly (2) and the seal (3). Discard the seal. Caution: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. Page 1918 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 540 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8947 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Campaign - Possible Fuel Sender Port Fracture Fuel Gauge Sender: All Technical Service Bulletins Campaign - Possible Fuel Sender Port Fracture Subject: Service Update for Inventory and Customer Vehicles-Fuel Sending Unit Port Fracture-Extended Start/Sluggish Acceleration/Check Engine Light-Expires with Base Warranty # 07005 - (02/16/2007) Models: 2007 Buick Rainier 2007 Chevrolet TrailBlazer 2007 GMC Envoy 2007 Saab 9-7X THIS SERVICE UPDATE INCLUDES VEHICLES IN DEALER INVENTORY AND CUSTOMER VEHICLES THAT RETURN FOR ANY TYPE OF SERVICE, AND WILL EXPIRE AT THE END OF THE INVOLVED VEHICLE'S NEW VEHICLE LIMITED WARRANTY PERIOD. Purpose This bulletin provides a service procedure to determine if a fuel tank sending unit requires replacement on certain 2007 Buick Rainier, Chevrolet Trailblazer, GMC Envoy, and Saab 9-7X vehicles. The fuel tank sending unit on these vehicles may have a fractured internal port. A fractured port will not deliver fuel to the engine at the designed pressure. If this were to occur, it could result in an extended start, sluggish acceleration, and/or the illumination of the check engine light. This service procedure should be completed as soon as possible on involved vehicles currently in dealer inventory and customer vehicles that return to the dealer/retailer for any type of service during the New Vehicle Limited Warranty coverage period. Vehicles Involved A list of involved vehicles currently in dealer inventory is attached to the Administrative Message (GM US), Dealer Communication (Canada), or IRIS (Saab U.S.), used to release this bulletin. Customer vehicles that return for service, for any reason, and are still covered under the vehicle's base warranty, and are within the VIN breakpoints shown, should be checked for vehicle eligibility in the appropriate system listed below. Important: Dealers are to confirm vehicle eligibility prior to beginning repairs by using the system(s) below. Not all vehicles within the above breakpoints may be involved. -- GM dealers and Canadian Saab retailers should use GMVIS. -- US Saab dealers should use IRIS On-Line Recall/Campaign Inquiry. Parts Information - GM and Saab Canada Only Parts required to complete this service update are to be obtained from General Motors Service Parts Operations (GMSPO). Please refer to your "involved vehicles listing" before ordering parts. Normal orders should be placed on a DRO = Daily Replenishment Order. In an emergency situation, parts should be ordered on a CSO = Customer Special Order. Parts Information - Saab US Only Page 11147 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Page 705 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2386 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 7098 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8615 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 5979 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Cooling System, A/C - Aluminum Heater Cores/Radiators Radiator: Technical Service Bulletins Cooling System, A/C - Aluminum Heater Cores/Radiators INFORMATION Bulletin No.: 05-06-02-001A Date: July 16, 2008 Subject: Information On Aluminum Heater Core and/or Radiator Replacement Models: 2005 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2005 HUMMER H2 Supercede: This bulletin is being revised to update the Warranty Information. Please discard Corporate Bulletin Number 05-06-02-001 (Section 06 - Engine/Propulsion System). Important: 2004-05 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX-COOL(R). Refer to the flushing procedure explained later in this bulletin. The following information should be utilized when servicing aluminum heater core and/or radiators on repeat visits. A replacement may be necessary because erosion, corrosion, or insufficient inhibitor levels may cause damage to the heater core, radiator or water pump. A coolant check should be performed whenever a heater core, radiator, or water pump is replaced. The following procedures/ inspections should be done to verify proper coolant effectiveness. Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if the radiator cap or surge tank cap is removed while the engine and radiator are still hot. Important: If the vehicle's coolant is low, drained out, or the customer has repeatedly added coolant or water to the system, then the system should be completely flushed using the procedure explained later in this bulletin. Technician Diagnosis ^ Verify coolant concentration. A 50% coolant/water solution ensures proper freeze and corrosion protection. Inhibitor levels cannot be easily measured in the field, but can be indirectly done by the measurement of coolant concentration. This must be done by using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale), or equivalent, coolant tester. The Refractometer uses a minimal amount of coolant that can be taken from the coolant recovery reservoir, radiator or the engine block. Inexpensive gravity float testers (floating balls) will not completely analyze the coolant concentration fully and should not be used. The concentration levels should be between 50% and 65% coolant concentrate. This mixture will have a freeze point protection of -34 degrees Fahrenheit (-37 degrees Celsius). If the concentration is below 50%, the cooling system must be flushed. ^ Inspect the coolant flow restrictor if the vehicle is equipped with one. Refer to Service Information (SI) and/or the appropriate Service Manual for component location and condition for operation. ^ Verify that no electrolysis is present in the cooling system. This electrolysis test can be performed before or after the system has been repaired. Use a digital voltmeter set to 12 volts. Attach one test lead to the negative battery post and insert the other test lead into the radiator coolant, making sure the lead does not touch the filler neck or core. Any voltage reading over 0.3 volts indicates that stray current is finding its way into the coolant. Electrolysis is often an intermittent condition that occurs when a device or accessory that is mounted to the radiator is energized. This type of current could be caused from a poorly grounded cooling fan or some other accessory and can be verified by watching the volt meter and turning on and off various accessories or engage the starter motor. Before using one of the following flush procedures, the coolant recovery reservoir must be removed, drained, cleaned and reinstalled before refilling the system. Notice: ^ Using coolant other than DEX‐COOL(R) may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50,000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX‐COOL(R) (silicate free) coolant in your vehicle. ^ If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. Page 7845 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5410 Utility/Van Zoning UTILITY/VAN ZONING Page 7154 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1906 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 9352 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 8323 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 2840 Alignment: Service and Repair Trim Height Inspection Trim Height Inspection Trim Height Measurements Trim height is a predetermined measurement relating to vehicle ride height. Incorrect trim heights can cause bottoming out over bumps, damage to suspension components, and symptoms similar to wheel alignment problems. Inspect the trim heights when diagnosing suspension concerns and before inspecting the wheel alignment. Perform the following prior to measuring trim heights: ^ Make sure the vehicle is on a level surface, such as an alignment rack. ^ Set the tire pressures to specifications. Refer to Vehicle Certification, Tire Place Card, Anti-Theft, and Service Parts ID Label. ^ Check the fuel level. Add additional weight if necessary to simulate a full tank. ^ To ensure proper weight distribution, make sure the rear storage compartment is empty. ^ Close the doors and hood. Z Height Measurement The Z height measurement determines the proper ride height for the front end of the vehicle. Vehicles equipped with torsion bars use an adjusting arm to adjust the Z height. Vehicles without torsion bars have no adjustment and may require replacement of suspension components. Important: All dimensions are measured vertical to the ground. Cross vehicle Z heights should be within 24 mm (0.9 in). 1. Place hands on the front bumper and jounce the front of the vehicle. Make sure that there is at least 38 mm (1.5 in) of movement while jouncing. 2. Allow the vehicle to settle into position. 3. Measure from the centerline (1) of the lower control arm bushing bolt (4) down to the machined edge of the steering knuckle (2) in order to obtain Z height measurement (3). 4. Repeat the jouncing operation and measurement 2 more times for a total of 3 times. 5. Use the highest and lowest measurements to calculate the average height. 6. The true Z height dimension number is the average of the high and the low measurements. Refer to Trim Height Specifications. 7. If these measurements are out of specifications, inspect for the following conditions: ^ Sagging front suspension-Refer to Shock Module Replacement. ^ Collision damage D Height Measurement The D height measurement determines the proper ride height for the rear end of the vehicle. There is no adjustment procedure. Repair may require replacement of suspension components. Important: All dimensions are measured vertical to the ground. Cross vehicle D heights should be within 12 mm (0.5 in) for vehicles equipped with coil springs. Vehicles equipped with air suspension should be within 8 mm (0.3 in). Page 8125 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 6244 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 5966 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 2048 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 1366 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9176 Accelerator Pedal Position Sensor: Diagrams Engine Controls Connector End Views Accelerator Pedal Position (APP) Sensor Page 361 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 4992 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 1970 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 413 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 5860 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 7090 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10941 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 5214 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 8241 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 9371 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 511 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7552 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6843 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Page 10051 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4967 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9425 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7059 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 4380 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7156 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 7370 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4635 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 889 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2320 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 1701 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 15 Notice: In order to avoid damage to the circuit board, do NOT over-tighten the thumb screws. Using your fingers, apply only a light pressure. 3. Connect the 2 electrical connectors. Tighten the module thumb screw to a maximum of 0.2 N.m (2 lb in). 4. Install the protective cover to the module. 5. Position the right rear seat bottom to a passenger position. Important: After replacing the vehicle communication interface module, you must reconfigure the OnStar(R) system. Failure to reconfigure the system will result in an additional customer visit for repair. In addition, pressing and holding the white dot button on the keypad will NOT reset this version of the OnStar(R) system. This action will cause a DTC to set. 6. Install the scan tool. Use the special functions menu in order to perform the OnStar(R) setup procedure for this vehicle. 7. Move the vehicle to an open area that is away from tall buildings and with a clear view of unobstructed sky. Allow the vehicle to run for 10 minutes. 8. Use the ID information menu on the scan tool to access the new station ID (STID) and the electronic serial number (ESN) from the new VCIM. 9. Press the blue OnStar(R) button to connect to the OnStar(R) Call Center and perform the following procedure: 1. Tell the advisor that this vehicle has received a new VCIM. 2. Ask the advisor to add the new STID and the ESN to update the customer's account. 3. Follow any additional instructions from the OnStar(R) advisor. 4. Ask the advisor to activate the OnStar(R) Personal Calling feature, if available. Page 7191 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70 2 - Park/Neutral Position (PNP) Switch Page 10465 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7026 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 8397 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Brakes - Squeak Noise On Brake Pedal Application Brake Fluid: All Technical Service Bulletins Brakes - Squeak Noise On Brake Pedal Application TECHNICAL Bulletin No.: 08-05-22-002C Date: April 07, 2009 Subject: Squeak Noise On Brake Apply (Remove Brake Fluid from Master Cylinder and Refill) Models: 2004-2007 Buick Rainier 2008 Buick Enclave 2004-2008 Chevrolet Colorado, TrailBlazer, TrailBlazer EXT, TrailBlazer SS 2008 Chevrolet Malibu 2009 Chevrolet Malibu (VIN position 11, 4 Orion MI. build with Build Date Prior to April 20, 2009) 2004-2008 GMC Canyon, Envoy, Envoy XL, Envoy XUV 2007-2008 GMC Acadia 2008 Pontiac G6 2009 Pontiac G6 (VIN position 11, 4 Orion MI. build with Build Date Prior to April 20, 2009) 2007-2008 Saturn OUTLOOK 2008 Saturn AURA 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to update model years. Please discard Corporate Bulletin Number 08-05-22-002B (Section 05 - Brakes). Condition Some customers may comment on a squeak noise when the brake pedal is applied or when released. This noise is normally heard when the brake pedal is slowly applied with the engine on or off, but can occur when the brake pedal is released. The noise may be isolated to the master cylinder area. Correction To correct this concern, remove as much of the old brake fluid from the master cylinder as possible and refill with a new DOT 3 brake fluid, P/N 88862806 (in Canada, use P/N 88862807). Start the vehicle and fully cycle the brake pedal until the noise diminishes to allow the new fluid to enter the system. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Warranty Information (Saab U.S. Models) Page 2702 Transmission Position Switch/Sensor: Service and Repair Park/Neutral Position Switch Replacement Tools Required J 41364-A Park/Neutral Switch Aligner Removal Procedure 1. Apply the parking brake. 2. Shift the transmission into neutral. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the nut securing the transmission control lever to the manual shaft. 5. Remove the transmission control lever from the manual shaft. 6. Disconnect the electrical connectors from the switch. 7. Remove the bolts securing the park/neutral position switch to the transmission. 8. Remove the park/neutral position switch from the manual shaft. If the park/neutral position switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. Important: If a new switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in it proper position for installation and the use of neutral position adjustment tool will not be necessary. 3. Install the switch to the transmission with 2 bolts finger tight. Page 10207 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 9093 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1445 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7119 Data Communication Diagram 3 Locations: The locations for the Connectors, Grounds, Splices, and Grommets shown within these diagrams can be found via their numbers at Vehicle Locations. See: Locations Page 8609 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4827 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Locations Oxygen Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Right Side of the Transmission 1 - Heated Oxygen Sensor (HO2S) Sensor 2 Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 9988 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4799 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 5685 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 5414 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 7868 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 2100 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 5516 Manifold Pressure/Vacuum Sensor: Diagrams Engine Controls Connector End Views Manifold Absolute Pressure (MAP) Sensor Page 104 Page 6639 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8826 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7690 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1458 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 1599 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5596 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 11094 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 9224 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 1691 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 244 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3211 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1595 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1310 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Diagram Information and Instructions Radiator Cooling Fan Control Module: Diagram Information and Instructions Electrical Symbols Page 6383 Tighten the resonator to engine bolts to 6 N.m (53 lb in). 4. Connect the air cleaner outlet duct to the air cleaner outlet resonator (3). 5. Properly position the air cleaner outlet duct and air cleaner outlet resonator clamps (2). Tighten the clamps (2) to 4 N.m (35 lb in). Page 7519 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7184 View of the connector when released from the component. View of another type of Micro 64 connector. Page 5795 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 8917 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4820 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 8618 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 3525 Acceptably Prepared (Cleaned-Up) Wheel Surface 6. Once the corrosion has been eliminated, you should coat the repaired area with a commercially available tire sealant such as Patch Brand Bead Sealant or equivalent. Commercially available bead sealants are black rubber-like coatings that will permanently fill and seal the resurfaced bead seat. At 21°C (70°F) ambient temperature, this sealant will set-up sufficiently for tire mounting in about 10 minutes.Coated and Sealed Bead Seat 7. Remount the tire and install the repaired wheel and tire assembly. Refer to Tire and Wheel Removal and Installation in SI. Parts Information Patch Brand Bead Sealer is available from Myers Tires at 1-800-998-9897 or on the web at www.myerstiresupply.com. The one-quart size can of sealer will repair about 20 wheels. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Page 7324 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 3668 Camshaft: Service and Repair Camshaft Replacement Tools Required ^ J 44221 Camshaft Holding Tool ^ J 44222 Camshaft Sprocket Holding Tool ^ J 36660-A Torque/Angle Meter Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Remove the intake and the exhaust camshaft sprocket bolts. 3. Install the J 44222 onto the cylinder head and adjust the horizontal bolts into the camshaft sprockets in order to maintain chain tension and keep from disturbing the timing chain components. 4. Carefully move the sprockets with the timing chain, off of the camshafts. 5. Remove the camshaft cap bolts. Important: Place the camshaft caps in a rack to ensure the caps are installed in the same location from which they were removed. 6. Remove the camshaft caps and store. Page 7330 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 9107 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................345-395 kPa (50-57 psi) Page 2807 Behind The Center Of The I/P (With RPO Code Z88 & Z89) Page 5060 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Lumbar Horizontal Position Sensor Lumbar Horizontal Position Sensor - Driver (w/Memory) Specifications Camshaft Gear/Sprocket: Specifications Intake Camshaft Sprocket Bolt Install the intake camshaft sprocket washer and new bolt. Tighten the new intake camshaft sprocket bolt First Pass ............................................................................................................................................. .................................................... 20 N.m (15 lb ft) Final Pass ............................................................ ............................................................................................................................................ 100 degrees Page 7193 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5140 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 600 Power Distribution Relay: Service and Repair Relay Replacement (Within an Electrical Center) RELAY REPLACEMENT (WITHIN AN ELECTRICAL CENTER) TOOLS REQUIRED J 43244 Relay Puller Pliers REMOVAL PROCEDURE 1. Remove the electrical center cover. 2. Locate the relay. 3. IMPORTANT: - Always note the orientation of the relay. - Ensure that the electrical center is secure, as not to put added stress on the wires or terminals. Using the J 43244 (1) position the tool on opposing corners of the relay (2). 4. NOTE: Use J43244 to pull the relay straight out from the electrical center terminals. The use of pliers or a flat bladed tool could damage the electrical center. Remove the relay (2) from the electrical center. INSTALLATION PROCEDURE 1. Install the relay (2) in the same position as removed. 2. Install the electrical center cover. Page 9860 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 218 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 7352 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1473 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1694 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7646 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5129 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 4401 For vehicles repaired under warranty, use the table. Disclaimer Page 6675 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 4331 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 2130 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 2050 View of the connector when released from the component. View of another type of Micro 64 connector. Page 10932 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7104 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 7784 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 7645 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 3669 7. Remove the camshafts. Installation Procedure 1. Coat the camshaft journals, camshaft journal thrust face, and camshaft lobes with clean engine oil. 2. Install the intake and exhaust camshafts to their original positions. 3. Install the J 44221 with the camshaft flats up and the number 1 cylinder at top dead center. Notice: Refer to Fastener Notice. Important: Install the camshaft caps onto their original locations. The camshaft caps are pin stamped for direction and numerical order. Page 6556 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 7058 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 188 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 7502 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 3514 Refer to the appropriate section of SI for specifications and repair procedures that are related to the vibration concern. Disclaimer Page 8102 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9813 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Engine - Oil Leak from Rear of Crankshaft Crankshaft: Customer Interest Engine - Oil Leak from Rear of Crankshaft Bulletin No.: 05-06-01-022B Date: June 11, 2007 INFORMATION Subject: Diagnostic Information on LL8 Engine Oil Leak from Rear of Crankshaft Due to Porosity (Follow Special Crankshaft Porosity Service Repair Procedure) Models: 2005-2007 Buick Rainier 2005-2007 Chevrolet TrailBlazer Models 2005-2007 GMC Envoy Models 2005-2007 Saab 9-7X with 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the 2006 and 2007 model years. Please discard Corporate Bulletin Number 05-06-01 -022A (Section 06 - Engine/Propulsion System). Special Crankshaft Porosity Service Repair Procedure This bulletin is being published to aid technicians in the diagnosis and repair of oil leak from the rear of the engine. Some engines may have slight crankshaft casting porosity that results in a leak in the crankshaft flange bore. This leak may be misdiagnosed as a rear main oil seal leak. Do not assume that an oil leak at the rear of the engine is from a leak at the rear of the crankshaft. Refer to above illustration for the area of the oil leak (1). Verify the leak by looking in the end of the crankshaft. If oil is present in the bore (where the torque converter nose engages the crankshaft), the special service procedure needs to be performed. If the bore is dry, or oil appears to be from the seal area, perform normal oil leak analysis. Refer to Oil Leak Diagnosis in SI. A service cup plug was recently developed to repair this leak and is available through the Warranty Parts Center (WPC). Refer to the information in this bulletin to order a service cup plug. Page 10873 Page 1260 Turn Signal/Multifunction Switch C4 (With RPO Code K34) Page 6126 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 5347 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 7973 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5546 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3405 Fuse Block - Underhood C7 Page 4159 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 4620 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 8131 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5701 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 5120 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 10834 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 9217 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 2184 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 7063 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5169 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 9563 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 818 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10904 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7335 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 616 Body Control Module: Service and Repair Body Control Module Replacement BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. Do not open the BCM housing. The module does not have any serviceable components. The module may be replaced only as an assembly. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the 40-way body wiring extension (1) from the BCM. Page 2319 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 5196 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 7115 Body Control System Diagram 1 (3 Of 3) Page 10134 Page 3325 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2081 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 1688 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 5919 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 1369 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 237 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 4657 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 2263 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1486 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 2162 View of the connector when released from the component. View of another type of Micro 64 connector. Page 3602 Wheel Bearing: Service and Repair Wheel Hub, Bearing, and Seal Replacement (4WD) Removal Procedure 1. Remove the tire and wheel center cap. 2. Remove the drive axle nut. 3. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the tire and wheel. Refer to Tire and Wheel Removal and Installation. 5. Remove the brake rotor. Refer to Front Brake Rotor Replacement. 6. Disengage the wheel drive shaft from the wheel hub and bearing. Place a brass drift against the outer end of the wheel drive shaft in order to protect the wheel drive shaft threads. Sharply strike the brass drift with the hammer. Do not attempt to remove the wheel drive shaft from the wheel hub and bearing at this time. 7. Remove the ABS sensor mounting bolt from the wheel hub and bearing. 8. Remove the ABS sensor from the wheel hub and bearing. Cooling System - Inspecting Radiator/Heater Hose Clamps Hose Clamp: Technical Service Bulletins Cooling System - Inspecting Radiator/Heater Hose Clamps INFORMATION Bulletin No.: 06-06-02-014B Date: June 13, 2008 Subject: Inspecting Radiator and Heater Hose Clamps and Seals for Leaks During Pre-Delivery Inspection (PDI) Models: 2007 Buick Rainier 2007-2009 Chevrolet TrailBlazer, TrailBlazer SS 2007-2009 GMC Envoy 2007-2009 Saab 9-7X Supercede: This bulletin is being revised to add the 2009 model year. Please discard Corporate Bulletin Number 06-06-02-014A (Section 06 - Engine/Propulsion System). The purpose of this bulletin is to inform dealers of required inspection of underhood and under vehicle radiator and heater hose clamps and seals for leaks and/or seepage during pre-delivery inspection (PDI). Field feedback indicates that some customers may notice engine coolant leaks shortly after delivery, which may result in an immediate decline of customer satisfaction with their new vehicle purchase. When performing a PDI on a vehicle listed in the models affected above, pay specific attention to the effectiveness of the engine coolant hose seal locations. Reposition/reclamp or replace the clamp to effect a proper system seal prior to customer delivery. Locations to Inspect During PDI Dealership personnel should examine the following locations closely during PDI (4.2L LL8 application shown in graphics below; refer to SI for specific information on 5.3L LH6 and 6.0L LS2):L LH6 and 6.0L LS2): 1. Radiator inlet hose (upper hose) to radiator (1). 2. Radiator inlet hose (upper hose) to engine (2). Page 10158 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8066 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 4525 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 730 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3154 Fuse: Locations Rear Fuse Block Fuse Block - Rear, Label Page 8172 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 10389 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6113 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1340 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7739 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 3346 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 6571 Body Control Module (BCM) C3 Page 3962 Step 7 - Step 13 Page 1896 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 11202 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4527 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 10444 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 6683 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 1621 2. Install the CKP sensor retaining bolt. 3. Connect the CKP sensor harness connector. 4. Lower the vehicle. 5. Perform the Crankshaft Position System Variation Learn. Page 11059 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6967 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 3389 Fuse Block - Rear C3 (Pin A1 To E3) Page 6293 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 10026 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9673 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2368 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 6343 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10474 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 3376 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Compressor Hose Assembly Replacement (LL8) Hose/Line HVAC: Service and Repair Compressor Hose Assembly Replacement (LL8) Compressor Hose Assembly Replacement (LL8) Tools Required J39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. 2. Remove the compressor hose assembly nut (3). 3. Remove the compressor hose assembly from the compressor (4). 4. Remove the sealing washers. 5. Remove the compressor suction hose nut from the accumulator. 6. Remove the compressor suction hose from the accumulator. 7. Remove the O-ring seal. 8. Remove the bolt from the lift bracket. 9. Remove the nut from the engine stud. 10. Remove the compressor discharge hose (2) from the condenser (4). 11. Remove the nut from compressor hose connection in driver wheel opening. 12. Remove the O-ring seals. 13. Cap or plug all of the open connections. Installation Procedure 1. Install new O-ring seals. 2. Install the compressor discharge hose (2) to the condenser (4). Notice: Refer to Fastener Notice. 3. Install the compressor discharge hose nut. Page 6329 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9377 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4887 Page 467 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 6779 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1790 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. A/T - Key Will Not Release From Ignition Lock Cylinder Ignition Switch Lock Cylinder: All Technical Service Bulletins A/T - Key Will Not Release From Ignition Lock Cylinder Bulletin No.: 05-07-30-021B Date: October 04, 2007 TECHNICAL Subject: Ignition Key Will Not Remove From Ignition Lock Cylinder (Reposition Shifter Boot) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2003-2004 Oldsmobile Bravada Supercede: This bulletin is being revised to include the 2008 model year. Please discard Corporate Bulletin Number 05-07-30-021A (Section 07 - Transmission/Transaxle). Condition Some customers may comment that they are unable to remove the ignition key from the ignition cylinder. Cause The shifter boot may be caught/trapped in the shifter assembly mechanism. Correction Inspect the shifter boot for being caught/trapped in the shifter assembly. If the shifter boot is NOT caught/trapped in the shift assembly, refer to Ignition Key Cannot Be Removed from the Ignition Lock Cylinder in SI. If the shifter boot IS caught/trapped in the shifter assembly, continue with the next step. DO NOT replace the complete shifter assembly for this condition. ONLY replace the shifter boot/handle if damaged by shifter assembly. Reposition the shifter boot so that it is not caught/trapped in the shifter assembly. Warranty Information Locations Seat Heater Switch: Locations Front Passenger Door Module (FPDM) Page 10142 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Page 2164 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 8211 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4470 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2206 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 7897 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5972 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9588 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10915 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 5072 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 9640 Page 6183 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 3287 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 4351 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 4015 Spark Plug: Specifications Spark Plug Gap ................................................................................................................................... ................................................... 1.08 mm (0.0425 in) Spark Plug Torque ......................................... ............................................................................................................................................. 18 N.m (13 lb ft) Page 4213 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5774 Utility/Van Zoning UTILITY/VAN ZONING Page 11077 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 7292 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 8088 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 3166 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9724 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 2802 Windshield Wiper/Washer Switch Page 4491 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2369 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7783 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1422 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 10349 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1548 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 8940 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1982 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8225 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 10532 ^ (1) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from the jumper harness to the Motor Control B terminal (pin E - wire color red) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Motor Control A terminal (pin D - wire color black) of the transfer case encoder motor (actuator) wiring harness connector. 4. Touch the battery terminals of the 9-volt battery to the battery terminals of the jumper harness. This will rotate the encoder motor shaft in either a clockwise or counterclockwise rotation depending on battery orientation. 5. Using the 9-volt battery, rotate the encoder motor (actuator) shaft until the keyway on the motor shaft is between the two reference lines as shown in the picture. This orientates the encoder motor (actuator) to NEUTRAL for ease of assembly. Note: If available, another option is to rotate the encoder motor (actuator) shaft until a shipping plug from a new encoder motor (actuator) can be installed. 6. Install the encoder motor (actuator) on the control actuator lever shaft of the transfer case. NVG 226 Transfer Case Encoder Motor (Actuator) Indexing Procedure Tools Required: ^ (1) EL-49741 9 Volt Encoder Motor (Actuator) Jumper Harness (Tool can be obtained from SPX/Kent Moore. ^ (4) J-356165 Terminal Test Adapter (Test Probe) ^ (2) 9 Volt Battery (obtain locally) 1. Remove the encoder motor (actuator) from the transfer case. 2. Using the J-35616-5, attach the RED lead from one of the jumper harnesses to the Battery Positive Voltage terminal (pin F - wire color orange) of the transfer case encoder motor (actuator) wiring harness connector. 3. Using the J-35616-5, attach the BLACK lead from the jumper harness to the Lock Solenoid Control terminal (pin G - wire color tan) of the transfer case encoder motor (actuator) wiring harness connector. 4. Attach a 9-volt battery to this harness. You will hear the encoder motor (actuator) unlock. Page 2387 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 3458 Tire Pressure Sensor: Technical Service Bulletins Tire Monitor System - TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Page 2272 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8320 Page 9497 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 3857 10. Remove the remaining oil pan bolts. 11. Place 2 oil pan bolts in the jack screws on the oil pan and tighten evenly to release the oil pan from the engine (1). 12. Clean and inspect the oil pan. Installation Procedure Important: The oil pan must be installed within 10 minutes from when sealer was applied. 1. Apply a 3 mm (0.12 in) bead of sealer to the block, rather than the oil pan. Refer to Sealers, Adhesives, and Lubricants. Important: When you install the oil pan, it could be shifted front or back a little which could cause a transmission alignment problem. The back of the oil pan needs to be flush with the block. 2. Install the oil pan, maneuvering the oil pan to clear the oil pump and screen assembly. 3. Install the oil pan bolts. Page 3377 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 3179 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6719 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 9271 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7571 Powertrain Control Module (PCM) C3 (Pin 1 To 20) Page 2019 Page 1561 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1965 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 5973 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4628 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 9751 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 7164 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 720 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 8388 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 6831 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 1360 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 6334 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 9912 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6026 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 2180 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 9121 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 9314 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4227 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 1415 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Sensor: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Page 11231 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10745 Shift Interlock Solenoid: Locations Shift Lock Control Component Views Automatic Transmission Shift Lock Actuator Automatic Transmission Shift Lock Actuator 1 - Lower Console 2 - Automatic Transmission Shift Lock Actuator Page 11097 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8762 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 7012 Page 7982 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 352 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10619 8. Carefully squeeze the locking tabs (2) together to disengage the primary lock. 9. Pull the primary lock (1) up. Spring tension will push the end of the cable past the ball stud. Important: If the cable end is pushed rearward past the ball stud during the adjustment procedure, it must be released and allowed to come forward of the ball stud. The cable end must then be pushed back just enough to be installed to the ball stud. 10. Push the end of the cable until it is aligned with the ball stud. 11. Install the cable (4) to the ball stud (6). 12. Seat the primary lock (1) by pressing into the locked position. Locations Ride Height Sensor: Locations Air Suspension Component Views Rear Frame and Underbody Rear Frame and Underbody - Short Wheelbase (SWB) 1 - Air Suspension Sensor - LR 2 - Air Suspension Sensor - RR 3 - Air Suspension Compressor Assembly 4 - Air Suspension Inflator Switch 5 - Frame Page 11033 5. Compress the reverse boost valve sleeve into the bore of the oil pump to expose the retaining ring slot. 6. Install the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 7. Install the transmission oil filter and pan. Refer to Automatic Transmission Fluid and Filter Replacement. 8. Lower the vehicle. 9. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 10. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 2274 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 2470 For vehicles repaired under warranty, use the table. Disclaimer Page 1542 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5614 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 6147 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 9027 Disclaimer Page 7221 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 10837 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7298 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 4998 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 7015 Information Bus: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 4825 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7566 Powertrain Control Module (PCM) C1 (Pin 1 To 24) Page 1997 Transmission Position Switch/Sensor: Service and Repair Park/Neutral Position Switch Replacement Tools Required J 41364-A Park/Neutral Switch Aligner Removal Procedure 1. Apply the parking brake. 2. Shift the transmission into neutral. 3. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the nut securing the transmission control lever to the manual shaft. 5. Remove the transmission control lever from the manual shaft. 6. Disconnect the electrical connectors from the switch. 7. Remove the bolts securing the park/neutral position switch to the transmission. 8. Remove the park/neutral position switch from the manual shaft. If the park/neutral position switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. Important: If a new switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in it proper position for installation and the use of neutral position adjustment tool will not be necessary. 3. Install the switch to the transmission with 2 bolts finger tight. Page 9848 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 3180 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 9373 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 2573 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8044 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 9686 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. OnStar(R) - Aftermarket Device Interference Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Aftermarket Device Interference Information INFORMATION Bulletin No.: 08-08-46-004 Date: August 14, 2008 Subject: Information on Aftermarket Device Interference with OnStar(R) Diagnostic Services Models: 2009 and Prior GM Passenger Car and Truck (including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X with OnStar(R) (RPO UE1) This bulletin is being issued to provide dealer service personnel with information regarding aftermarket devices connected to the Diagnostic Link Connector (DLC) and the impact to OnStar(R) diagnostic probes and Vehicle Diagnostic e-mails. Certain aftermarket devices, when connected to the Diagnostic Link Connector, such as, but not limited to, Scan Tools, Trip Computers, Fuel Economy Analyzers and Insurance Tracking Devices, interfere with OnStar's ability to perform a diagnostic probe when requested (via a blue button call) by a subscriber. These devices also prohibit the ability to gather diagnostic and tire pressure data for a subscriber's scheduled OnStar(R) Vehicle Diagnostic (OVD) e-mail. These aftermarket devices utilize the Vehicles serial data bus to perform data requests and/or information gathering. When these devices are requesting data, OnStar(R) is designed not to interfere with any data request being made by these devices as required by OBD II regulations. The OnStar(R) advisor is unable to definitively detect the presence of these devices and will only be able to inform the caller or requester of the unsuccessful or incomplete probe and may in some cases refer the subscriber/requester to take the vehicle to a dealer for diagnosis of the concern. When performing a diagnostic check for an unsuccessful or incomplete OnStar(R) diagnostic probe, or for concerns regarding completeness of the OnStar(R) Vehicle Diagnostic (OVD) e-mail, verify that an aftermarket device was not present at the time of the requested probe. Regarding the OVD e-mail, if an aftermarket device is interfering (including a Scan Tool of any type), the e-mail will consistently display a "yellow" indication in diagnostics section for all vehicle systems except the OnStar(R) System and Tire Pressure data (not available on all vehicles) will not be displayed (i.e. section is collapsed). Successful diagnostic probes and complete OVD e-mails will resume following the removal or disconnecting of the off-board device. Disclaimer Page 246 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 6597 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 10843 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 8892 Utility/Van Zoning UTILITY/VAN ZONING Page 6888 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 10374 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 1677 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 8274 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 668 Page 10780 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 8405 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 8899 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 6657 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 9977 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 2926 Drive Belt: Service Precautions Belt Dressing Notice Notice: Do not use belt dressing on the drive belt. Belt dressing causes the breakdown of the composition of the drive belt. Failure to follow this recommendation will damage the drive belt. Page 1313 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 5994 Page 4947 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 6261 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 2508 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 10752 Shift Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 10385 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 3359 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 734 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 3358 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6524 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 9266 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5625 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 8621 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 2071 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 24 THIS PROGRAM IS IN EFFECT UNTIL APRIL 30, 2011. Condition Certain 2002-2009 model year vehicles equipped with OnStar(R) may have a condition in which the vehicle's OnStar(R) system repeatedly makes incomplete calls to OnStar(R) without the vehicle's occupant(s) input or knowledge. Customer initiated Blue Button call, Emergency calls, and Automatic Crash Notification calls will also fail to establish a data connection with the OnStar(R) Call Center. Eventually, the customer's call will connect as a voice only line and the customer will be able to talk with an OnStar(R) advisor; however, the advisor will not get crucial customer data such as vehicle identification and location. Correction Dealers/retailers are to replace the OnStar(R) module (VCIM). Vehicles Involved Involved are certain 2002-2009 model year vehicles equipped with OnStar(R), and built within these VIN breakpoints: Note: Some model years/models have only one vehicle involved. Important Dealers/retailers are to confirm vehicle eligibility prior to beginning repairs by using GMVIS (dealers/retailers using WINS) or the Investigate Vehicle History link (dealers/retailers using GWM). Not all vehicles within the above breakpoints may be involved. For dealers/retailers with involved vehicles, a listing with involved vehicles containing the complete vehicle identification number, customer name, and address information has been prepared and will be provided to dealers/retailers through the GM GlobalConnect Recall Reports. Dealers/retailers will not have a report available if they have no involved vehicles currently assigned. The listing may contain customer names and addresses obtained from Motor Vehicle Registration Records. The use of such motor vehicle registration data for any purpose other than follow-up necessary to complete this program is a violation of law in several states/provinces/countries. Accordingly, you are urged to limit the use of this report to the follow-up necessary to complete this program. Parts Information US: OnStar(R) modules required for this program are to be obtained by contacting Autocraft Electronics via the web at www.autocraft.com, and selecting the catalog item that contains bulletin number 10037 (or PIC 4893B), or by calling 1-800-336-3998. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. Canada: OnStar(R) modules required for this program are to be obtained by contacting MASS Electronics at 1-877-410-6277. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. DO NOT ORDER ONSTAR(R) MODULES FROM GENERAL MOTORS CUSTOMER CARE AND AFTERSALES (GMCC&A;), SATURN SERVICE PARTS OPERATION (SSPO), OR THE TECHNICAL ASSISTANCE CENTER (TAC). Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers/retailers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Claim Information 1. Submit a claim using the table below. 2. Courtesy Transportation - For dealers/retailers using WINS, submit using normal labor code; for dealers/retailers using GWM - submit as Net Item under the repair labor code. Page 806 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Service and Repair Air Injection Hose/Tube: Service and Repair Secondary Air Injection Pump Hose Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Disconnect both the air inlet and air outlet hoses from the secondary air injection (AIR) reaction pump. 3. Remove the air inlet and air outlet pipe retaining clip from the frame rail. 4. Lower the vehicle. Important: It is not necessary to remove the throttle body to remove the intake manifold. 5. Remove the intake manifold. 6. Remove the number 6 ignition coil. 7. Disconnect the AIR hose from the air box. Page 4018 4. Inspect for evidence of improper arcing. * Measure the gap between the center electrode (4) and the side electrode (3) terminals. An excessively wide electrode gap can prevent correct spark plug operation. * Inspect for the correct spark plug torque. * Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). * Inspect for a broken or worn side electrode (3). * Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. - A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. * Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. * Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. * Inspect for excessive fouling. 5. Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Spark Plug Visual Inspection 1. Normal operation-Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. 2. Carbon fouled-Dry, fluffy black carbon, or soot caused by the following conditions: * Rich fuel mixtures - Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion * Reduced ignition system voltage output - Weak coils - Worn ignition wires - Incorrect spark plug gap * Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. 3. Deposit fouling-Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark intensity. Most powdery deposits will not effect spark intensity unless they form into a glazing over the electrode. Page 3870 Engine Oil Pressure: Testing and Inspection Oil Pressure Diagnosis and Testing Tools Required ^ J 21867 Pressure Gage and Hose Assembly ^ J 42907 Oil Pressure Tester 1. With the vehicle on a level surface, run the vehicle for a few minutes, allow adequate drain down time (2-3 minutes) and measure for a low oil level. 2. If required, add the recommended grade engine oil and fill the crankcase until the oil level measures full on the oil level indicator. 3. Run the engine briefly (10-15 seconds) and verify low or no oil pressure on the vehicle gage or light. 4. Listen for a noisy valve train or a knocking noise. 5. Inspect for the following: ^ Oil diluted by water or glycol (anti freeze) ^ Foamy oil 6. Remove the oil filter and install the J 42907 7. Install J 21867 or equivalent to the J 42907 8. Run the engine and measure the engine oil pressure. 9. Compare the readings to Engine Mechanical Specifications. 10. If the engine oil pressure is below specifications, inspect the engine for one or more of the following: ^ Oil pump worn or dirty Refer to Oil Pump Cleaning and Inspection. ^ Oil pump screen loose, plugged, or damaged ^ Oil pump screen O-ring seal missing or damaged ^ Malfunctioning oil pump pressure regulator valve ^ Excessive bearing clearance ^ Cracked, porous, or restricted oil galleries ^ Oil gallery plugs missing or incorrectly installed Refer to Engine Block Plug Installation. ^ Broken valve lash adjusters Repair as necessary 11. If the reading on J 21867 or equivalent is within specifications, inspect for the following: ^ Plugged or incorrect oil filter and/or malfunctioning oil bypass valve ^ Malfunctioning vehicle oil pressure gage or sensor Repair as necessary Page 2829 Alignment: Description and Operation Camber Description Camber Description Camber Description Camber is the tilting of the wheels from the vertical when viewed from the front of the vehicle. When the wheels tilt outward at the top, the camber is positive (+). When the wheel tilts inward at the top, the camber is negative (-). The amount of tilt is measured in degrees from the vertical. Camber settings influence the directional control and the tire wear. Too much positive camber will result in premature wear on the outside of the tire and cause excessive wear on the suspension parts. Too much negative camber will result in premature wear on the inside of the tire and cause excessive wear on the suspension parts. Unequal side-to-side camber of 1 degree or more will cause the vehicle to pull or lead to the side with the most positive camber. Page 411 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 3773 1. Use the J 38820 to install the valve seals. There is only one size seal. 2. Install the valve spring and the valve spring retainer. 3. Use the J-44228-A and compress the valve springs. Page 9911 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 243 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 7149 Page 3268 Fuse: Application and ID Rear Fuse Block Fuse Block - Rear, Label Page 6035 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 6971 Engine Control Module: Connector Views Powertrain Control Module Connector End Views Powertrain Control Module (PCM) C1 Page 11042 4. Shift lever to LOW. 5. Install the screw at the rear of the shiftier assembly. Tighten the actuator screw to 1.65 N.m (15 lb in). 6. Connect the electrical connector (3). 7. Verify the shift lock actuator functions properly. 8. Install the console. Refer to Console Replacement. Page 225 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 718 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10467 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 10439 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 2383 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 4678 1. Install the thermostat housing to the engine block. Notice: Refer to Fastener Notice. 2. Install the thermostat housing bolts. Tighten the bolts to 10 N.m (89 lb in). 3. Lubricate the inner diameter of the radiator hose with engine coolant. 4. Install the outlet hose to the thermostat housing (1). Secure the hose with the clamp. 5. Install the generator. Refer to Generator Replacement (4.2L Engine) Generator Replacement (5.3L and 6.0L Engines). 6. Fill the cooling system with specified coolant and concentration. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 7. Inspect all sealing surfaces for leaks after starting the engine. Page 8344 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 10321 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6399 Air Filter Element: Service and Repair Air Cleaner Element Replacement Removal Procedure 1. Remove the radiator support diagonal brace if applicable. 2. Disconnect the secondary air injection (AIR) reaction pump inlet hose from the air cleaner air outlet duct. 3. Loosen the 3 air cleaner housing retaining screws (1). 4. Remove the air cleaner housing (2). 5. Lift the air cleaner element (6) and air outlet duct (3) from the lower air cleaner housing/washer solvent tank assembly (4). 6. Remove the air cleaner element (6) from the air outlet duct (3) with a twisting and pulling motion. 7. Inspect the entire assembly for dust, debris, or water. Clean or replace as necessary. Installation Procedure Page 8693 Fuel: Technical Service Bulletins Fuel System - E85 Fuel Usage Precautions Bulletin No.: 05-06-04-035C Date: July 30, 2007 INFORMATION Subject: Usage of E85 Fuels in GM Vehicles Models: 1997-2008 GM Passenger Cars and Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 1997-2008 Isuzu NPR Commercial Medium Duty Trucks 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add the 2008 model year and additional engines with E85 capability. Please discard Corporate Bulletin Number 05-06-04-035B (Section 06 Engine/Propulsion System). Customer Interest in E85 Fuel As the retail price of gasoline increases, some locations in the country are seeing price differentials between regular gasoline and E85 where E85 is selling for substantially less than regular grade gasoline. One result of this is that some customers have inquired if they are able to use E85 fuel in non-E85 compatible vehicles. Only vehicles designated for use with E85 should use E85 blended fuel. E85 compatibility is designated for vehicles that are certified to run on up to 85% ethanol and 15% gasoline. All other gasoline engines are designed to run on fuel that contains no more than 10% ethanol. Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion. Using E85 Fuels in Non-Compatible Vehicles General Motors is aware of an increased number of cases where customers have fueled non-FlexFuel designated vehicles with E85. Fueling non-FlexFuel designated vehicles with E85, or with fuels where the concentration of ethanol exceeds the ASTM specification of 10%, will result in one or more of the following conditions: Lean Driveability concerns such as hesitations, sags and/or possible stalling. SES lights due to OBD codes. Fuel Trim codes P0171 and/or P0174. Misfire codes (P0300). Various 02 sensor codes. Disabled traction control or Stability System disabled messages. Harsh/Firm transmission shifts. Fuel system and/or engine mechanical component degradation. Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion. If the dealer suspects that a non-FlexFuel designated vehicle brought in for service has been fueled with E85, the fuel in the vehicle's tank should be checked for alcohol content with tool J 44175. If the alcohol content exceeds 10% the fuel should be drained and the vehicle refilled with gasoline - preferably one of the Top Tier brands. Page 7523 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1828 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7606 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 6738 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 230 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 168 Page 7174 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4808 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 2438 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1815 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 3551 onto the subject vehicle. - After match mounting, the tire/wheel assembly must be rebalanced. If match mounting tires to in-spec wheels produces assembly values higher than these, tire replacement may be necessary. Replacing tires at lower values will probably mean good tires are being condemned. Because tires can sometimes become temporarily flat-spotted, which will affect force variation, it is important that the vehicle be driven at least 16 km (10 mi) prior to measuring. Tire pressure must also be adjusted to the usage pressure on the vehicle's tire placard prior to measuring. Most GM vehicles will tolerate radial force variation up to these levels. However, some vehicles are more sensitive, and may require lower levels. Also, there are other tire parameters that equipment such as the Hunter GSP9700 cannot measure that may be a factor. In such cases, TAC should be contacted for further instructions. Important - When mounting a GM wheel to a wheel balancer/force variation machine, always use the wheel's center pilot hole. This is the primary centering mechanism on all GM wheels; the bolt holes are secondary. Usually a back cone method to the machine should be used. For added accuracy and repeatability, a flange plate should be used to clamp the wheel onto the cone and machine. This system is offered by all balancer manufacturers in GM's dealer program. - Any type of service equipment that removes tread rubber by grinding, buffing or truing is NOT recommended, and may void the tire warranty. However, tires may have been ground by the tire company as part of their tire manufacturing process. This is a legitimate procedure. Steering Wheel Shake Worksheet When diagnosing vibration concerns, use the following worksheet in conjunction with the appropriate Vibration Analysis-Road testing procedure in the Vibration Correction sub-section in SI. Page 8052 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7135 Step 11 - Step 17 Page 8362 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 5053 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5809 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Locations Intake Air Temperature Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 10073 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. NVG 126-NP4 - Transfer Case Transfer Case Actuator: Service and Repair NVG 126-NP4 - Transfer Case Transfer Case Motor/Encoder Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle 2. Remove the fuel tank shield, if equipped. Refer to Fuel Tank Shield Replacement (TrailBlazer EXT, Envoy XL) Fuel Tank Shield Replacement (TrailBlazer, Envoy) 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 9343 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10617 Transmission Speed Sensor: Diagrams Vehicle Speed Sensor Assembly, Wiring Harness Side Vehicle Speed Sensor Assembly, Wiring Harness Side Vehicle Speed Sensor Assembly, Wiring Harness Side Page 1971 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4134 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 2062 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 1495 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1249 steering column. 10. Depress the horn contacts in the steering wheel. Does the horn work? ^ Yes - Check if the operation of the horn is sensitive to pressure applied to the steering wheel as if a driver were doing a panic stop. In some cases, pressure applied to the steering wheel in different directions will expose a bad ground path in the steering column. Proceed to step 11. ^ No - proceed with step 11. 11. Inspect the steering column through the insulator panel location. Note: The shaft from the steering wheel comes through a metal bracket. That bracket is surrounded by plastic, which is inside of another metal bracket. Look for a small metal clip (refer to the "horn clip" graphic) that connects the inner bracket (inside the plastic) and the outer bracket. This clip provides an auxiliary ground path which is needed in some cases, if the primary path has a bad connection. 12. To verify this, connect a test light between the red wire on the horn contacts in the steering wheel and the steering column sections (1) and (2) in the illustration. Does the horn work when grounded to (1) and not (2)? ^ Yes - add or replace the horn clip. ^ No - refer to the Horn Inoperative section in SI to diagnose which component in the circuit is causing the horn inoperative condition. Parts Information Warranty Information Disclaimer Page 1629 Important: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. Do not apply any type of lubrication in the seal groove. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. 3. Use the J45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 4. Install the fuel tank. Refer to Fuel Tank Replacement (TrailBlazer, Envoy, Rainier). Page 1401 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 3153 Fuse Block - Underhood (4.2L), Label Usage Page 9472 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 8222 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 10827 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 10253 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 10147 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 8650 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 1609 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6649 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Locations Seat Position Sensor: Locations SIR Component Views Under Driver Seat 1 - Seat Recline Motor - Driver (AR9) 2 - Seat Position Sensor - Recline (w/Memory) 3 - Inflatable Restraint Seat Position Sensor (SPS) - Left 4 - Seat Position Sensor - Horizontal (w/Memory) 5 Seat Horizontal Motor - Driver (AR9) 6 - Seat Position Sensor - Front (w/Memory) 7 - Seat Front Vertical Motor - Driver (AR9) 8 - Seat Rear Vertical Motor - Driver (AR9) 9 - Seat Position Sensor Rear (w/Memory) Under Passenger Seat Page 9209 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 8160 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1447 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5599 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 3081 The information has been updated within SI. If you are using a paper version of this Service Manual, please make a reference to this bulletin on the affected page. Disclaimer Page 7155 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 5178 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2144 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 7838 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Service Precautions Vehicle Lifting: Service Precautions Vehicle Lifting Caution Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and strap the vehicle to the hoist. Page 5853 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3070 Fluid - A/T: Fluid Type Specifications AUTOMATIC TRANSMISSION DEXRON-VI Automatic Transmission Fluid. Page 6121 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 581 Control Module HVAC: Service and Repair HVAC - Manual Auxiliary Heater and Air Conditioning Control Module Replacement Removal Procedure 1. Using a flat bladed tool, carefully pry out on the top of the HVAC control-auxiliary. 2. Remove the HVAC control-auxiliary from the center console/seat. 3. Disconnect the electrical connector. 4. Remove the rear HVAC control-auxiliary from the vehicle. Installation Procedure 1. Connect the rear HVAC control-auxiliary electrical connector. 2. Install the HVAC control-auxiliary in the console bottom first. 3. Push in at the top of the HVAC control-auxiliary in order to engage the HVAC control-auxiliary in the console/seat. Page 9559 View of the connector when released from the component. View of another type of Micro 64 connector. Page 456 Page 1832 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 3442 Vehicle Lifting: Service and Repair Lifting and Jacking the Vehicle Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and strap the vehicle to the hoist. Caution: To avoid any vehicle damage, serious personal injury or death, always use the jackstands to support the vehicle when lifting the vehicle with a jack. Notice: Perform the following steps before beginning any vehicle lifting or jacking procedure: * Remove or secure all of the vehicle's contents in order to avoid any shifting or any movement that may occur during the vehicle lifting or jacking procedure. * The lifting equipment or the jacking equipment weight rating must meet or exceed the weight of the vehicle and any vehicle contents. * The lifting equipment or the jacking equipment must meet the operational standards of the lifting equipment or jacking equipment's manufacturer. * Perform the vehicle lifting or jacking procedure on a clean, hard, dry, level surface. * Perform the vehicle lifting or jacking procedure only at the identified lift points. DO NOT allow the lifting equipment or jacking equipment to contact any other vehicle components. Failure to perform the previous steps could result in damage to the lifting equipment or the jacking equipment, the vehicle, and/or the vehicle's contents. Vehicle Lifting * Ensure that the lifting equipment meets weight requirements and is in good working order. Always follow the lift manufacturer's instructions. * You may lift and support the front of the vehicle at the front suspension near the wheel assemblies. Ensure that the arms of the front cradle are extended as close to the steering knuckle as possible. * Ensure that the vehicle is centered on the hoist before attempting to lift. * When using a suspension-contact hoist, ensure that the rear cradle has adequate clearance for the rear stabilizer bar. Page 5236 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 8341 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4970 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 6605 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 10148 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 9185 Page 4296 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Service Precautions Power Steering Line/Hose: Service Precautions Power Steering Hose Disconnected Notice Notice: Do not start the vehicle with any power steering gear inlet or outlet hoses disconnected. When disconnected, plug or cap all openings of components. Failure to do so could result in contamination or loss of power steering fluid and damage to the system. Page 5627 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 10422 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9230 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 8901 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 5124 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 10937 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10220 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7054 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10830 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 518 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 9688 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 10725 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Page 3879 Tighten the intake manifold bolts to 10 N.m (89 lb in). 3. Install the generator. Refer to Generator Replacement (4.2L Engine) Generator Replacement (5.3L and 6.0L Engines). 4. Install the vacuum brake booster hose to the intake manifold. 5. Lubricate the inner diameter of the crankcase ventilation hose. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 6. Install the crankcase ventilation hose. 7. Connect the MAP sensor electrical connector. 8. Install the electrical harness and vacuum lines to the intake manifold. Page 6671 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 542 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 210 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 5059 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5781 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 8673 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 6618 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 4202 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10224 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 1376 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10515 Page 7903 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 3210 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 7940 4. Clean the fuel sender sealing surfaces (4). Important: * Some lock ring were manufactured with DO NOT REUSE stamped into them. These lock rings may be reused if they are not damaged or warped. * Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. * Check the lock ring for flatness. Place the lock ring on a flat surface. Measure the clearance between to lock ring and the flat surface using a feeler gage at 7 points. 5. If the warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 6. If the warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. Installation Procedure 1. Install the new seal (3) on the fuel tank. Important: The fuel pump strainer must be in a horizontal position when the fuel sender is installed in the tank. When installing the fuel sender assembly, assure that the fuel pump strainer does not block full travel of the float arm. 2. Install the fuel sender assembly (2) into the fuel tank. Page 9676 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 7091 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 8292 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 6362 Knock Sensor: Service and Repair Knock Sensor Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the knock sensor harness connector (4). 3. Remove the knock sensor retaining bolt (3). 4. Remove the appropriate knock sensor (1 or 2). Installation Procedure Notice: Refer to Component Fastener Tightening Notice. 1. Install the knock sensor (1 or 2) and the bolt (3). Tighten the sensor to 25 N.m (18 lb ft). 2. Connect the knock sensor harness connector (4). 3. Lower the vehicle. Page 756 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1184 Disclaimer Page 401 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7556 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 8523 Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 1257 Turn Signal Switch: Diagrams Turn Signal/Multifunction Switch C1 Page 6236 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 8147 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8906 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9150 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 192 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 9307 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 11055 Utility/Van Zoning UTILITY/VAN ZONING Page 2200 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 5563 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 2772 2. Install the transfer case front speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Transfer Case Rear Output Shaft Speed Sensor Replacement - Left Side Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case left rear speed sensor electrical connector. 3. Remove the transfer case left rear speed sensor. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the transfer case left rear speed sensor. Tighten the sensor to 17 N.m (13 lb ft). 2. Install the transfer case left rear speed sensor electrical connector. 3. Lower the vehicle. Refer to Lifting and Jacking the Vehicle. Transfer Case Rear Output Shaft Speed Sensor Replacement - Right Side Page 7713 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9550 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4890 Powertrain Control Module (PCM) C1 (Pin 25 To 56) Powertrain Control Module (PCM) C2 Page 7627 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 4605 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 4529 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 8154 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 4259 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 10163 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 7828 Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Page 6616 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 446 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4092 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 3399 Fuse Block - Underhood C2 Page 2213 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 8629 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 3309 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 3434 Step 14 - Step 15 The number below refers to the step number on the diagnostic table. 4. This step tests for a short to voltage on the MIL control circuit. With the fuse removed there should be no voltage on the MIL control circuit. Page 1681 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 7671 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 862 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8948 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 8364 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4091 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 408 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 10548 Transfer Case Actuator: Diagrams NVG 226-NP8 - Transfer Case Transfer Case Encoder Motor Transfer Case Encoder Motor Transfer Case Encoder Notor Front Axle Actuator Front Axle Actuator Page 10815 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1345 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 10064 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 9706 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 283 Memory Seat Module - Driver C2 (w/Memory) Page 7064 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 2177 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6179 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Locations Hood Sensor/Switch (For Alarm): Locations Immobilizer Component Views Behind Left Headlamp 1 - Headlamp Leveling Actuator - Left (TR6) 2 - Hood Ajar Switch (UA2) Page 10360 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 11225 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 5586 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7664 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 9680 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5436 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 2837 2. Tighten the rear lower control arm bracket mounting bolts to 240 N.m (177 lb ft). 3. Verify that the caster and the camber are still within specifications. Refer to Wheel Alignment Specifications. 4. When the caster and camber are within specifications, adjust the toe. Refer to Front Toe Adjustment. Page 8283 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3848 6. Fill the crankcase with the proper quantity of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 7. Remove the oil level indicator. 8. Wipe the indicator with a clean cloth. 9. Install the oil level indicator. 10. Remove the oil level indicator and check the oil level. 11. Add oil if necessary. 12. Check for any oil leaks. Page 417 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 8719 5. Turn the ignition to the OFF position. 6. Relieve fuel pressure and disconnect the fuel feed and return lines at the fuel rail. Plug the fuel feed and return lines coming off the fuel rail with J 37287, J 42873 or J 42964 as appropriate for the fuel system. 7. Connect the J 35800-A to the vehicle fuel rail. 8. Pressurize the J 35800-A to 510 kPa (75 psi). 9. Start and idle the engine until it stalls, due to lack of fuel. This should take approximately 15-20 minutes. 10. Turn the ignition to the OFF position. 11. Disconnect the J 35800-A from the fuel rail. 12. Reconnect the vehicle fuel pump relay and oil pressure switch connector, if equipped. 13. Remove the J 37287, J 42873 or J 42964 and reconnect the vehicle fuel feed and return lines. 14. Start and idle the vehicle for an additional two minutes to ensure residual injector cleaner is flushed from the fuel rail and fuel lines. 15. Pour the entire contents of GM Fuel System Treatment Plus (P/N 88861011 [in Canada, P/N 88861012]) into the tank and advise the customer to fill the tank. 16. Review the benefits of using Top Tier Detergent gasoline with the customer and recommend that they add a bottle of GM Fuel System Treatment Plus to the fuel tank at every oil change. Regular use of GM Fuel System Treatment Plus should keep the customer from having to repeat the injector cleaning procedure. 17. Road test the vehicle to verify that the customer concern has been corrected. Parts Information * Only 1/8 of the cost may be claimed for 4 and 6 cylinder engines and 1/4 of the cost for 8 cylinder engines. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Warranty Information (Saab U.S. Models) Page 5135 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4988 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6123 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 4549 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9168 Page 9579 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 5866 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Service and Repair Cooling System Air Bleeder Pipe / Hose: Service and Repair Coolant Air Bleed Hose Replacement Removal Procedure 1. Drain the cooling system, if necessary. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Reposition the coolant air bleed hose clamp at the coolant air bleed pipe. 3. Reposition the coolant air bleed hose clamp at the heater outlet hose. 4. Remove the coolant air bleed hose from the air bleed pipe and the heater hose. Installation Procedure 1. Install the coolant air bleed hose to the air bleed pipe and the heater hose. 2. Position the coolant air bleed hose clamp at the coolant air bleed pipe. 3. Position the coolant air bleed hose clamp at the heater outlet hose. Page 7008 Page 3140 17. With the left rear wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the left rear hydraulic circuit, install a proper box-end wrench onto the RIGHT FRONT wheel hydraulic circuit bleeder valve. 18. Install a transparent hose over the end of the bleeder valve, then repeat steps 13-14. 19. With the right front wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the right front hydraulic circuit, install a proper box-end wrench onto the LEFT FRONT wheel hydraulic circuit bleeder valve. 20. Install a transparent hose over the end of the bleeder valve, then repeat steps 13-14. 21. After completing the final wheel hydraulic circuit bleeding procedure, ensure that each of the 4 wheel hydraulic circuit bleeder valves are properly tightened. 22. Close the J 29532, or equivalent, fluid tank valve, then disconnect the J 29532, or equivalent, from the J 35589-A. 23. Remove the J 35589-A from the brake master cylinder reservoir. 24. Fill the brake master cylinder reservoir to the maximum-fill level with Delco Supreme 11(R), GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 25. Slowly depress and release the brake pedal. Observe the feel of the brake pedal. 26. If the brake pedal feels spongy perform the following steps: 1. Inspect the brake system for external leaks. Refer to Brake System External Leak Inspection. 2. Using a scan tool, perform the antilock brake system automated bleeding procedure to remove any air that may have been trapped in the brake pressure modulator valve (BPMV). Refer to Antilock Brake System Automated Bleed Procedure. 27. Turn the ignition key ON, with the engine OFF. Check to see if the brake system warning lamp remains illuminated. Important: If the brake system warning lamp remains illuminated, DO NOT allow the vehicle to be driven until it is diagnosed and repaired. 28. If the brake system warning lamp remains illuminated, refer to Symptoms - Hydraulic Brakes. Page 4879 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Ignition System - MIL ON/Misfire DTC's In Wet Weather Spark Plug: All Technical Service Bulletins Ignition System - MIL ON/Misfire DTC's In Wet Weather Bulletin No.: 06-06-04-048B Date: January 12, 2007 TECHNICAL Subject: 4.2L LL8 Engine - Flashing and/or MIL/SES Light, Rough Idle, Misfire(s) DTC(s) P0300, P0301, P0302, P0303, P0304, P0305, P0306 (Install AIP Seal) Models: 2004-2007 Buick Rainier 2002-2007 Chevrolet TrailBlazer 2002-2007 GMC Envoy 2002-2004 Oldsmobile Bravada 2005-2007 Saab 9-7X with Vortec(TM) 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the new part numbers for the Spark Plugs and Ignition Coils. Please discard Corporate Bulletin Number 06-06-04-048A (Section 06 - Engine/Propulsion System). Condition Some customers may comment that, after severe weather that includes large amounts of rain in a short period of time, the engine has a rough idle and/or flashing MIL/SES light. Upon further investigation, there may be the following DTC(s): P0300, P0301, P0302, P0303, P0304, P0305 or P0306. This condition can be aggravated if the vehicle is parked nose down on an incline during this type of weather. The customer may also comment on repeat occurrences of this condition because water may be passing over the Air Intake Plenum (AIP). Cause The dripping rain water onto the engine cam cover will collect at the coil(s) and may seep past the coil(s) into the spark plug(s) well of the cylinder head and may affect the operation of the spark plug(s) and coil(s), causing the misfire(s). Correction Before replacing the AIP seal, refer to Misfire diagnostics in SI to determine if water intrusion was the cause of the misfire. Diagnostic Aids for Misfire Refer to SI for Base Engine Misfire without Internal Engine Noises. If no trouble found (NTF) using SI document on Base Engine Misfire without Internal Engine Noises, then refer to SI for Misfire DTC(s). If Misfire diagnostic leads to the removal of the coil(s) and spark plug(s), refer to the following SI Documents: Air Cleaner Outlet Resonator Replacement Ignition Coil Replacement Removal Procedure Spark Plug Replacement Coil(s) damage from water intrusion will have a film of white chalk build-up on the outside and inside of the spark plug boot to ignition coil(s) assembly. If present, remove the spark plug(s) and inspect for similar build-up on the outside of the spark plug(s). If NTF with the coil(s) and spark plug(s), continue on with the Misfire Diagnostic in SI. Replace any coil and spark plug that has been diagnosed to be damaged from water intrusion. To prevent a reoccurrence, follow repair information outlined in this bulletin to replace the AIP seal. Page 5398 1. Install the MAF/IAT sensor. Notice: Refer to Fastener Notice. 2. Install the MAF/IAT sensor screws. Tighten the screws to 0.6 N.m (5 lb in). 3. Connect the engine harness electrical connector (5) to the MAF/IAT sensor. Page 8727 Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Training (Canada) To access the training video on AFIT, take the following path at the GMPro LMS Training Website: 1. After logging into the website, choose the link on the left side of the page titled "Catalog." 2. Then choose "Catalog Search." 3. Next, within the search box, Select Course Number - Contains - "T" then select search. 4. This will bring up a list of TECHassist courses. Scroll through to choose "Active Fuel Injector Tester" and select "View." 5. At this point, a new window will open and the program can be Launched. Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Techlink Additional information can be found on AFIT (June 2006 Edition) and GM Upper Engine and Fuel Injector Cleaner (November 2006 Edition) in Techlink. To access the articles, take the following path: 1. Go to GM DealerWorld (U.S.) or the GM GlobalConnect (Canada). 2. Click on the Service Tab in DealerWorld (in Canada, click Technican Resources in the Service Library of GM GlobalConnect). 3. Click on the GM Techlink Hyperlink. 4. Click on the Archives Hyperlink at GM Techlink. - Click on 06-2006 in the Archives Section and Click on the Active Fuel Injector Tester Link in the June 2006 Techlink Article. - Click on 11-2006 in the Archives Section and Click on the GM Top Engine Cleaner Replaced Link in the November 2006 Techlink Article. Injector Cleaning Procedure Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent recommended. DO NOT USE OTHER CLEANING AGENTS AS THEY MAY CONTAIN METHANOL, WHICH CAN DAMAGE FUEL SYSTEM COMPONENTS. Under NO circumstances should the GM Upper Engine and Fuel Injector Cleaner be added to the vehicle fuel tank. Do not exceed the recommended cleaning solution concentration. Testing has demonstrated that exceeding the recommended cleaning solution concentration does not improve the effectiveness of this procedure. Important Vehicles with less than 160 km (100 mi) on the odometer should not have the injectors cleaned. These vehicles should have any out of specification injectors replaced. 1. For 4, 5 and 6 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A - Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) mixed with 420 ml (14 oz) of regular unleaded gasoline. 2. For 8 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) of Upper Engine and Fuel Injector Cleaner mixed with 420 ml (14 oz) of regular unleaded gasoline. This procedure will need to be repeated for a second time for an 8 cylinder engine (8 cylinder engines receive 960 ml total fluid 120 ml (4 oz) of Upper Engine and Fuel Injector Cleaner and 840 ml (28 oz) of gasoline. 3. Be sure to follow all additional instructions provided with the tool. 4. Electrically disable the vehicle fuel pump by either removing the fuel pump fuse or the fuel pump relay and disconnecting the oil pressure switch connector, if equipped. Page 9954 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4200 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2938 Step 6 - Step 13 Page 5794 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 3314 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5638 Oxygen Sensor: Service Precautions Heated Oxygen Sensor Resistance Learn Reset Notice Heated Oxygen Sensor Resistance Learn Reset Notice Notice: When replacing the HO2S perform the following: * A code clear with a scan tool, regardless of whether or not a DTC is set * HO2S heater resistance learn reset with a scan tool, where available Perform the above in order to reset the HO2S resistance learned value and avoid possible HO2S failure. Page 5695 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 383 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 768 Engine Control Module: Connector Views Powertrain Control Module Connector End Views Powertrain Control Module (PCM) C1 Steering/Suspension - Wheel Alignment Specifications Alignment: Technical Service Bulletins Steering/Suspension - Wheel Alignment Specifications WARRANTY ADMINISTRATION Bulletin No.: 05-03-07-009C Date: December 09, 2010 Subject: Wheel Alignment Specifications, Requirements and Recommendations for GM Vehicles Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks Supercede: This bulletin is being extensively revised to provide technicians and warranty administrators with an all inclusive guide for wheel alignments. PLEASE FAMILIARIZE YOURSELF WITH THESE UPDATES BEFORE PERFORMING YOUR NEXT GM WHEEL ALIGNMENT SERVICE. Please discard Corporate Bulletin Number 05-03-07-009B (Section 03 - Suspension). Purpose The purpose of this bulletin is to provide retail, wholesale and fleet personnel with General Motors' warranty service requirements and recommendations for customer concerns related to wheel alignment. For your convenience, this bulletin updates and centralizes all of GM's Standard Wheel Alignment Service Procedures, Policy Guidelines and bulletins on wheel alignment warranty service. Important PLEASE FAMILIARIZE YOURSELF WITH THESE UPDATES BEFORE PERFORMING YOUR NEXT GM WHEEL ALIGNMENT SERVICE. The following five (5) key steps are a summary of this bulletin and are REQUIRED in completing a successful wheel alignment service. 1. Verify the vehicle is in an Original Equipment condition for curb weight, tires, wheels, suspension and steering configurations. Vehicles modified in any of these areas are not covered for wheel alignment warranty. 2. Review the customer concern relative to "Normal Operation" definitions. 3. Verify that vehicle is within the "Mileage Policy" range. 4. Document wheel alignment warranty claims appropriately for labor operations E2000 and E2020. The following information must be documented or attached to the repair order: - Customer concern in detail - What corrected the customer concern? - If a wheel alignment is performed: - Consult SI for proper specifications. - Document the "Before" AND "After" wheel alignment measurements/settings. - Completed "Wheel Alignment Repair Order Questionnaire" (form attached to this bulletin) 5. Use the proper wheel alignment equipment (preferred with print-out capability), process and the appropriate calibration maintenance schedules. Important If it is determined that a wheel alignment is necessary under warranty, use the proper labor code for the repair. E2000 for Steering Wheel Angle and/or Front Toe set or E2020 for Wheel Alignment Check/Adjust includes Caster, Camber and Toe set (Wheel alignment labor time for other component repairs is to be charged to the component that causes a wheel alignment operation.). The following flowchart is to help summarize the information detailed in this bulletin and should be used whenever a wheel alignment is performed. Page 3534 *This product is currently available from 3M. To obtain information for your local retail location please call 3M at 1-888-364-3577. **This product is currently available from Meguiars (Canada). To obtain information for your local retail location please call Meguiars at 1-800-347-5700 or at www.meguiarscanada.com. ^ This product is currently available from Tri-Peek International. To obtain information for your local retail location please call Tri-Peek at 1-877-615-4272 or at www.tripeek.com. Disclaimer Page 519 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 2524 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Page 1302 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 11173 Page 4562 Page 481 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 1959 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 4510 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 6041 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2292 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8010 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 900 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 3266 Fuse Block - Underhood (4.2L), Label Usage Page 3900 4. Install the valve keys. 5. Remove the J-44228-A. 6. Remove the air pressure to the cylinder. 7. Coat the camshaft journals, the camshaft journal thrust face, and the camshaft lobes with clean engine oil. 8. Install the camshafts to their original position. Notice: Refer to Fastener Notice. 9. Install the camshaft caps onto their original journal. Tighten the camshaft cap bolts to 12 N.m (106 lb in). Page 1586 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 2420 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 7910 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6673 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9761 Ignition Coil 3 Page 8607 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 539 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 9365 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 7147 Page 4379 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 1475 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 1073 Power Seat Switch: Service and Repair Front Seat Lumbar Control Switch Replacement FRONT SEAT LUMBAR CONTROL SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the switch bezel assembly from the seat. 2. Remove the power seat switch. 3. Release the tabs that retain the lumbar switch to the switch bezel assembly. 4. Disconnect the electrical connector from the lumbar switch. 5. Remove the lumbar switch from the switch bezel assembly. INSTALLATION PROCEDURE 1. Connect the electrical connector to the lumbar switch. 2. Install the lumbar switch to the switch bezel assembly, verifying that the retaining tabs are fully seated. 3. Install the power seat switch. 4. Install the switch bezel assembly to the seat. Page 9913 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 11221 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 3263 Page 7017 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 1926 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 3090 3. Install the fill plug. Tighten the fill plug to 32 N.m (24 lb ft). 4. Install the engine protection shield. Refer to Engine Protection Shield Replacement. 5. Lower the vehicle. Rear Drive Axle Rear Axle Lubricant Replacement (9.5 LD Inch Axle) Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the drain plug. Page 5114 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 4317 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Locations Oxygen Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Right Side of the Transmission 1 - Heated Oxygen Sensor (HO2S) Sensor 2 Page 6766 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 5321 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 10294 Shift Solenoid: Locations Electronic Components Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 250 - Input Speed Sensor (ISS) Assembly - Model Dependent 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Page 8910 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 1289 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Locations Steering Wheel And Column Page 4325 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 10493 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 3707 Assemble the arbor, forcing screw, attaching bolts and socket. Refer to the illustration titled, Special Installation Tool Assembly Needed. Install the tool press assembly to the end of the crankshaft flange and position the socket and service cup plug into the bore of the crankshaft flange. Refer to the above illustration for proper tool set up before pressing the cup plug into the end of the crankshaft. The forcing screw will fit inside an 18 MM or 19 MM end of the impact style socket with the 1/2" drive side of the socket facing the service cup plug. The forcing screw should bottom on the 15 MM step inside the socket. Refer to the above illustrations on 1/2" drive impact style socket dimensions. Hand tighten the forcing screw into the socket, making sure that it is centered on the service cup plug. Mark the forcing screw and arbor for reference, then tighten the forcing screw two complete turns and an additional 90 degrees or 1/4 turn more. When completed, remove the installation tool assembly and confirm the installation depth of the service cup plug. Place a straight edge across the center of the crankshaft flange as the measurement point. Measure from the straight edge to the center of the installed cup plug. The depth of the installed cup plug should be 16-17 mm (0.63-0.67 in). Refer to the above illustration to confirm the installed depth. Parts Information Warranty Information (excluding Saab U.S. Models) Page 11143 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4484 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 4923 Page 7899 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Service and Repair Spare Tire: Service and Repair Tire Hoist and Shaft Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the spare tire from the spare tire carrier. 3. Remove spare wheel hoist assembly mounting bolts from the frame. 4. Remove the spare wheel hoist assembly from the vehicle. Installation Procedure 1. Install the spare wheel hoist assembly to the vehicle. Notice: Refer to Fastener Notice. 2. Install spare wheel hoist assembly mounting bolts to the frame. Tighten the spare wheel hoist assembly mounting bolts to the frame to 50 N.m (37 lb in). 3. Install the spare tire to the spare tire carrier. 4. Lower the vehicle. Page 3261 US English/Metric Conversion US English/Metric Conversion Page 4838 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6805 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10821 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 4836 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7108 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 7261 Step 1 - Step 13 Page 1394 Page 10146 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 4309 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3412 Fuse Block: Service and Repair Rear Electrical Center or Junction Block Replacement REAR ELECTRICAL CENTER OR JUNCTION BLOCK REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the battery negative cable. 2. If replacing the rear electrical center on a Chevrolet TrailBlazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the rear electrical center on a Chevrolet TrailBlazer or GMC Envoy, position the left second row seat to a cargo position. 4. Remove the rear electrical center cover. 5. Remove the battery feed terminal nut (2) from the junction block. 6. Remove the body control module (BCM) from the rear electrical center. 7. Fully loosen the 3 bolts (1) that retain the junction block to the electrical connectors. 8. Release the tabs that retain the junction block to the block base. 9. Remove the junction block from the block base. 10. Disconnect the instrument panel harness connector (1) from the junction block. Page 10757 Page 9187 Page 6782 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 5250 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 10382 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8735 Page 7023 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7512 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 7484 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 11110 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 9841 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6523 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 9498 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 10503 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 4332 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 7062 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 6429 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ...................................................................AC 41-981 Page 5715 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Body Wiring Harness Extension Replacement Body Control Module: Service and Repair Body Wiring Harness Extension Replacement BODY WIRING HARNESS EXTENSION REPLACEMENT - BCM REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the body wiring harness extension on a Chevrolet Trail Blazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the body wiring harness extension on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the body wiring extension (1) from the BCM. Page 6283 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1829 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Locations Air Flow Meter/Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 4473 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 7832 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9213 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10436 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2147 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 9152 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Locations Main Relay (Computer/Fuel System): Locations Fuse Block - Underhood (4.2L), Label Page 4226 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6013 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 6038 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 1952 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 5659 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4729 Body Control Module (BCM) C2 Page 5396 Intake Air Temperature Sensor: Diagrams Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 213 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 9556 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 2596 1 - Body Control Module 2 - Fuse Block - Rear 3 - Body Control Module Connectors C1 and C2 4 Rollover Sensor Page 9319 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6899 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 695 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Exhaust System - Catalytic Converter Precautions Catalytic Converter: Technical Service Bulletins Exhaust System - Catalytic Converter Precautions Bulletin No.: 06-06-01-010A Date: February 04, 2008 INFORMATION Subject: Information on Close-Coupled Converter and Engine Breakdown or Non-Function Due to Severe Overheat or Lack of Oil Causing Piston(s) Connecting Rod(s) Crankshaft Cylinder(s) and/or Head(s) Camshaft(s) Intake and/or Exhaust Valve(s) Main and/or Rod Bearing(s) Damage Models: 2004-2008 GM Passenger Cars and Trucks with Close-Coupled Catalytic Converters Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-06-01-010 (Section 06 - Engine/Propulsion System). Certain 2004-2008 General Motors products may be equipped with a new style of catalytic converter technically known as the close-coupled catalytic converter providing quick catalyst warm-up resulting in lower tail pipe emissions earlier in the vehicle operating cycle. If an engine breakdown or non-function were to occur (such as broken intake/exhaust valve or piston) debris may be deposited in the converter through engine exhaust ports. If the engine is non-functioning due to a severe overheat event damage to the ceramic "brick" internal to the catalytic converter may occur. This may result in ceramic debris being drawn into the engine through the cylinder head exhaust ports. If a replacement engine is installed in either of these instances the replacement engine may fail due to the debris being introduced into the combustion chambers when started. When replacing an engine for a breakdown or non-function an inspection of the catalytic converters and ALL transferred components (such as exhaust/ intake manifolds) should be performed. Any debris found should be removed. In cases of engine failure due to severe overheat dealers should also inspect each catalytic converter for signs of melting or cracking of the ceramic "brick". If damage is observed the converter should be replaced. Disclaimer Page 5220 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9939 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 3329 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 375 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1783 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Diagram Information and Instructions Torque Converter Clutch Solenoid: Diagram Information and Instructions Electrical Symbols Page 8048 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 4738 6. Engage the sliding latch fastening the BCM to the rear electrical center. Slide the latch outboard until the locking tab (1) is fully seated. 7. Install the rear electrical center cover. 8. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a passenger position. 9. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, install the left second row seat. 10. Connect the negative battery cable. 11. If installing a replacement BCM, program the BCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 5326 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 4999 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 11118 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 7031 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3190 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 4079 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3088 5. Remove the rear axle fill plug. 6. Fabricate a dipstick from a pipe cleaner or similar item. Form the pipe cleaner into the shape of an "L";. Important: Ensure that the pipe cleaner is resting on the bottom threads of the fill hole. 7. Insert the pipe cleaner into the fill plug opening with the stem "L"; is facing down. 8. Inspect the lubricant level. The lubricant level should be between 0-10 mm (0-0.4 in) below the fill plug opening. 9. If the fluid level is low, add lubricant until the level is even with the bottom edge of the fill plug opening. Use the proper fluid. Refer to Fluid and Lubricant Recommendations. Notice: Refer to Fastener Notice. 10. Install the rear axle fill plug. Tighten the rear axle fill plug to 33 N.m (24 lb ft). 11. Lower the vehicle. Page 4305 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2818 A wheel alignment will generally NOT correct vehicles that follow the road crown since this is within "Normal Operation." Mileage Policy The following mileage policy applies for E2020 and E2000 labor operations: Note Wheel Alignment is NOT covered under the New Vehicle Limited Warranty for Express and Savana Cutaway vehicles as these vehicles require Upfitters to set the wheel alignment after completing the vehicles. - 0-800 km (0-500 mi): E2000/E2020 claims ONLY allowed with Call Center Authorization. Due to the tie down during shipping, the vehicle's suspension requires some time to reach normal operating position. For this reason, new vehicles are generally NOT to be aligned until they have accumulated at least 800 km (500 mi). A field product report should accompany any claim within this mileage range. - 801-12,000 km (501-7,500 mi): - If a vehicle came from the factory with incorrect alignment settings, any resulting off-angle steering wheel, lead/pull characteristics or the rare occurrence of excessive tire wear would be apparent early in the life of the vehicle. The following policy applies: - Vehicles 100% Factory Set/Measured for Caster/Camber/Toe - Escalade/ESV/EXT, Tahoe/Suburban, Yukon/XL/Denali, Silverado/Sierra, Express/Savana, Corvette and Colorado/Canyon: E2000/E2020 Claims: Call Center Authorization Required - All Vehicles NOT 100% Factory Set/Measured for Caster/Camber/Toe as noted above: E2000/E2020 Claims: Dealer Service Manager Authorization Required - 12,001 km and beyond (7,501 miles and beyond): During this period, customers are responsible for the wheel alignment expense or dealers may provide on a case-by case basis a one-time customer enthusiasm claim up to 16,000 km (10,000 mi). In the event that a defective component required the use of the subject labor operations, the identified defective component labor operation will include the appropriate labor time for a wheel alignment as an add condition to the component repair. Important Only one wheel alignment labor operation claim (E2000 or E2020) may be used per VIN. Warranty Documentation Requirements When a wheel alignment service has been deemed necessary, the following items will need to be clearly documented on/with the repair order: - Customer concern in detail - What corrected the customer concern? - If a wheel alignment is performed: - Consult SI for proper specifications. - Document the "Before" AND "After" wheel alignment measurements/settings. - Completed "Wheel Alignment Repair Order Questionnaire" (form attached to this bulletin) 1. Document the customer concern in as much detail as possible on the repair order and in the warranty administration system. Preferred examples: - Steering wheel is off angle in the counterclockwise direction by approximately x degrees or clocking position. - Vehicle lead/pulls to the right at approximately x-y mph. Vehicle will climb the road crown. Severe, Moderate or Slight. - RF and LF tires are wearing on the outside shoulders with severe feathering. Important In the event of a lead/pull or steering wheel angle concern, please note the direction of lead/pull (left or right) or direction of steering wheel angle (clockwise or counterclockwise) on the repair order and within the warranty claim verbatim. Important In the event of a tire wear concern, please note the position on the vehicle and where the wear is occurring on the tire; i.e., the RF tire is wearing on the inside shoulder. 2. Document the technician's findings on cause and correction of the issue. Examples: - Reset LF toe from 0.45 degrees to 0.10 degrees and RF toe from -0.25 degrees to 0.10 degrees to correct the steering wheel angle from 5 degrees counterclockwise to 0 degrees. - Reset LF camber from 0.25 degrees to -0.05 degrees to correct the cross-camber condition of +0.30 degrees to 0.00 degrees on the vehicle. - Front Sum toe was found to be 0.50 degrees, reset to 0.20 degrees. 3. Print-out the "Before" and "After" wheel alignment measurements/settings and attach them to the Repair Order or if print-out capability is not Page 11121 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5069 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 5332 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Locations Camshaft Position Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Page 7677 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 6335 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Campaign - Unwanted Repeat Calls to OnStar(R) Technical Service Bulletin # 10037 Date: 100420 Campaign - Unwanted Repeat Calls to OnStar(R) CUSTOMER SATISFACTION Bulletin No.: 10037 Date: April 20, 2010 Subject: 10037 - Unwanted Repeat Calls to OnStar(R) Models: 2003 Buick LeSabre 2004-2006 Buick Rendezvous 2005 Buick LeSabre, Terraza 2005-2006 Buick LaCrosse/Allure 2006-2008 Buick Lucerne 2008 Buick LaCrosse/Allure 2008-2009 Buick Enclave 2003 Cadillac CTS 2004 Cadillac Escalade 2004-2005 Cadillac CTS-V, Deville 2005 Cadillac Escalade ESV, SRX 2005-2006 Cadillac STS 2005-2008 Cadillac CTS 2006-2008 Cadillac DTS 2007 Cadillac Escalade, Escalade EXT 2007-2008 Cadillac Escalade ESV 2008 Cadillac SRX, STS 2002 Chevrolet Impala 2003-2008 Chevrolet Suburban 2003-2009 Chevrolet Silverado 2004-2008 Chevrolet Impala 2005 Chevrolet Colorado, Corvette, Malibu 2005-2006 Chevrolet Uplander 2005-2008 Chevrolet Avalanche, Tahoe, TrailBlazer 2006 Chevrolet HHR, Monte Carlo 2006-2008 Chevrolet Equinox 2007-2008 Chevrolet Corvette 2008 Chevrolet HHR 2008-2009 Chevrolet Cobalt, Colorado, Malibu, Uplander 2003 GMC Envoy XL, Sierra, Yukon XL 2004-2008 GMC Yukon 2005-2009 GMC Sierra 2005-2008 GMC Yukon XL 2006-2008 GMC Envoy 2007 GMC Canyon 2007-2009 GMC Acadia 2006 HUMMER H2 2006-2008 HUMMER H3 2008 HUMMER H2 2003 Oldsmobile Silhouette 2005 Montana SV6 2005-2008 Pontiac Grand Prix 2006 Pontiac G6, Vibe 2007 Pontiac Montana SV6 2007-2008 Pontiac Solstice 2008 Pontiac G6, Torrent 2008-2009 Pontiac G5, G8 2009 Pontiac G3, Montana SV6 2005-2007 Saturn ION 2006-2009Saturn VUE 2007-2008 Saturn AURA, OUTLOOK, SKY Equipped with OnStar(R) (RPO UE1) Page 5859 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 9711 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 3840 Engine Oil: Fluid Type Specifications ENGINE OIL TYPE LOOK FOR TWO THINGS: 1.Your vehicle's engine requires oil meeting GM Standard GM6094M. 2.SAE 5W-30 is best for your vehicle. These numbers on an oil container show its viscosity, or thickness. Do not use other viscosity oils such as SAE 20W-50. Oils meeting these requirements should also have the starburst symbol on the container. This symbol indicates that the oil has been certified by the American Petroleum Institute (API). You should look for this information on the oil container, and use only those oils that are identified as meeting GM Standard GM6094M and have the starburst symbol on the front of the oil container. NOTICE: Use only engine oil identified as meeting GM Standard GM6094M and showing the American Petroleum Institute Certified For Gasoline Engines starburst symbol. Failure to use the recommended oil can result in engine damage not covered by your warranty. GM Goodwrench oil meets all the requirements for your vehicle. If you are in an area of extreme cold, where the temperature falls below -20°F (-29°C), it is recommended that you use either an SAE 5W-30 synthetic oil or an SAE 0W-30 oil. Both will provide easier cold starting and better protection for your engine at extremely low temperatures. ENGINE OIL ADDITIVES Do not add anything to your oil. The recommended oils with the starburst symbol that meet GM Standard GM6094M are all you will need for good performance and engine protection. Page 2098 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1909 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 8165 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 680 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 4945 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2105 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2065 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 8886 Page 8390 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Locations Air Injection Pump Relay: Locations Engine Controls Component Views Left Front of Chassis (K18) 1 - Secondary Air Injection (AIR) Pump 2 - Secondary Air Injection (AIR) Pump Relay Page 5549 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 3751 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 9562 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 6483 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 7731 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 2020 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9794 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 1816 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 2763 Speed Sensor: Locations NVG 226-NP8 - Transfer Case Transfer Case Control Component Views Transfer Case Left Side Of The Transfer Case - Rear 1- Transfer Case Encoder Motor Connector 2- Propshaft Speed Sensor - Rear 3- Vehicle Speed Sensor (VSS) 4- Propshaft Speed Sensor - Front 5- C310 Page 3718 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Parts Center (WPC) Request Form IMPORTANT NOTE WHEN PRINTING THIS FORM: If the form prints out on two pages, make certain you fax BOTH pages so that the WPC receives all the needed information. Missing information will delay or prevent the part from being shipped. Page 5561 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 5566 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 678 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 4144 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 3765 Installation Procedure 1. Install a new camshaft cover seal. 2. Install new rubber ignition control module seals. Notice: Refer to Fastener Notice. 3. Install the camshaft cover and secure with the cam cover bolts. Tighten the camshaft cover bolts to 10 N.m (89 lb in). 4. Install the ignition control modules and secure the modules with bolts. Tighten the ignition coil bolts to 10 N.m (89 lb in). 5. Connect the ignition control module electrical connectors. 6. Install the fuel injector electrical connectors. 7. Install the engine electrical harness housing (1). Page 10087 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1525 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 11098 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6418 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 1581 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 9131 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 8104 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 1714 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 6860 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Page 6057 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 421 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 1951 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 1349 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. NVG 120-NR9 - Transfer Case Fluid - Transfer Case: Service and Repair NVG 120-NR9 - Transfer Case Transfer Case Fluid Replacement Preliminary Procedures Raise the vehicle. Refer to Lifting and Jacking the Vehicle. Instruments - Erratic Speedometer Operation Engine Control Module: Customer Interest Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 4469 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 6198 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 4228 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5842 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Antilock Brake System Automated Bleed Procedure Brake Bleeding: Service and Repair Antilock Brake System Automated Bleed Procedure Antilock Brake System Automated Bleed Procedure Two - Person Procedure Important: ^ Use the two-person bleed procedure under the following conditions: - Installing a new Electro-Hydraulic Control Unit (EHCU) or new Brake Pressure Modulator Valve (BPMV). - Air is trapped in the valve body. ^ Do not drive the vehicle until the brake pedal feels firm. ^ Do not reuse brake fluid that is used during bleeding. ^ Use the vacuum, the pressure and the gravity bleeding procedures only for base brake bleeding. 1. Raise the vehicle in order to access the system bleed screws. 2. Bleed the system at the right rear wheel first. 3. Install a clear hose on the bleed screw. 4. Immerse the opposite end of the hose into a container partially filled with clean DOT 3 brake fluid. 5. Open the bleed screw 1/2 to 1 full turn. 6. Slowly depress the brake pedal. While the pedal is depressed to its full extent, tighten the bleed screw. 7. Release the brake pedal and wait 10-15 seconds for the master cylinder pistons to return to the home position. 8. Repeat the previous steps for the remaining wheels. The brake fluid which is present at each bleed screw should be clean and free of air. 9. This procedure may use more than a pint of fluid per wheel. Check the master cylinder fluid level every four to six strokes of the brake pedal in order to avoid running the system dry. 10. Press the brake pedal firmly and run the Scan Tool Automated Bleed Procedure. Release the brake pedal between each test. 11. Bleed all four wheels again using Steps 3-9. This will remove the remaining air from the brake system. 12. Evaluate the feel of the brake pedal before attempting to drive the vehicle. 13. Bleed the system as many times as necessary in order to obtain the appropriate feel of the pedal. Page 5975 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 8229 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 8800 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 254 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7363 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6587 Page 3716 Refer to the above graphic illustration (1) (dish side out) for the installation of the service cup plug. Do Not use the impact socket with hammer to drive the service cup plug into place. Damage to the crankshaft thrust bearing may occur. Refer to above illustration (1), showing the 15 MM. step inside the 18 MM. 1/2" drive impact style socket. Refer to the above illustration (1), showing the 38 MM (1-1/2") overall height of an 18 MM or 19 MM 1/2" drive impact style socket. It is best to use a thicker wall socket to equalize installation force with the following approximate dimensions. Page 9779 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 269 Page 7997 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 10195 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 9083 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 9457 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 985 Installation Procedure 1. Install the transfer case control module (1) to the mounting bracket. 2. Connect the three electrical connectors to the transfer case control module. 3. Install the transfer case control module and mounting bracket to the instrument panel mag beam. 4. Install the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 5. Install the access panel. 6. Program the transfer case shift control module. Refer to Transfer Case Control Module Reprogramming. Transfer Case Control Module Reprogramming Transfer Case Control Module Reprogramming Set-up for Module Programming/Reprogramming Important: Ensure that the vehicle battery is fully charged and that a battery charger is no longer connected. If performing this procedure for module replacement, install new module before proceeding. Before reprogramming close the doors and wait two minutes to allow other modules to stop communicating via the class 2 data line. Failure to due so could result in a failed reprogramming procedure. Page 7444 Assemble the arbor, forcing screw, attaching bolts and socket. Refer to the illustration titled, Special Installation Tool Assembly Needed. Install the tool press assembly to the end of the crankshaft flange and position the socket and service cup plug into the bore of the crankshaft flange. Refer to the above illustration for proper tool set up before pressing the cup plug into the end of the crankshaft. The forcing screw will fit inside an 18 MM or 19 MM end of the impact style socket with the 1/2" drive side of the socket facing the service cup plug. The forcing screw should bottom on the 15 MM step inside the socket. Refer to the above illustrations on 1/2" drive impact style socket dimensions. Hand tighten the forcing screw into the socket, making sure that it is centered on the service cup plug. Mark the forcing screw and arbor for reference, then tighten the forcing screw two complete turns and an additional 90 degrees or 1/4 turn more. When completed, remove the installation tool assembly and confirm the installation depth of the service cup plug. Place a straight edge across the center of the crankshaft flange as the measurement point. Measure from the straight edge to the center of the installed cup plug. The depth of the installed cup plug should be 16-17 mm (0.63-0.67 in). Refer to the above illustration to confirm the installed depth. Parts Information Warranty Information (excluding Saab U.S. Models) Diagram Information and Instructions Radiator Cooling Fan Motor Relay: Diagram Information and Instructions Electrical Symbols Page 6975 Powertrain Control Module (PCM) C2 (Pin 15 To 54) Locations Accelerator Pedal Position Sensor: Locations Engine Controls Component Views Accelerator and Brake Pedals 1 - Instrument Panel Harness 2 - Accelerator Pedal Position (APP) Sensor 3 - Accelerator Pedal 4 Brake Pedal 5 - Stop Lamp Switch Page 10222 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6192 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2137 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 7994 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Capacity Specifications Coolant: Capacity Specifications Cooling System ................................................................................................................................... .................................................. 9.7 quarts (9.2 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Page 9569 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 2248 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 748 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9196 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 7463 Page 5957 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 9403 Throttle Body: Service and Repair Throttle Body Assembly Replacement Removal Procedure 1. Remove the resonator assembly. 2. Remove the evaporative emission (EVAP) canister purge line from the throttle body. 3. Disconnect the throttle body electrical connector. 4. Remove the throttle body assembly retaining bolts (1). 5. Remove the throttle body assembly (2) and the gasket from the intake manifold. 6. Clean the gasket surface. Installation Procedure 1. Install the throttle body assembly (2) to the intake manifold with the gasket. 2. Add sealer GM P/N 12346004 (Canadian P/N 10953480) to the throttle control module bolt threads. Notice: Refer to Fastener Notice. 3. Install the throttle body assembly retaining bolts (1). Tighten the bolts to 10 N.m (89 lb in). 4. Connect the throttle body electrical connector. 5. Install the EVAP canister purge line to the throttle body. 6. Install the resonator assembly. Page 1846 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2049 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Campaign - Unwanted Repeat Calls to OnStar(R) Technical Service Bulletin # 10037 Date: 100420 Campaign - Unwanted Repeat Calls to OnStar(R) CUSTOMER SATISFACTION Bulletin No.: 10037 Date: April 20, 2010 Subject: 10037 - Unwanted Repeat Calls to OnStar(R) Models: 2003 Buick LeSabre 2004-2006 Buick Rendezvous 2005 Buick LeSabre, Terraza 2005-2006 Buick LaCrosse/Allure 2006-2008 Buick Lucerne 2008 Buick LaCrosse/Allure 2008-2009 Buick Enclave 2003 Cadillac CTS 2004 Cadillac Escalade 2004-2005 Cadillac CTS-V, Deville 2005 Cadillac Escalade ESV, SRX 2005-2006 Cadillac STS 2005-2008 Cadillac CTS 2006-2008 Cadillac DTS 2007 Cadillac Escalade, Escalade EXT 2007-2008 Cadillac Escalade ESV 2008 Cadillac SRX, STS 2002 Chevrolet Impala 2003-2008 Chevrolet Suburban 2003-2009 Chevrolet Silverado 2004-2008 Chevrolet Impala 2005 Chevrolet Colorado, Corvette, Malibu 2005-2006 Chevrolet Uplander 2005-2008 Chevrolet Avalanche, Tahoe, TrailBlazer 2006 Chevrolet HHR, Monte Carlo 2006-2008 Chevrolet Equinox 2007-2008 Chevrolet Corvette 2008 Chevrolet HHR 2008-2009 Chevrolet Cobalt, Colorado, Malibu, Uplander 2003 GMC Envoy XL, Sierra, Yukon XL 2004-2008 GMC Yukon 2005-2009 GMC Sierra 2005-2008 GMC Yukon XL 2006-2008 GMC Envoy 2007 GMC Canyon 2007-2009 GMC Acadia 2006 HUMMER H2 2006-2008 HUMMER H3 2008 HUMMER H2 2003 Oldsmobile Silhouette 2005 Montana SV6 2005-2008 Pontiac Grand Prix 2006 Pontiac G6, Vibe 2007 Pontiac Montana SV6 2007-2008 Pontiac Solstice 2008 Pontiac G6, Torrent 2008-2009 Pontiac G5, G8 2009 Pontiac G3, Montana SV6 2005-2007 Saturn ION 2006-2009Saturn VUE 2007-2008 Saturn AURA, OUTLOOK, SKY Equipped with OnStar(R) (RPO UE1) Front Caster and Camber Adjustment Alignment: Service and Repair Front Caster and Camber Adjustment Front Caster and Camber Adjustment The caster and camber adjustments are made by loosening the lower control arm adjustment bolts and repositioning the lower control arm. Important: Before adjusting the caster and camber angles, jounce the front bumper 3 times to allow the vehicle to return to normal height. Measure and adjust the caster and the camber with the vehicle at curb height. The front suspension Z dimension and the rear suspension D dimension are indicated in Trim Heights. Refer to Trim Height Inspection. 1. For an accurate reading, do not push or pull on the tires during the alignment process. 2. Determine the caster (2, 3) angle. 3. Determine the camber (2, 3) angle. 4. Loosen the lower control arm adjustment bolts (1). Notice: Refer to Fastener Notice. 5. Adjust the caster and the camber angle by repositioning the lower control arm (2) until the specifications have been met. When the adjustments are complete, hold the lower control arm in position so that the specifications do not change while tightening the lower control arm adjustment bolts. 1. Tighten the front lower control arm bracket mounting bolts to 265 N.m (195 lb ft). Page 4481 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 8166 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3123 Refrigerant: Technical Service Bulletins A/C - Contaminated R134A Refrigerant Bulletin No.: 06-01-39-007 Date: July 25, 2006 INFORMATION Subject: Contaminated R134a Refrigerant Found on Market for Automotive Air-Conditioning Systems Models: 2007 and Prior GM Passenger Cars and Trucks (including Saturn) 2007 and Prior HUMMER H2, H3 2007 and Prior Saab 9-7X Attention: This bulletin should be directed to the Service Manager as well as the Parts Manager. Commercially Available Contaminated R134a Refrigerant Impurities have been found in new commercially available containers of R134a. High levels of contaminates may cause decreased performance, and be detrimental to some air-conditioning components. Accompanying these contaminates has been high levels of moisture. Tip: Excessive moisture may cause system concerns such as orifice tube freeze-up and reduced performance. Industry Reaction: New Industry Purity Standards Due to the potential availability of these lower quality refrigerants, the Society of Automotive Engineers (SAE), and the Air Conditioning and Refrigeration Industry (ARI) are in the process of instituting reliable standards that will be carried on the labels of future R134a refrigerant containers. This identifying symbol will be your assurance of a product that conforms to the minimum standard for OEM Automotive Air-Conditioning use. How Can You Protect Yourself Today? It is recommended to use GM or ACDelco(R) sourced refrigerants for all A/C repair work. These refrigerants meet General Motors own internal standards for quality and purity, insuring that your completed repairs are as good as the way it left the factory. Parts Information The part numbers shown are available through GMSPO or ACDelco(R). The nearest ACDelco(R) distributor in your area can be found by calling 1-800-223-3526 (U.S. Only). Page 5254 US English/Metric Conversion US English/Metric Conversion Page 8374 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2183 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 2064 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5624 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9780 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 2072 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 6398 Disclaimer Page 4712 Heat Shield: Service and Repair Exhaust Muffler Heat Shield Replacement Exhaust Muffler Heat Shield Replacement Removal Procedure 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the catalytic converter heat shield rear 2 bolts where the catalytic converter heat shield connects to the muffler heat shield. 3. Remove the remaining exhaust muffler heat shield bolts and remove the heat shield from the floor panel studs. Installation Procedure 1. Install the muffler heat shield to the floor panel studs placing the muffler heat shield under the rear part of the converter heat shield. Notice: Refer to Fastener Notice. 2. Secure the muffler heat shield with 5 bolts. Tighten the exhaust muffler heat shield bolts to 7 N.m (62 lb in). 3. Lower the vehicle. Page 9277 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 4869 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 4542 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 524 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 1530 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7914 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 7387 Oxygen Sensor: Service Precautions Excessive Force and Oxygen Sensor Notice Excessive Force and Oxygen Sensor Notice Notice: The oxygen sensor may be difficult to remove when the engine temperature is below 48°C (120°F). Excessive force may damage threads in the exhaust manifold or the exhaust pipe. Page 1935 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 10560 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor (2) from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps (1-5) to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. 3. Properly align the keyway of the rotary position sensor with the motor/encoder shaft as indicated by the center reference line shown in the graphic. Page 7537 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 9460 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 6545 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 3594 Wheels: Description and Operation Replacement Wheels Description Replacement Wheels Description Replace the wheel if any of the following conditions exist: ^ The wheel exhibits excessive runout. ^ The wheel is bent. ^ The wheel is cracked. ^ The wheel is severely rusted. ^ The wheel is severely corroded. Important: Air leaks caused by porosity on aluminum wheels are repairable. ^ The wheel leaks air. Caution: If you are replacing the wheel(s), the wheel stud(s), the wheel nut(s) or the wheel bolt(s), install only new GM original equipment parts. Installation of used parts or non-GM original equipment parts may cause the wheel to loosen, loss of tire air pressure, poor vehicle handling and loss of vehicle control resulting in personal injury. Notice: The use of non-GM original equipment wheels may cause: ^ Damage to the wheel bearing, the wheel fasteners and the wheel ^ Tire damage caused by the modified clearance to the adjacent vehicle components ^ Adverse vehicle steering stability caused by the modified scrub radius ^ Damage to the vehicle caused by the modified ground clearance ^ Speedometer and odometer inaccuracy Replace the wheel, the wheel studs and the wheel/nuts, or the wheel bolts if applicable, if any of the following conditions exist: ^ The wheel has elongated bolt holes. ^ The wheel/nuts, or bolts if applicable, loosen repeatedly. Steel wheel identification is stamped into the wheel near the valve stem. Aluminum wheel identification is cast into the inboard side of the wheel. Page 4122 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 3859 10 Install the stabilizer shaft. Refer to Stabilizer Shaft Replacement. 11. Install the A/C compressor 2 bottom bolts (4). Tighten all 4 bolts (2, 3, 4) to 50 N.m (37 lb ft). 12. Install the oil level indicator and tube. Refer to Oil Level Indicator and Tube Replacement. 13. Connect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. Important: Inspect the engine for oil leaks in order to ensure all sealing surfaces are sealed. 14. Fill the engine with oil. Refer to Engine Oil and Oil Filter Replacement. Page 6400 1. Install the air cleaner element (6) onto the air outlet duct (3) with a twisting and pushing motion. 2. Install the air cleaner element (6) and air outlet duct (3) into the lower air cleaner housing/washer solvent tank assembly (4). Notice: Refer to Fastener Notice. Important: Ensure the air inlet duct (5) is properly positioned in the lower air cleaner housing/washer solvent tank assembly (4) before installing the air cleaner housing (2). 3. Install the air cleaner housing (2). Tighten the 3 air cleaner housing retaining screws (1) to 4 N.m (35 lb in). 4. Connect the AIR pump inlet hose to the air cleaner air outlet duct. 5. Install the radiator support diagonal brace if applicable. Page 3298 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 6893 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 9445 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 9811 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 8965 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 6532 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2810 Wiper Switch: Service and Repair REAR WINDOW WIPER AND WASHER SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the instrument panel (I/P) accessory trim plate. 2. Disconnect the electrical connector from the wiper washer switch. 3. Release the wiper washer switch locking tabs. 4. Remove the switch from the trim plate. INSTALLATION PROCEDURE 1. Position the switch to the trim plate. 2. Connect the electrical connector to the wiper washer switch. 3. Install the switch to the instrument panel trim plate, ensuring that the locking tabs are properly seated. 4. Install the I/P accessory trim plate. Page 5680 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 443 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 6196 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 10050 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Page 2516 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10192 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. A/T - DEXRON(R)-VI Fluid Information Fluid - A/T: Technical Service Bulletins A/T - DEXRON(R)-VI Fluid Information INFORMATION Bulletin No.: 04-07-30-037E Date: April 07, 2011 Subject: Release of DEXRON(R)-VI Automatic Transmission Fluid (ATF) Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2007 Saturn Relay 2005 and Prior Saturn L-Series 2005-2007 Saturn ION 2005-2008 Saturn VUE with 4T45-E 2005-2008 Saab 9-7X Except 2008 and Prior Chevrolet Aveo, Equinox Except 2006 and Prior Chevrolet Epica Except 2007 and Prior Chevrolet Optra Except 2008 and Prior Pontiac Torrent, Vibe, Wave Except 2003-2005 Saturn ION with CVT or AF23 Only Except 1991-2002 Saturn S-Series Except 2008 and Prior Saturn VUE with CVT, AF33 or 5AT (MJ7/MJ8) Transmission Only Except 2008 Saturn Astra Attention: DEXRON(R)-VI Automatic Transmission Fluid (ATF) is the only approved fluid for warranty repairs for General Motors transmissions/transaxles requiring DEXRON(R)-III and/or prior DEXRON(R) transmission fluids. Supercede: This bulletin is being revised to update information. Please discard Corporate Bulletin Number 04-07-30-037D (Section 07 - Transmission/Transaxle). MANUAL TRANSMISSIONS / TRANSFER CASES and POWER STEERING The content of this bulletin does not apply to manual transmissions or transfer cases. Any vehicle that previously required DEXRON(R)-III for a manual transmission or transfer case should now use P/N 88861800. This fluid is labeled Manual Transmission and Transfer Case Fluid. Some manual transmissions and transfer cases require a different fluid. Appropriate references should be checked when servicing any of these components. Power Steering Systems should now use P/N 9985010 labeled Power Steering Fluid. Consult the Parts Catalog, Owner's Manual, or Service Information (SI) for fluid recommendations. Some of our customers and/or General Motors dealerships/Saturn Retailers may have some concerns with DEXRON(R)-VI and DEXRON(R)-III Automatic Transmission Fluid (ATF) and transmission warranty claims. DEXRON(R)-VI is the only approved fluid for warranty repairs for General Motors transmissions/transaxles requiring DEXRON(R)-III and/or prior DEXRON(R) transmission fluids (except as noted above). Please remember that the clean oil reservoirs of the J-45096 - Flushing and Flow Tester machine should be purged of DEXRON(R)-III and filled with DEXRON(R)-VI for testing, flushing or filling General Motors transmissions/transaxles (except as noted above). DEXRON(R)-VI can be used in any proportion in past model vehicles equipped with an automatic transmission/transaxle in place of DEXRON(R)-III (i.e. topping off the fluid in the event of a repair or fluid change). DEXRON(R)-VI is also compatible with any former version of DEXRON(R) for use in automatic transmissions/transaxles. DEXRON(R)-VI ATF General Motors Powertrain has upgraded to DEXRON(R)-VI ATF with the start of 2006 vehicle production. Current and prior automatic transmission models that had used DEXRON(R)-III must now only use DEXRON(R)-VI. Page 8031 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 7225 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 5900 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 9888 Page 968 7. Connect the ECM electrical connector (1) to the TCM (2) if previously removed. 8. Install the ECM/TCM cover (2) to the ECM/TCM bracket (1). 9. Ensure the ECM/TCM cover retainers (2) are fully engaged with the ECM/TCM bracket (1). 10. Connect the cooling fan electrical connector. 11. Connect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection. 12. If the TCM was replaced the replacement TCM must be programmed. Refer to Control Module References. Page 1746 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 9469 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 691 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 1721 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 8793 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 7169 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6730 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 6273 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4234 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 9999 Page 2246 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2308 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 682 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 10946 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5279 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 9597 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Fuel Level Sensor Replacement Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement Fuel Level Sensor Replacement Removal Procedure 1. Remove the fuel sender assembly. 2. Disconnect the fuel pump electrical connector. 3. Remove the retaining clip from the fuel level sensor connector. 4. Disconnect the electrical connector from under the fuel sender cover. 5. Remove the sensor retaining clip. 6. Squeeze the locking tangs and remove the fuel level sensor (3). Installation Procedure 1. Install the fuel level sensor (3). 2. Install the sensor retaining clip. 3. Connect the electrical connector to the fuel level sensor. 4. Install the retaining clip to the fuel level sensor electrical connector. 5. Connect the fuel pump electrical connector. 6. Install the fuel sender assembly. Page 10510 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 6704 Page 9326 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 10173 View of a typical Micro 64 connector. Depress the lock and pull the lever over and past the lock. Page 2897 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 4248 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 10167 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 1889 Page 238 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 1919 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 1776 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 3679 7. Remove the exhaust camshaft position actuator bolt. 8. Remove the exhaust camshaft position actuator. Installation Procedure 1. Install the exhaust camshaft actuator into the timing chain. 2. Align the marked link of the timing chain with the timing mark on the exhaust camshaft position actuator sprocket (1). Important: Ensure the alignment pin is engaged between the camshaft and the exhaust camshaft position actuator. 3. Install the exhaust camshaft actuator onto the exhaust camshaft. Page 11031 Pressure Regulating Solenoid: Diagrams Pressure Control (PC) Solenoid Valve, Wiring Harness Side Pressure Control (PC) Solenoid Valve, Wiring Harness Side Page 11195 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Bulletin No.: 04-03-10-012B Date: February 01, 2008 INFORMATION Subject: Pitting and Brake Dust on Chrome wheels Models: 2008 and Prior GM Passenger Cars and Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 04-03-10-012A (Section 03 - Suspension). Analysis of Returned Wheels Chrome wheels returned under the New Vehicle Limited Warranty for pitting concerns have recently been evaluated. This condition is usually most severe in the vent (or window) area of the front wheels. This "pitting" may actually be brake dust that has been allowed to accumulate on the wheel. The longer this accumulation builds up, the more difficult it is to remove. Cleaning the Wheels In all cases, the returned wheels could be cleaned to their original condition using GM Vehicle Care Cleaner Wax, P/N 12377966 (in Canada, P/N 10952905). When using this product, you should confine your treatment to the areas of the wheel that show evidence of the brake dust build-up. This product is only for use on chromed steel or chromed aluminum wheels. Parts Information Warranty Information Wheel replacement for this condition is NOT applicable under the terms of the New Vehicle Limited Warranty. Disclaimer Page 8012 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4977 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4823 View of the connector when released from the component. View of another type of Micro 64 connector. Page 2043 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 10413 Page 11103 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 5556 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 1409 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 11206 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 5839 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 2507 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Page 3020 3. Install the NEW power steering gear oil seal (1) to the power steering gear using the seal installation end of the J 44586 (2). 4. Ensure the power steering gear oil seals (1) are fully seated in the power steering gear. 5. Lower the vehicle. 6. Install the power steering hose assembly to the vehicle. Notice: Refer to Fastener Notice. 7. Install the power steering hose assembly to frame brackets retaining bolts. Tighten the bolts to 10 N.m (89 lb in). 8. Install the power steering hose assembly bracket to the wheel well. 9. Install the power steering hose assembly bracket retaining bolt at the wheel well. Tighten the bolt to 10 N.m (89 lb in). NVG 126-NP4 - Transfer Case Control Module: Diagrams NVG 126-NP4 - Transfer Case Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module - C1 Transfer Case Shift Control Module C1 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C2 Page 9776 Page 1752 Page 7667 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 4139 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 1653 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 5933 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 1506 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Page 4457 Radiator Cooling Fan Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8619 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 8754 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5595 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8417 US English/Metric Conversion US English/Metric Conversion Page 8153 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 4324 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 9419 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Specifications Coolant Temperature Sensor/Switch (For Computer): Specifications Temperature Versus Resistance Page 1057 Seat Position Sensor - Horizontal (w/Memory) Page 2583 Page 2348 Capacity Specifications Fluid - Differential: Capacity Specifications DIFFERENTIAL FLUID Front Axle ...................................................................................................... ......................................................................................... 0.8 liters (1.7 pints) Rear Axle: With 18 Inch Wheels ......................................................................................................................................... ..................................... 2.0 liters (4.3 pints) Without 18 Inch Wheels ................................................. ............................................................................................................................. 1.7 liters (3.6 pt) NOTE: With a complete drain/refill, add 163 ml (5.5 oz) of Limited Slip Axle Lubricant to the axle in addition to the axle lubricant. IMPORTANT: The lubricant level should be between 0 - 10 mm (0 - 0.4 in) below the fill plug opening. NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Page 14 Central Control Module: Service and Repair Communication Interface Module Replacement (TrailBlazer, Envoy, Rainier) Communication Interface Module Replacement (TrailBlazer, Envoy, Rainier) Removal Procedure Important: The vehicle communication interface module (VCIM) has a specific set of unique numbers that tie the module to each vehicle. These numbers, the 10-digit station identification and the 11-digit electronic serial number, are used by the National Cellular Network and OnStar(R) to identify the specific vehicle. Because these numbers are tied to the vehicle identification number of the vehicle, you must never exchange these parts with those of another vehicle. 1. Position the right rear seat bottom to a cargo position. 2. Remove the protective cover from the VCIM. 3. Remove the module from the upper bracket by releasing the retaining tab. 4. Remove the electrical connectors from the VCIM. 5. Remove the VCIM from the vehicle. Installation Procedure 1. If replacing the VCIM, record the 10-digit STID number, and the 11-digit ESN number from the labels on the new module. 2. Install the module to the upper bracket ensuring the retaining tab is fully seated. Page 9461 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 4443 Radiator Hose: Service and Repair Radiator Outlet Hose Replacement Radiator Outlet Hose Replacement (LL8) Tools Required J 38185 Hose Clamp Pliers Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Using J 38185 reposition the radiator outlet hose clamp. 3. Remove the radiator outlet hose from the radiator. 4. Using J 38185 reposition the radiator outlet hose clamp. 5. Remove the radiator outlet hose from the engine (1). 6. Remove the radiator outlet hose. Installation Procedure 1. Install the radiator outlet hose to the engine (1). 2. Using J 38185 reposition the radiator outlet hose clamp. 3. Install the radiator outlet hose to the radiator. 4. Using J 38185 reposition the radiator outlet hose clamp. 5. Lower the vehicle. 6. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 10128 2. Use a screwdriver to rotate the lock cylinder housing gear clockwise to the start position allowing it to spring return into the RUN position. 3. Align the lock cylinder and install into the lock cylinder housing. 4. Install the steering column trim covers. 5. Install the hush and knee bolster. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. 7. Connect the negative battery cable. Page 10166 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 3092 3. Install the fill plug. Tighten the fill plug to 33 N.m (24 lb ft). 4. Lower the vehicle. Page 3353 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2511 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6269 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 4581 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Page 8157 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5085 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 10223 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10512 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 10300 Page 3695 Bolt Extractor Tool Kit Part Number EN-47702 The bolt extractor kit EN-47702 provides the following components to assist in removal of the broken bolt segment: 1. One 5/32" reverse twist drill - part number EN-47702-6 2. One double-ended drill pilot insert - part number EN-47702-1 (ensures a straight drilling procedure) 3. Drill pilot inserts for larger diameter heads or main cap bolts - part number EN-47702-2 (ensure a straight drilling procedure) 4. Bolt extraction # 3 EZ out - part number EN-47702-3 (after the drilling procedure) 5. Bottom tap (M11 X 2) - part number EN-47702-5 (for the head bolts to chase the threads after the completion of bolt removal) 6. Bottom tap (M10 X 1.5) - part number EN-47702-4 (for the main bolts to chase the threads after the completion of bolt removal) Disclaimer Page 9456 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1964 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 7406 Body Control Module: Service and Repair Body Control Module Replacement BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. Do not open the BCM housing. The module does not have any serviceable components. The module may be replaced only as an assembly. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the 40-way body wiring extension (1) from the BCM. Page 2787 Window Switch - RR Page 6029 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 7643 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5889 Page 6786 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6066 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1861 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 5264 Coolant Temperature Sensor/Switch (For Computer): Service and Repair Engine Coolant Temperature Sensor Replacement Removal Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Turn the engine OFF. Caution: Refer to Battery Disconnect Caution. 2. Disconnect the negative battery terminal. 3. Drain coolant below the level of the engine coolant temperature (ECT) sensor. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 4. Disconnect the ECT sensor electrical connector (1). 5. Carefully remove the ECT sensor (1). Installation Procedure Notice: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. Notice: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. 1. If installing the original sensor or a new sensor without sealant, apply thread sealer P/N 12346004 or equivalent. Page 548 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 1474 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 6684 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 8200 Page 1085 Sunroof / Moonroof Switch: Service and Repair SUNROOF SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the overhead console in order to access the sunroof switch. 2. Disconnect the electrical connector from the sunroof switch. 3. With a flat bladed tool carefully release the tabs that retain the sunroof switch to the overhead console. 4. Remove the sunroof switch from the overhead console. INSTALLATION PROCEDURE 1. Position the sunroof switch alignment tabs to the slots in the console. 2. Install the sunroof switch into the console, ensuring that the retaining tabs are fully seated. 3. Connect the electrical connector to the sunroof switch. 4. Install the overhead console to the roof. Page 3253 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9424 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9993 Camshaft Position Sensor: Service and Repair Camshaft Position Sensor Replacement Removal Procedure 1. Remove the camshaft position (CMP) sensor electrical connector (1). 2. Remove the CMP sensor retaining bolt. Installation Procedure Notice: Refer to Fastener Notice. 1. Install the CMP sensor. Tighten the CMP sensor bolt to 10 N.m (89 lb in). 2. Install the CMP sensor electrical connector (1). Page 11083 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6290 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 6139 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 10872 Fuel Pressure Gage Installation and Removal Fuel Pressure: Testing and Inspection Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 5926 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7007 Page 10325 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2166 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Locations Crankshaft Position Sensor: Locations Engine Controls Component Views Lower Left Side of the Engine 1 - Evaporative Emission (EVAP) Canister Purge Solenoid 2 - Starter 3 - Crankshaft Position (CKP) Sensor 4 - Knock Sensor (KS) 2 - Rear 5 - Knock Sensor (KS) 1 - Front Page 9949 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 6774 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5903 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 2336 Page 10287 Shift Interlock Solenoid: Locations Shift Lock Control Component Views Automatic Transmission Shift Lock Actuator Automatic Transmission Shift Lock Actuator 1 - Lower Console 2 - Automatic Transmission Shift Lock Actuator Page 2109 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 736 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 10555 Transfer Case Actuator: Service and Repair NVG 226-NP8 - Transfer Case Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Transfer Case Motor/Encoder Replacement (TrailBlazer EXT, Envoy XL, Envoy XUV) Removal Procedure Important: Before the motor/encoder is removed, ensure that the motor/encoder is in the 2HI position. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the transfer case shield, if equipped. Refer to Transfer Case Shield Replacement. 3. Disconnect the motor/encoder electrical connector (1). 4. Remove the motor/encoder mounting bolts. Page 395 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 7617 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 9249 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 6085 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Locations Oxygen Sensor: Locations Engine Controls Component Views Right Side of the Engine - Front 1 - Mass Air Flow (MAF) / Intake Air Temperature (IAT) Sensor 2 - Camshaft Actuator Solenoid Assembly 3 - Camshaft Position (CMP) Sensor 4 - Engine Oil Pressure (EOP) Switch 5 - Heated Oxygen Sensor (HO2S) Sensor 1 Right Side of the Transmission 1 - Heated Oxygen Sensor (HO2S) Sensor 2 Page 3462 13. Use the tire changer in order to install the tire to the wheel. Caution: To avoid serious personal injury, do not stand over tire when inflating. The bead may break when the bead snaps over the safety hump. Do not exceed 275 kPa (40 psi) pressure when inflating any tire if beads are not seated. If 275 kPa (40 psi) pressure will not seat the beads, deflate, lubricate the beads and reinflate. Overinflating may cause the bead to break and cause serious personal injury. Important: Allowable bead seating pressure is 345 kPa (50 psi) on Extended Mobility Tires. 14. Inflate the tire until it passes the bead humps. Be sure that the valve core is not installed at this time. 15. Install the valve core to the valve core stem. 16. Inflate the tire to the proper air pressure. 17. Ensure that the locating rings are visible on both sides of the tire in order to verify that the tire bead is fully seated on the wheel. Parts Information The product shown above is available from GM SPO. Disclaimer Page 10089 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 7101 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9240 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6104 Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement Crankshaft Position Sensor Replacement Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the crankshaft position (CKP) sensor harness connector. 3. Remove the CKP sensor retaining bolt. 4. Remove the CKP sensor from the engine block. Installation Procedure Important: Inspect the sensor O-ring for the following conditions: * Any wear * Any cracks * Any leakage Replace the O-ring if necessary. Lubricate the new O-ring with engine oil before installation. Notice: Refer to Fastener Notice. 1. Install the CKP sensor into the engine block. Tighten the bolt to 10 N.m (89 lb in). Page 5467 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 8842 Fuel Injector 5 Page 4343 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. Page 6355 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 9719 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1311 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3294 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Capacity Specifications Fluid - A/T: Capacity Specifications Fluid Capacity Specifications Pan Removal ....................................................................................................................................... ........................................................ 4.7 liters (5.0 qts) Overhaul .............................................................................................................................................. .................................................. 10.6 liters (11.0 qts) Dry Fill W/ 280 mm Torque Converter.................................................................................................. ............................................. 11.25 Liters (11.9 qts) Dry Fill W/ 300 mm Torque Converter.................................................................................................. ............................................... 11.5 Liters (12.1 qts) Measurements are approximate Page 6501 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 276 Front Passenger Door Module (FPDM) C1 Page 1987 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 1351 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 5200 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 6781 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 2115 Air Flow Meter/Sensor: Connector Views Engine Controls Connector End Views Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Page 10161 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Aluminum Wheel Porosity Repair Wheels: Service and Repair Aluminum Wheel Porosity Repair Aluminum Wheel Porosity Repair 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire and wheel. Refer to Tire and Wheel Removal and Installation. 3. Inflate the tire to the manufacturer specified pressure as stated on the tire. 4. Submerge the tire/wheel into a water bath in order to locate the leak. 5. Inscribe a mark on the wheel in order to indicate the leak areas. 6. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 7. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. Important: Do not damage the exterior surface of the wheel. 8. Use number 80 grit sandpaper to scuff the inside of the rim surface at the leak area. 9. Use general purpose cleaner such as 3M(R), P/N 08984 or equivalent, to clean the leak area. 10. Apply 3 mm (0.12 in) thick layer of adhesive/sealant, GM P/N 1052366 or equivalent, to the leak area. 11. Allow for the adhesive/sealant to dry. 12. Align the inscribed mark on the tire with the valve stem on the wheel. 13. Install the tire to the wheel. Refer to Tire Mounting and Dismounting. 14. Inflate the tire to the manufacturer specified pressure as stated on the tire. 15. Submerge the tire/wheel into a water bath in order ensure the leak is sealed. 16. Balance the tire and wheel. Refer to Tire and Wheel Assembly Balancing - Off Vehicle. 17. Install the tire and wheel. Refer to Tire and Wheel Removal and Installation. 18. Lower the vehicle. Page 554 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 9872 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 3652 Variable Valve Timing Solenoid: Service and Repair Camshaft Position Actuator Solenoid Valve Replacement Removal Procedure 1. Remove the drive belt. 2. Remove the 3 power steering pump bolts and move the pump out of the way. 3. Disconnect the camshaft position actuator solenoid electrical connector. 4. Remove the camshaft position actuator solenoid retaining bolt (3). 5. Remove the camshaft position actuator solenoid (2) from the engine block. 6. Clean debris from the hole (1). Installation Procedure 1. Lubricate the hole (1) with engine oil. Notice: Refer to Fastener Notice. 2. Install the camshaft position actuator solenoid (2) and bolt (3). Tighten the bolt to 10 N.m (89 lb in). 3. Connect the camshaft position actuator solenoid electrical connector. 4. Install the power steering pump and bolts. 5. Install the drive belt. Page 6033 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7095 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 1286 Page 7771 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 10972 US English/Metric Conversion US English/Metric Conversion Page 9106 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7295 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 6770 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 8608 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Page 6964 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 4104 The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. Locations Manifold Pressure/Vacuum Sensor: Locations Engine Controls Component Views Upper Right Side of the Engine - Rear 1 - Manifold Absolute Pressure (MAP) Sensor 2 - Throttle Body 3 - Engine Coolant Temperature (ECT) Sensor Page 6005 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 5453 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10581 Transfer Case Shift Control Module C2 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module C3 Transfer Case Shift Control Module - C3 Transfer Case Shift Control Module C3 Page 9679 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3215 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5117 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 7223 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Page 8056 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 465 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9803 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 2309 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 8659 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 3252 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 7706 Page 362 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 575 HVAC Control Module C2 HVAC Control Module - Auxiliary Steering Wheel Speed/Position Sensor Page 2221 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 9193 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 6526 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 10075 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 5631 Page 8782 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 5589 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 6755 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 10871 Page 6758 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 10969 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. Page 6083 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 1459 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 8156 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 1232 Headlamp Switch: Service and Repair HEADLAMP SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Open the left instrument panel (IP) access cover. 2. Reach into the access hole and release the 4 retaining tabs located on the headlamp switch behind the IP. 3. Remove the headlamp switch from the IP, through the IP access hole. 4. Disconnect the electrical connectors from the headlamp switch. 5. Remove the headlamp from the IP. INSTALLATION PROCEDURE 1. Position the headlamp switch near the access hole. 2. Connect the electrical connectors to the headlamp switch. 3. Install the headlamp switch to the IP. Ensure that the retaining tabs are fully seated. 4. Install the left IP access cover. Page 9521 Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Page 1384 Page 4245 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Engine - Drive Belt Misalignment Diagnostics Drive Belt: Technical Service Bulletins Engine - Drive Belt Misalignment Diagnostics INFORMATION Bulletin No.: 08-06-01-008A Date: July 27, 2009 Subject: Diagnosing Accessory Drive Belt / Serpentine Belt Noise and Availability and Use of Kent-Moore EN-49228 Laser Alignment Tool - Drive Belt Models: 2010 and Prior GM Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add a model year and update the Tool Information. Please discard Corporate Bulletin Number 08-06-01-008 (Section 06 - Engine). Background Several aftermarket companies offer laser alignment tools for accessory drive systems that can be very helpful in eliminating drive belt noise as a result of misaligned pulleys. Typically pricing ranges from $160 - $200. EN-49228 Laser Alignment Tool - Drive Belt The GM Tool program has now made available a competitive, simple to use and time-saving laser tool to assist in achieving precise alignment of the drive belt pulleys. This optional tool removes the guesswork from proper pulley alignment and may serve to reduce comebacks from: - Drive Belt Noise - Accelerated Drive Belt Wear - Drive Belt Slippage Instructions The instructions below are specific only to the truck Gen IV V-8 family of engines. These instructions are only for illustrative purposes to show how the tool may be used. Universal instructions are included in the box with the Laser Alignment Tool - Drive Belt. Caution - Do not look directly into the beam projected from the laser. - Use caution when shining the laser on highly polished or reflective surfaces. Laser safety glasses help reduce laser beam glare in many circumstances. - Always use laser safety glasses when using the laser. Laser safety glasses are not designed to protect eyes from direct laser exposure. 1. Observe and mark the serpentine belt orientation. Page 4875 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 4262 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 4373 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 5871 Page 6285 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 11126 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 6186 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2676 5. Position the wheel and tire so the valve stem is situated at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the outer tire bead up and over the mounting/dismounting head. 6. Position the wheel and tire so that the valve stem is situated again at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the inner tire bead up and over the mounting/dismounting head. 7. Remove all residual liquid sealant from the inside of the tire and wheel surfaces. If any tire sealant is noted upon tire dismounting on vehicles equipped with TPM replace the tire pressure sensor. 8. Use a wire brush or coarse steel wool in order to remove any rubber, light rust or corrosion from the wheel bead seats. Important: If bead seat corrosion has been identified as an air loss concern on the wheel being worked on, refer to GM Service Bulletin # 08-03-10-006 for additional information on correcting the leak. 9. Apply GM P/N 12345884 (in Canada, P/N 5728223) or equivalent to the tire bead and the wheel rim. Page 8745 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Page 9257 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 275 Driver Door Module (DDM) C5 (Outside Rearview Mirror Switch) (DS3/DL2) Page 1678 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 2158 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 3901 10. Carefully move the camshaft sprockets back onto the camshafts and remove the J 44222. 11. Install a NEW intake camshaft sprocket washer and bolt, and a NEW exhaust camshaft actuator bolt. ^ Tighten the intake camshaft sprocket bolt the first pass to 20 N.m (15 lb ft). ^ Use the J 36660-A to tighten the intake camshaft sprocket bolt the final pass and additional 100 degrees. ^ Tighten the exhaust camshaft actuator bolt the first pass to 25 N.m (18 lb ft). ^ Use the J 36660-A to tighten the exhaust camshaft actuator bolt a final pass an additional 135 degrees. 12. Install the spark plugs. Refer to Spark Plug Replacement 13. Install the camshaft cover. Refer to Camshaft Cover Replacement. 14. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 15. Remove the J 44226-3A from the torque converter bolt. 16. Install the torque converter access plug. 17. Lower the vehicle. Page 7743 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 1988 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 5482 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 6627 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7774 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 8912 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 660 Engine Control Module: Locations Engine Controls Component Views Upper Left Side of the Engine - Front 1 - Powertrain Control Module (PCM) 2 - Powertrain Control Module (PCM) C3 3 - Powertrain Control Module (PCM) C2 4 - Generator Page 10906 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 8453 1. Install the AIR hose assembly by rotating over the top of the engine. Notice: Refer to Fastener Notice. Important: Add a drop of GM P/N 12345382 (Canadian P/N 10953489) to the bolt threads. 2. Install the bolt and fir-tree fasteners securing the AIR pipe to the cylinder head. Tighten the bolt until fully seated. 3. Connect the AIR hose to the air box. Page 9547 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 2337 Page 478 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Page 10393 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 4188 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4449 Page 7600 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 10760 Page 5746 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 8777 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 6602 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7862 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 10587 1. Install the transfer case control module (1) to the mounting bracket. 2. Connect the 3 electrical connectors to the transfer case control module. 3. Install the transfer case control module and mounting bracket to the instrument panel mag beam. 4. Install the left side closeout/insulator panel. Refer to Instrument Panel Insulator Panel Replacement - Left Side. 5. Install the access panel. 6. Program the transfer case shift control module. Refer to Control Module References. Page 7825 Page 5744 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 5896 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 59 For vehicles repaired under warranty use, the table. Disclaimer Page 936 Air Bag Control Module: Diagrams SIR Connector End Views Inflatable Restraint Sensing and Diagnostic Module (SDM) Fuel Pressure Relief Fuel Pressure Release: Service and Repair Fuel Pressure Relief Fuel Pressure Relief Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter With CH-48027 Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the J42242 to the fuel rail service port. 6. Connect the CH-48027-3 (4) to the J42242. 7. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 8. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 9. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 10. Close the valve on the CH-48027-2 (2). 11. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. Important: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: Page 3544 Some customers may use penetrating oils, grease or other lubricants on wheel studs to aid in removal or installation. Always use a suitable cleaner/solvent to remove these lubricants prior to installing the wheel and tire assemblies. Lubricants left on the wheel studs may cause improper readings of wheel nut torque. Always install wheels to clean, dry wheel studs ONLY. Notice Lubricants left on the wheel studs or vertical mounting surfaces between the wheel and the rotor or drum may cause the wheel to work itself loose after the vehicle is driven. Always install wheels to clean, dry wheel studs and surfaces ONLY. Beginning with 2011 model year vehicles, put a light coating of grease, GM P/N 1051344 (in Canada, P/N 9930370), on the inner surface of the wheel pilot hole to prevent wheel seizure to the axle or bearing hub. Wheel Stud and Lug Nut Damage Always inspect the wheel studs and lug nuts for signs of damage from crossthreading or abuse. You should never have to force wheel nuts down the stud. Lug nuts that are damaged may not retain properly, yet give the impression of fully tightening. Always inspect and replace any component suspected of damage. Tip Always start wheel nuts by hand! Be certain that all wheel nut threads have been engaged BEFORE tightening the nut. Important If the vehicle has directional tread tires, verify the directional arrow on the outboard side of the tire is pointing in the direction of forward rotation. Wheel Nut Tightening and Torque Improper wheel nut tightening can lead to brake pulsation and rotor damage. In order to avoid additional brake repairs, evenly tighten the wheel nuts to the proper torque specification as shown for each vehicle in SI. Always observe the proper wheel nut tightening sequence as shown below in order to avoid trapping the wheel on the wheel stud threads or clamping the wheel slightly off center resulting in vibration. The Most Important Service You Provide While the above information is well known, and wheel removal so common, technicians run the risk of becoming complacent on this very important Page 1559 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 8928 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 7759 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5203 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70 2 - Park/Neutral Position (PNP) Switch Page 11100 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 3163 Page 7146 Page 7209 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 8401 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 7170 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 6603 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 7122 Page 4812 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 5098 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 4633 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 7144 Page 7305 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8877 1. Relieve the fuel system pressure, if required. Perform the following steps: Caution: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. Notice: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: * The fuel pipe connections * The hose connections * The areas surrounding the connections Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 2. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 3. Disconnect the CH-48027-3 (4) from the J42242. 4. Disconnect the J42242 from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Page 5837 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 4954 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 850 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 8034 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Page 9540 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 2498 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 4811 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 9659 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Page 8418 Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Page 1672 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7723 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 8968 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1844 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 10500 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6141 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 5316 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 8233 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 1705 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Fuel Pressure Gage Installation and Removal Fuel Pressure: Testing and Inspection Fuel Pressure Gage Installation and Removal Fuel Pressure Gage Installation and Removal Tools Required * CH-48027 Digital Pressure Gage * J42242 Fuel Pressure Gage Adapter Installation Procedure Caution: Refer to Gasoline/Gasoline Vapors Caution. Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief. 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027 , refer to the manufacture's directions. Removal Procedure Page 11112 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Page 2199 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Page 9539 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. See: Testing and Inspection/Component Tests and General Diagnostics Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Page 1532 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 3284 Fuse Block: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 6721 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 2821 Frame Angle Measurement (Express / Savana Only) ........ Page 6295 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6941 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 3128 Refrigerant: Service and Repair Refrigerant Recovery and Recharging Tools Required * J43600 ACR 2000 Air Conditioning Service Center * J45037 A/C Oil Injector Caution: Avoid breathing the A/C Refrigerant 134a (R-134a) and the lubricant vapor or the mist. Exposure may irritate the eyes, nose, and throat. Work in a well ventilated area. In order to remove R-134a from the A/C system, use service equipment that is certified to meet the requirements of SAE J2210 (R-134a recycling equipment). If an accidental system discharge occurs, ventilate the work area before continuing service. Additional health and safety information may be obtained from the refrigerant and lubricant manufacturers. Caution: For personal protection, goggles and gloves should be worn and a clean cloth wrapped around fittings, valves, and connections when doing work that includes opening the refrigerant system. If R-134a comes in contact with any part of the body severe frostbite and personal injury can result. The exposed area should be flushed immediately with cold water and prompt medical help should be obtained. Notice: R-134a is the only approved refrigerant for use in this vehicle. The use of any other refrigerant may result in poor system performance or component failure. Notice: To avoid system damage use only R-134a dedicated tools when servicing the A/C system. Notice: Use only Polyalkylene Glycol Synthetic Refrigerant Oil (PAG) for internal circulation through the R-134a A/C system and only 525 viscosity mineral oil on fitting threads and O-rings. If lubricants other than those specified are used, compressor failure and/or fitting seizure may result. Notice: R-12 refrigerant and R-134a refrigerant must never be mixed, even in the smallest of amounts, as they are incompatible with each other. If the refrigerants are mixed, compressor failure is likely to occur. Refer to the manufacturer instructions included with the service equipment before servicing. The J43600 is a complete air conditioning service center for R-134a. The ACR 2000 recovers, recycles, evacuates and recharges A/C refrigerant quickly, accurately and automatically. The unit has a display screen that contains the function controls and displays prompts that will lead the technician through the recover, recycle, evacuate and recharge operations. R-134a is recovered into and charged out of an internal storage vessel. The ACR 2000 automatically replenishes this vessel from an external source tank in order to maintain a constant 5.45-6.82 kg (12-15 lbs) of A/C refrigerant. The ACR 2000 has a built in A/C refrigerant identifier that will test for contamination, prior to recovery and will notify the technician if there are foreign gases present in the A/C system. If foreign gases are present, the ACR 2000 will not recover the refrigerant from the A/C system. The ACR 2000 also features automatic air purge, single pass recycling and an automatic oil drain. Refer to the J43600 ACR 2000 manual for operation and setup instruction. Always recharge the A/C System with the proper amount of R-134a. Refer to Refrigerant System Capacities for the correct amount. A/C Refrigerant System Oil Charge Replenishing If oil was removed from the A/C system during the recovery process or due to component replacement, the oil must be replenished. Oil can be injected into a charged system using J45037. For the proper quantities of oil to add to the A/C refrigerant system, refer to Refrigerant System Capacities. Page 7513 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 10841 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6995 Fuel Tank Pressure Sensor: Diagrams Engine Controls Connector End Views Fuel Tank Pressure (FTP) Sensor Page 1693 pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. Page 1362 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 10748 4. Shift lever to LOW. 5. Install the screw at the rear of the shiftier assembly. Tighten the actuator screw to 1.65 N.m (15 lb in). 6. Connect the electrical connector (3). 7. Verify the shift lock actuator functions properly. 8. Install the console. Refer to Console Replacement. Page 899 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 4164 Page 11123 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Page 3027 3. Radiator outlet hose (lower hose) to engine (3). (Shown as viewed from below.) 4. Radiator outlet hose (lower hose) to radiator (4). (Shown as viewed from below.) 5. Heater inlet hose to engine (5). Page 8106 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6630 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. Page 2862 Tighten the resonator to engine bolts to 6 N.m (53 lb in). 4. Connect the air cleaner outlet duct to the air cleaner outlet resonator (3). 5. Properly position the air cleaner outlet duct and air cleaner outlet resonator clamps (2). Tighten the clamps (2) to 4 N.m (35 lb in). Page 9777 Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Page 4659 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 2558 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (025 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Page 9420 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 5652 Utility/Van Zoning UTILITY/VAN ZONING Page 8065 Knock Sensor: Description and Operation Knock Sensor (KS) System Description Purpose The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. Sensor Description This KS system uses one or two flat response two-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration or noise level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through 2 isolated signal circuits. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module is capable of controlling spark retard on an individual cylinder basis. The control module will always try to work back to a zero compensation level, or no spark retard. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Some diagnostics are also calibrated to detect constant noise from an outside influence such as a loose/damaged component or excessive engine mechanical noise. Page 4601 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 2454 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn Crankshaft Position System Variation Learn Important: The crankshaft position (CKP) system variation learn procedure is required when the following service procedures have been performed, regardless of whether DTC P0315 is set: * Engine replacement * Engine control module (ECM) replacement * ECM reprogramming * Crankshaft damper replacement * Crankshaft replacement * CKP sensor replacement * Any engine repairs which disturb the crankshaft to CKP sensor relationship Important: The scan tool monitors certain component signals to determine if all the conditions are met to continue with the CKP system variation learn procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: * CKP sensor activity-If there is a CKP sensor condition, refer to the applicable DTC that set. * Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC that set. * Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 1. Install a scan tool. 2. Monitor the ECM for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. With a scan tool, select the CKP system variation learn procedure and perform the following: 1. Observe the fuel cut-off for the applicable engine. 2. Block the drive wheels. 3. Set the parking brake. 4. Place the vehicle's transmission in Park or Neutral. 5. Turn the air conditioning (A/C) OFF. 6. Cycle the ignition from OFF to ON. 7. Apply and hold the brake pedal for the duration of the procedure. 8. Start and idle the engine. 9. Accelerate to wide open throttle (WOT). The engine should not accelerate beyond the calibrated fuel cut-off RPM value noted in step 3.1. Release the throttle immediately if the value is exceeded. Important: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 10. Release the throttle when fuel cut-off occurs. 4. The scan tool displays Learn Status: Learned this Ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC that set. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 5. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. Page 7296 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 4969 The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Page 5055 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 9125 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Page 1298 If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) Page 7543 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5976 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 6149 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 7694 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 4460 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 1387 Air Flow Meter/Sensor: Service and Repair Mass Airflow Sensor/Intake Air Temperature Sensor Replacement Removal Procedure Important: Use care when handling the mass air flow/intake air temperature (MAF/IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Disconnect the engine harness electrical connector (5) from the MAF/IAT sensor. 2. Remove the MAF/IAT sensor screws. 3. Remove the MAF/IAT sensor. Installation Procedure Page 8138 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 537 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7612 - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. - IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction manual is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminage even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Page 5821 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 5998 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that correspond to where they are located in the vehicle. The table explains the numbering system. Page 9299 Page 1985 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 9437 IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Page 6507 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 4507 2. Locate the two indents of the terminal position assurance (TPA) located on the bottom of the connector body. Page 10482 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 6678 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 6392 Disclaimer Locations Fuel Tank Pressure Sensor: Locations Engine Controls Component Views Fuel Tank 1 - Fuel Tank Pressue (FTP) Sensor 2 - Fuel Pump and Sender Assembly 3 - Chassis Harness 4 Fuel Tank 5 - Evaporative Emission (EVAP) Canister Vent Solenoid Page 11014 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor follow these additional steps. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. 10. Disconnect the rotary position sensor from the wiring harness. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps to install the sensor, otherwise proceed to installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to insure the connector is fully installed. Page 4981 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Page 7308 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3678 Variable Valve Timing Actuator: Service and Repair Camshaft Position Exhaust Actuator Replacement Tools Required ^ J 36660-A Torque Angle Meter ^ J 44217 Timing Chain Retention Tool Removal Procedure 1. Remove the camshaft cover. Refer to Camshaft Cover Replacement. 2. Rotate the engine until the word Delphi on the exhaust camshaft position actuator is lined up parallel with the cylinder head to cam cover mating surface. 3. Remove the top chain guide bolts. 4. Remove the top chain guide. 5. Using the timing mark on the exhaust camshaft position actuator sprocket as a reference, make a mark on the timing chain link across from it. 6. Install the J-44217 (1). 1. Install the hook portion of the timing chain retention tools into one of the timing chain links near the timing chain shoe on both sides of the engine. 2. Tighten the wingnuts. 3. Ensure the hooks are still in one of the links and the gage blocks of the tool are firmly in place on the edge of the head. Page 1862 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 8853 ‹› If any injector still exceeds the recommended tolerance, replace the fuel injector. Repair Instructions Perform the Diagnostic Repair Verification after completing the diagnostic procedure. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/Verification Tests and Procedures * Fuel Injector Cleaning * Fuel Injector Replacement Engine - Oil Leak from Rear of Crankshaft Crankshaft: All Technical Service Bulletins Engine - Oil Leak from Rear of Crankshaft Bulletin No.: 05-06-01-022B Date: June 11, 2007 INFORMATION Subject: Diagnostic Information on LL8 Engine Oil Leak from Rear of Crankshaft Due to Porosity (Follow Special Crankshaft Porosity Service Repair Procedure) Models: 2005-2007 Buick Rainier 2005-2007 Chevrolet TrailBlazer Models 2005-2007 GMC Envoy Models 2005-2007 Saab 9-7X with 4.2L Inline 6 Cylinder Engine (VIN S - RPO LL8) Supercede: This bulletin is being revised to add the 2006 and 2007 model years. Please discard Corporate Bulletin Number 05-06-01 -022A (Section 06 - Engine/Propulsion System). Special Crankshaft Porosity Service Repair Procedure This bulletin is being published to aid technicians in the diagnosis and repair of oil leak from the rear of the engine. Some engines may have slight crankshaft casting porosity that results in a leak in the crankshaft flange bore. This leak may be misdiagnosed as a rear main oil seal leak. Do not assume that an oil leak at the rear of the engine is from a leak at the rear of the crankshaft. Refer to above illustration for the area of the oil leak (1). Verify the leak by looking in the end of the crankshaft. If oil is present in the bore (where the torque converter nose engages the crankshaft), the special service procedure needs to be performed. If the bore is dry, or oil appears to be from the seal area, perform normal oil leak analysis. Refer to Oil Leak Diagnosis in SI. A service cup plug was recently developed to repair this leak and is available through the Warranty Parts Center (WPC). Refer to the information in this bulletin to order a service cup plug. Page 1777 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 259 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion Page 6530 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 6715 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 10065 6. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 7. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Page 9068 Page 8833 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 180 IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Front probe Disconnect the connector and probe the terminals from the mating side (front) of the connector. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Page 10768 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 4135 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Page 10231 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). Page 1717 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 1383 US English/Metric Conversion US English/Metric Conversion Page 11174 Displays and Gages Schematic Icons Displays and Gages Schematic Icons Entertainment/Communication Schematic Icons Entertainment/Communication Schematic Icons Radiator Inlet Hose Replacement Radiator Hose: Service and Repair Radiator Inlet Hose Replacement Radiator Inlet Hose Replacement (LL8) Tools Required J 38185 Hose Clamp Pliers Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). 2. Remove the air cleaner outlet resonator. Refer to Air Cleaner Outlet Resonator Replacement. 3. Using J 38185 reposition the radiator inlet hose clamp (1) from the engine. 4. Remove the radiator outlet hose from the engine. 5. Using J 38185 reposition the radiator inlet hose clamp (2) from the radiator. 6. Remove the radiator inlet hose from the radiator. Installation Procedure 1. Install the radiator inlet hose to the radiator. 2. Using J 38185 reposition the radiator inlet hose clamp to the radiator. 3. Install the radiator inlet hose to the engine. 4. Using J 38185 reposition the radiator inlet hose clamp to the engine. 5. Install the air cleaner outlet resonator. Refer to Air Cleaner Outlet Resonator Replacement. 6. Fill the cooling system. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 1361 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Page 550 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 175 Page 6900 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 6136 Connector Anatomy Connector Repairs contains a list of all connector repairs. The connector repairs are listed by the connector manufacturer and then by connector type. If the technician cannot identify the manufacturer of the connector, refer to Identifying Connectors below. Knowing the connector manufacturer will assist in finding the correct connector repair from the following list: - Connector Position Assurance Locks - Terminal Position Assurance Locks - Bosch Connectors (0.64) Bosch Connectors (2.8 JPT) Bosch Connectors (BSK) Bosch Connectors (ECM) - Delphi Connectors (Micro.64) Delphi Connectors (Micro-Pack 100W) Delphi Connectors (Pull To Seat) Delphi Connectors (Push To Seat) Delphi Connectors (Weather Pack) Delphi Connectors (12-Way) - Tyco/AMP Connectors (CM 42-Way) Tyco/AMP Connectors (Sensor) Tyco/AMP Connectors (025 Cap) Tyco/AMP Connectors (43-Way) Tyco/AMP Connectors (Door Module) - Yazaki Connectors (2-Way) Yazaki Connectors (16-Way) - Repairing Connector Terminals IDENTIFYING CONNECTORS Knowing the connector manufacturer is helpful when trying to locating the correct connector repair procedure. There are many different connector designs used on GM vehicles and it is sometimes difficult to identify the connector manufacturer. The information in this document should help with the identification of connector manufactures. The following connector manufacturers make most of the connectors found in GM vehicles: AFL/EPC (Alcoa Fujikura Ltd./Engineered Plastics Components) - Bosch - Delphi - FCI (Framatome Connectors International) - JAE (Japan Aviation Electronics) - JST (Japan Solderless Terminals) Page 6144 Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. Page 6596 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Fuel System - Driveability Issues/MIL/Multiple DTC's Fuel Injector: All Technical Service Bulletins Fuel System - Driveability Issues/MIL/Multiple DTC's TECHNICAL Bulletin No.: 03-06-04-030G Date: April 22, 2009 Subject: Various Driveability Symptoms Due to Clogged Fuel Injectors, MIL/SES DTCs P0171, P0172, P0174, P0300, P1174, P1175 (Clean Fuel Injectors and/or Perform Injector Test With AFIT CH-47976) Models: 2005-2009 GM Passenger Cars and Light Duty Trucks 2005-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X Equipped with Engine RPOs listed in the Table above and MULTEC(R) 2 Fuel Injectors Attention: GM does not support cleaning injectors on any engines that are not listed in this bulletin. Engines other than the ones listed in this bulletin that diagnosis indicates having restricted injectors should have those injectors replaced. Supercede: This bulletin is being revised to update the model year to 2009 and to provide applicable engine RPO table. Please discard Corporate Bulletin Number 03-06-04-030F (Section 06 - Engine/Propulsion System). Condition Some customers may comment on any of the following various driveability symptoms: - Extended Crank Time - Hard to Start - MIL/SES Illuminated with DTCs - Hesitation - Lack of Power - Surge or Chuggle - Rough Idle - Light or Intermittent Misfire Cause Due to various factors, the fuel injectors may become restricted. Extensive testing has demonstrated that fuel related issues are the cause of clogged injectors. At this point, no specific fuel, fuel constituent, or engine condition has been identified as causing the restriction. The restriction causes the engine to operate at a lean air fuel ratio. This may either trigger the MIL to illuminate or the engine to develop various driveability symptoms. Correction Page 6937 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 363 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 5650 Page 2288 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 9990 Page 471 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 10885 Refer to the following table as a guide in selecting the correct test adapter for front probing connectors: Backprobe IMPORTANT: Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used Page 10810 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Page 845 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 6687 US English/Metric Conversion US English/Metric Conversion Page 7019 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 308 5. Install the nuts which retain the seat pan to the seat assembly. Tighten the nuts to 25 N.m (18 lb ft). 6. Install the 3 seat switch bezel screws. 7. Calibrate the seat. Refer to Memory Seat Calibration. Page 7511 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 4505 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5101 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 8296 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 5121 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 2010 OnStar(R) - Availability for Hearing Impaired Communications Control Module: All Technical Service Bulletins OnStar(R) - Availability for Hearing Impaired INFORMATION Bulletin No.: 06-08-46-005B Date: February 11, 2010 Subject: Availability of OnStar(R) for Hearing Impaired Models: 2007-2010 GM Passenger Cars and Light Duty Trucks (Including Saturn and Saab) Except 2007 Cadillac CTS Except 2007-2008 HUMMER H2, H2 SUT Except 2007 Pontiac Montana SV6 Except 2007-2010 Pontiac Vibe Except 2007 Saturn ION, VUE Except 2008 Saturn Astra Supercede: This bulletin is being revised to add a Note regarding 2009 Bluetooth(R)-equipped vehicles, additional models and model years. Please discard Corporate Bulletin Number 06-08-46-005A (Section 08 - Body and Accessories). Important This service bulletin is not applicable to 'GM of Canada' dealers and retailers. Note On 2009 and newer model year vehicles equipped with the Bluetooth(R) feature (option code UPF), when up-fitted with TTY capabilities, the Bluetooth(R) feature will be disabled. OnStar with Text Telephone Capability (TTY) General Motors is pleased to announce that the safety and security of OnStar is now available to our deaf, hard of hearing and speech impaired customers. The current vehicles listed above, as well as forthcoming vehicles equipped with OnStar hardware version 7.0 or higher, have the ability to utilize texting telephones. Vehicle specific TTY capability can be determined by utilizing the VIN lookup Tool. Additional information may be found by referring to www.onstar.com/tty. TTY equipment allows people who are deaf, hard of hearing or speech impaired, in-vehicle access to 911 and basic OnStar(R) services by pressing the OnStar(R) blue button or red emergency button. The keypad provides a means to communicate by allowing customers to type messages back and forth, with an OnStar(R) advisor or other party when using the OnStar(R) Hands-Free Calling feature. A TTY is required at both ends of the conversation in order to communicate. OnStar(R) Turn by Turn Navigation and Virtual Advisor are not available with the addition of TTY. The Reimbursement Program This equipment will be made available to eligible customers through GM Mobility and OnStar(R). Under this program, the customer must complete a GM Mobility application form. To take advantage of the program, vehicles must be adapted at the time of delivery for purchase / lease and a dealer claim ($1,000 Maximum per GM Mobility guidelines) with the application form submitted to GM Mobility. Saab dealers must fax documents. GM Dealers will receive electronic reimbursement directly from GM Mobility. Saab dealers will receive a check directly from OnStar(R). Additional questions or concerns should be directed to the OnStar Dealer Center. How to Order To order the dealer installed kit, contact AutoCraft Electronics or via the web at www.autocraft.com. The kit consists of an OnStar Interface Module, a Dial Pad (for making calls), OTIM wiring harness, the TTY device, installation/Tech 2(R) programming instructions and owner's guide. Warranty Information The Ultra-Tec Compact C TTY device is manufactured by an independent manufacturer and is covered by the manufacturer's warranty. It is not covered under the GM New Vehicle Limited Warranty. All other parts (OTIM, dial pad and OTIM wiring harness) are covered by the standard GM new vehicle parts and labor warranty. Replacement parts are available through AutoCraft Electronics. Contact AutoCraft Electronics or via the web. Warranty claims for the OTIM, dial pad and OTIM wiring harness should be submitted through normal warranty procedures using a sublet warranty claim with GM Labor Operation R5140. Page 820 Follow the steps below in order to remove terminals from the connector. 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Page 10056 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. JST Connectors JST CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, remove the connector from the component. Page 6716 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 9235 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Page 11199 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 3185 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 7409 Body Control Module: Service and Repair Liftgate Control Module Replacement LIFTGATE CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the liftgate trim panel. 2. Disconnect the electrical connectors (3) from the module as necessary. 3. Remove the bolts that retain the module to the liftgate. 4. Remove the module from the liftgate. INSTALLATION PROCEDURE 1. Install the module to the liftgate. 2. NOTE: Refer to Fastener Notice. Install the bolts that retain the module to the liftgate. Tighten the bolts to 10 N.m (89 lb in). 3. Connect the electrical connectors (3) as necessary. 4. Install the liftgate trim panel. 5. Program the liftgate control module. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Page 1892 Procedures Power Seat Control Module: Procedures MEMORY SEAT CALIBRATION The memory seat module uses position sensor inputs to establish soft stop locations for the adjuster motors several millimeters ahead of the physical limits of the adjuster assembly. After replacing a memory seat module or adjuster components, it may be necessary to reset the adjuster motor soft stop locations. When the repair procedure has been completed, operate the seat adjuster switch in every direction until the seat adjuster reaches its mechanical hard stop by repeatedly pressing and releasing the switch as necessary. Page 10150 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 7407 8. Disconnect the 32-way tan electrical connector (2) from the BCM. 9. Disconnect the 24-way gray electrical connector (1) from the BCM. 10. With an upward motion, remove the BCM (1) from the rear electrical center. INSTALLATION PROCEDURE 1. Index the slots on the BCM (1) to the rear electrical center. 2. Using a downward motion, install the BCM to the rear electrical center. 3. Connect the 24-way gray electrical connector (1) to the BCM. 4. Connect the 32-way tan electrical connector (2) to the BCM. 5. Connect the 40-way body wiring extension (1) to the BCM. Page 130 Page 5658 vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: - Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency Page 8028 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Page 882 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6092 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 1412 It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. Page 2371 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 4328 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9320 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 543 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 9639 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 5594 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 9502 If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction manual The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 7778 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Page 5344 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Page 7890 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 10145 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to Restraint System Service Precautions. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be Page 7992 - Kostel - Molex - Sumitomo - Tyco/AMP - Yazaki Identifying the manufacturer of a connector is often difficult. When trying to determine the manufacturer of a connector, look for specific identifying marks that are unique to that connector supplier. Most of these identify marks are hard to find or see. Check the connector carefully and refer to the information below for pictures and descriptions of connector identification markings. - Most of AFLs connectors have EPC on their connector body. Some of the smaller connectors will not have any markings on them. - In some cases Bosch will actually be printed on the connector. If Bosch does not appear on the connector, look for the Bosch logo. The Bosch logo is a circle with a blunted arrow inside. This logo can appear anywhere on the connector and is often very small. Page 9189 Utility/Van Zoning UTILITY/VAN ZONING Page 10604 16. Install the TCC PWM solenoid (1) to the control valve body. 17. Install the TCC PWM solenoid retainer (2). 18. Connect the internal wiring harness electrical connectors to the following components: ^ The transmission fluid pressure manual valve position switch (1) ^ The 1-2 shift solenoid (2) ^ The 2-3 shift solenoid (3) ^ The pressure control solenoid (4) ^ The TCC PWM solenoid (5) ^ The 3-2 shift solenoid (6) 19. Install the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 20. Lower the vehicle. 21. Fill the transmission to the proper level with DEXRON(R) VI transmission fluid. Refer to Transmission Fluid Checking. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. 22. Reset the TAP values. Refer to Transmission Adaptive Functions (TCM). Page 5500 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. Page 7329 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. Underhood Fuse Block Fuse: Application and ID Underhood Fuse Block Fuse Block - Underhood (4.2L), Label Page 5494 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. Page 9135 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 10386 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 10097 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only dura seal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. Page 6947 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Page 7545 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 6904 - Yazaki has a wedge or arrow shape, similar to that shown. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO.64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro 64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. Page 8955 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 10193 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Lumbar Adjuster Switch Power Seat Switch: Diagrams Lumbar Adjuster Switch Lumbar Adjuster Switch - Driver (With RPO Code AR9) Page 9005 10. Connect the EVAP purge pipe (1) to the EVAP canister purge valve. 11. Connect the integral clip (2) to the wire harness bracket. 12. Connect the fuel feed pipe (3) to the fuel rail. 13. Connect the engine coolant temperature sensor electrical connector (1). 14. Install the PCM (1) onto the studs (5). 15. Install the PCM retaining bolts (3). Tighten the bolts to 8 N.m (71 lb in). Page 4871 Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it must be replaced with fusible link of the same gage size. REPAIRING A FUSIBLE LINK IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: Dura Seal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Page 6316 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Page 6866 Page 1738 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 292 Pedal Positioning Relay: Locations Underhood Fuse Block Fuse Block - Underhood (4.2L), Label Page 6313 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 2585 Knock Sensor: Connector Views Engine Controls Connector End Views Knock Sensor (KS) 1 Front Knock Sensor (KS) 2 Rear Page 2324 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 5205 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Page 9451 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 4594 - In some cases Delphi will actually be printed on the connector. If Delphi is not printed on the connector, look for PED. In both cases there is no specific orientation for Delphi or PED and they can appear anywhere on the connector. - FCI connectors may have the FCI logo on their connectors. The logo is the letters FCI with an "A" above it. - JAE connector have JAE in small letters on their connectors. Page 2414 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 6119 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 2325 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Instruments - Erratic Speedometer Operation Engine Control Module: All Technical Service Bulletins Instruments - Erratic Speedometer Operation Bulletin No.: 07-08-49-027 Date: December 04, 2007 TECHNICAL Subject: Erratic Speedometer Operation Or Speedometer Needle Shakes Above 60 mph (96 km/h) (Repair Poor Connection At Ground G108) Models: 2004-2007 Buick Rainier 2002-2008 Chevrolet TrailBlazer Models 2002-2008 GMC Envoy Models 2002-2004 Oldsmobile Bravada 2005-2008 Saab 9-7X with 4.2L Engine Only (VIN S - RPO LL8) Condition Some customers may comment on erratic operation of the speedometer. Others may comment that the speedometer needle shakes above 96 km/h (60 mph). Cause This condition may be caused by a loose or poor connection at Powertrain Control Module/Engine Control Module (PCM/ECM) ground G108. Correction Technicians are to inspect and repair ground G108 as necessary. Refer to callout 1 in the illustration above for the location of G108. Refer to the Testing for Intermittent Conditions and Poor Connections and the Wiring Repair procedures in SI for more information. Warranty Information (excluding Saab U.S. Models) Page 3595 Wheels: Description and Operation Steel Wheel Repair Description Steel Wheel Repair Description Notice: Do not heat wheels in an attempt to soften them for straightening or repair damage from striking curbs, etc. Do not weld wheels. The alloy used in these wheels is heat-treated and uncontrolled heating from welding affects the properties of the material. Notice: The use of tubes in tubeless tires is not a recommended repair due to the fact that speed ratings are greatly reduced. You can repair porosity in aluminum wheels. If leaks are found in a steel wheel, replace the wheel with a wheel of original equipment quality. Page 10552 5. Remove the motor/encoder assembly. Important: When replacing the encoder rotary position sensor, follow steps 6-10. The rotary position sensor is circular with 3 contacts on one side and is positioned behind the motor/encoder baseplate/gasket. The rotary position sensor replacement kit consists of a rotary position sensor, baseplate/gasket, and detailed instruction sheet. 6. Position the motor on a work bench. 7. Release the 4 tabs that retain the motor/encoder plastic baseplate and remove the baseplate/gasket (1). 8. Discard the old baseplate/gasket, replacement baseplate/gasket provided in rotary position sensor kit. Important: The motor/encoder rotary position sensor internal wires go to a connector within the motor housing. This internal wire connector does not have a locking tab and is easily disturbed. 9. Gently lift the motor/encoder rotary position sensor (2) from the motor shaft. Important: Look at the motor/encoder housing (1) where the rotary position sensor was removed from. Take note of the "Hex"; in the housing where the new sensor will seat when properly installed. 10. Disconnect the rotary position sensor (2) from the wiring harness. Installation Procedure Important: Provided the rotary position sensor was removed, follow steps 1-5 to install the sensor, otherwise proceed to step 6 installing the motor/encoder to the transfer case. 1. Connect the wiring harness to the rotary position sensor. 2. Gently insert a suitable tool along side the internal wires and press down on the internal wire connector to ensure the connector is fully installed. Page 7345 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Page 5713 8. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 9. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Page 7360 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8821 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 1465 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Page 8366 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Page 1517 Page 5194 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. Page 8237 - Most Molex connectors will have the Molex logo on the dresscover of the connector. In some cases the connectors may have MX followed by another letter. The third letter indicates where the connector was made. A connector with MXD is a Molex connector made in Detroit. Sumitomo has a unique symbol on their connector and possibly a part number. The symbol is similar to that of a diamond lying on its side, similar to that shown. The logo could appear anywhere but the most common place is at the wire side of the housing. Tyco/AMP has many different and unique connector designs. Some may or may not have identifiable marks on them. Page 6427 For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Page 6492 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Page 7038 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 3378 US English/Metric Conversion US English/Metric Conversion Page 5923 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. Service and Repair PCV Valve Hose: Service and Repair Crankcase Ventilation Hoses/Pipes Replacement Removal Procedure 1. Disconnect the crankcase dirty air hose from the intake manifold. 2. Disconnect the crankcase dirty air hose from the positive crankcase ventilation (PCV) orifice tube. 3. Loosen the throttle body clamps (2). 4. Disconnect the fuel pressure regulator vacuum supply hose from the air cleaner outlet resonator. 5. Remove the 2 resonator to engine bolts (4) from the air cleaner outlet resonator (5). Page 7974 to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. - Testing for Short to Ground - Testing for Continuity - Testing for a Short to Voltage Page 3576 *This product is currently available from 3M. To obtain information for your local retail location please call 3M at 1-888-364-3577. **This product is currently available from Meguiars (Canada). To obtain information for your local retail location please call Meguiars at 1-800-347-5700 or at www.meguiarscanada.com. ^ This product is currently available from Tri-Peek International. To obtain information for your local retail location please call Tri-Peek at 1-877-615-4272 or at www.tripeek.com. Disclaimer Page 11188 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 8291 The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Page 7457 Engine Control Module: Locations Engine Controls Component Views Upper Left Side of the Engine - Front 1 - Powertrain Control Module (PCM) 2 - Powertrain Control Module (PCM) C3 3 - Powertrain Control Module (PCM) C2 4 - Generator Page 3075 4. Install the oil pan and a new gasket. Notice: Refer to Fastener Notice. 5. Install the oil pan bolts. Tighten the oil pan to transmission case bolts alternately and evenly to 11 N.m (97 lb in). 6. If previously removed, install the range selector cable bracket and bolts. Tighten the bolts to 25 N.m (18 lb ft). 7. Apply a small amount of sealant GM P/N 12346004 to the threads of the oil pan drain plug, if equipped. 8. Install the oil pan drain plug, if equipped. Tighten the oil pan drain plug to 18 N.m (13 lb ft). 9. Install the catalytic converter. Refer to Catalytic Converter Replacement (4.2L Engine) Catalytic Converter Replacement (5.3L and 6.0L Engines). 10. Lower the vehicle. 11. Fill the transmission to the proper level with DEXRON(R) III transmission fluid. Refer to Transmission Fluid Checking and Fluid Capacity Specifications. 12. Check the COLD fluid level reading for initial fill only. 13. Inspect the oil pan gasket for leaks. Page 2528 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 3674 4. Remove the EN-47945 from the cylinder head and repeat as required. 5. Install the camshaft cover. Refer to Camshaft Cover Replacement. Page 5244 Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent american wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Page 9567 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 1507 Notice: Refer to Fastener Notice. 2. Install the ECT sensor. Tighten the ECT sensor to 16 N.m (12 lb ft). 3. Connect the ECT electrical connector (1). 4. Connect the negative battery terminal. 5. Refill the engine coolant. Refer to Draining and Filling Cooling System (LL8) Draining and Filling Cooling System (LH6, LS2). Page 1251 Steering Wheel And Column Page 8072 3. Connect the electrical connector. Page 6855 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Page 5827 3. Use a small flat-blade tool to very carefully raise the TPA on both sides of the connector. IMPORTANT: The TPA cannot be removed from the connector while there are terminals present in the connector body. View of the TPA when removed from the connector body. 4. Use the J 38125-12A tool to release the terminals by inserting the tool into the left side of the terminal release cavity as shown in the graphic. Use the tool to move the terminal release to the right with a gentle prying motion. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 353 Radiator Cooling Fan Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This Service Data uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service manual. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Decimal and Metric Equivalents Decimal and Metric Equivalents Page 8168 breakers are used. CIRCUIT BREAKER This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. POSITIVE TEMPERATURE COEFFICIENT (PTC) CIRCUIT BREAKER This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Page 5182 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 6243 Seal removed without any damage to the air inlet grille panel plastic staked studs. Refer to the above illustration (1). Remove any dirt or debris from the sealing surface of the air inlet grille panel Install AIP seal, P/N 25788476. The revised seal has a foam weatherstrip attached to the bottom. Refer to the above illustration (1). The foam weatherstrip faces the air inlet grille panel. Carefully stretch the revised AIP rubber seal over the plastic staked studs of the air inlet grille panel without damaging them. Parts Information Warranty Information (excluding Saab U.S. Models) Page 4462 MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS Page 2257 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Page 5490 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit Page 6280 difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Page 2265 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Connector Repairs CONNECTOR REPAIRS Page 1853 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Page 4852 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Page 501 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of Page 2833 Toe Description Toe is a measurement of how much the front and/or rear wheels are turned in or out from a straight-ahead position. When the wheels are turned in, toe is positive (+). When the wheels are turned out, toe is negative (-). The actual amount of toe is normally only a fraction of a degree. The purpose of toe is to ensure that the wheels roll parallel. Toe also offsets the small deflections of the wheel support system that occur when the vehicle is rolling forward. In other words, with the vehicle standing still and the wheels set with toe-in, the wheels tend to roll parallel on the road when the vehicle is moving. Improper toe adjustment will cause premature tire wear and cause steering instability. Setback Description Setback Description Setback applies to both the front and the rear wheels. Setback is the amount that one wheel may be aligned behind the other wheel. Setback may be the result of a road hazard or a collision. The first clue is a caster difference from side-to-side of more than 1 degree. Thrust Angles Description Thrust Angles Description Thrust Angles Description The front wheels aim or steer the vehicle. The rear wheels control tracking. This tracking action relates to the thrust angle (3). The thrust angle is the path that the rear wheels take. Ideally, the thrust angle is geometrically aligned with the body centerline (2). In the illustration, toe-in is shown on the left rear wheel, moving the thrust line (1) off center. The resulting deviation from the centerline is the thrust angle. Page 5869 5. Tape over the entire cable. Use a winding motion when you apply the tape. Seat Belt Schematic Icons Seat Belt Schematic Icons Secondary/Configurable Control Schematic Icons Secondary/Configurable Control Schematic Icons SIR Schematic Icons SIR Schematic Icons Page 10397 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service manual wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. Page 5134 If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: - Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. Page 2040 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Page 7658 3. Disconnect the connector from the component. 4. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 5. Cut the tie wrap that holds the wires to the connector body. Page 5201 TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit Locations Body Control Module (BCM) Page 6302 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit Page 4736 Body Control Module: Service and Repair Body Control Module Replacement BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE IMPORTANT: The ignition switch should be in the OFF position when connecting or disconnecting the connectors to the body control module (BCM). - Always disconnect the 40-way body wiring extension FIRST, the 32-way tan connector SECOND and the 24-way gray electrical connector LAST. - Always connect the 24-way gray electrical connector FIRST, the 32-way tan connector SECOND and the 40-way body wiring extension LAST. - The BCM can set DTCs with the ignition switch in the OFF position. The BCM has battery run down protection for the courtesy lamp circuit. The BCM battery run down protection cannot detect shorts on inputs or other circuits which the BCM does not control. Use the scan tool in order to activate the POWER DOWN NOW mode. Use the POWER DOWN NOW mode in order to check for current draws on circuits that are not controlled by the BCM, or controlled by the battery run down protection system. - Do not touch the exposed electrical contacts of the body wiring extension. Do not open the BCM housing. The module does not have any serviceable components. The module may be replaced only as an assembly. 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. If replacing the BCM on a Chevrolet TrailBlazer EXT or GMC Envoy XL, remove the left second row seat. 3. If replacing the BCM on a Chevrolet TrailBlazer or GMC Envoy, position the left hand second seat to a cargo position. 4. Remove the rear electrical center cover. 5. Press down and hold the locking tab (1). 6. Disengage the sliding latch retaining the BCM to the rear electrical center.Slide the latch inboard until fully extended, approximately 40 mm (1.6 in). 7. Disconnect the 40-way body wiring extension (1) from the BCM. Page 9544 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is Page 6588 Page 2806 Behind The Center Of The I/P (With RPO Code X88) Page 6485 - JST connectors have JST in small letters on their connectors, similar to that above. The location of the logo will vary with the connector size and style. - Kostel has an "LK" with a circle around it. These connector are usually used as a transmissions connection and are currently use on some Cadillac vehicles. Page 5043 Page 7635 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire.